research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Six 1-aroyl-4-(4-meth­­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 12 July 2019; accepted 23 July 2019; online 26 July 2019)

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic ππ stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.

1. Chemical context

Piperazines are found in a wide range of compounds which are active across a number of different therapeutic areas such as anti­bacterial, anti­depressant, anti­fungal, anti­malarial, anti­psychotic, and anti­tumour activity (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]), and a number of these areas have recently been reviewed (Elliott, 2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]; Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chemica, 4, 2470-2488.]; Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05-11.]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]). 1-(4-Meth­oxy­phen­yl)piperazine has been found to inhibit the re-uptake and accelerate the release of mono­amine neurotransmitters such as dopamine and serotonin, with a mechanism of action similar to that of recreational drugs such as amphetamines, but with significantly lower abuse potential (Nagai et al., 2007[Nagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharm. 559, 132-137.]). With these considerations in mind, we have now synthesized and characterized a series of closely related 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines, using a straightforward coupling reaction between N-(4-meth­oxy­phen­yl)piperazine and a benzoic acid, promoted by 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide as the dehydrating agent. Here we report the mol­ecular and supra­molecular structures of compounds (I)[link]–(VI)[link] (Figs. 1[link]–6[link][link][link][link][link]) which we compare with the structures of some related compounds. As well as these 2-substituted derivatives, we have also synthesized 1-(4-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine (VII), but to date we have been unable to obtain any crystalline material suitable for single crystal X-ray diffraction.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link] showing the atom-labelling scheme, and the disorder of the 2-chloro­benzoyl unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (IV)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of compound (V)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of compound (VI)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

In the 2-chloro derivative (III)[link], the benzoyl substituent is disordered over two sets of atomic sites having refined occupancies for the crystal selected for data collection of 0.942 (2) and 0.058 (2): in these two disorder forms, the chloro substituents occupy sites on opposite sides of the adjacent aryl ring (Fig. 3[link]). Compounds (III)[link], (IV)[link] and (V)[link] have similar unit-cell dimensions (Table 2[link]) and, discounting the disorder in (III)[link], each can be refined using the atomic coordinates of another as the starting point. However, these three structures exhibit several minor differences: firstly, the benzoyl group is disordered over two sets of atomic sites in (III)[link], but not in (V)[link]; in (IV)[link], the disorder was found to be very minor, ca 1.6%, such that attempted refinement of this small fraction was regarded as unrealistic and thus the ordered model was preferable. Secondly, there is a short inter­molecular I⋯O contact in (V)[link], which has no Cl⋯O or Br⋯O analogue in (III)[link] and (IV)[link]. Hence compounds (III)–(V) can be regarded as isomorphous, but not strictly isostructural (cf. Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]).

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H20N2O2 C18H19FN2O2 C18H19ClN2O2
Mr 296.36 314.35 330.80
Crystal system, space group Monoclinic, Cc Monoclinic, P21/c Orthorhombic, Pbca
Temperature (K) 293 293 293
a, b, c (Å) 29.403 (5), 7.9811 (14), 6.7898 (13) 6.998 (2), 7.938 (2), 28.415 (6) 13.0320 (11), 13.2470 (13), 19.258 (2)
α, β, γ (°) 90, 97.352 (12), 90 90, 92.20 (3), 90 90, 90, 90
V3) 1580.3 (5) 1577.3 (7) 3324.6 (6)
Z 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.10 0.24
Crystal size (mm) 0.48 × 0.48 × 0.28 0.48 × 0.36 × 0.32 0.50 × 0.40 × 0.38
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.951, 0.977 0.931, 0.970 0.862, 0.912
No. of measured, independent and observed [I > 2σ(I)] reflections 5476, 2137, 1766 6039, 3315, 1863 13862, 3642, 2407
Rint 0.019 0.049 0.022
(sin θ/λ)max−1) 0.655 0.651 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.08 0.070, 0.190, 1.08 0.048, 0.127, 1.03
No. of reflections 2137 3315 3642
No. of parameters 201 208 243
No. of restraints 2 0 26
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.13 0.21, −0.27 0.23, −0.45
  (IV) (V) (VI)
Crystal data
Chemical formula C18H19BrN2O2 C18H19IN2O2 C18H20N2O3
Mr 375.26 422.25 312.36
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 293 293 293
a, b, c (Å) 12.9119 (14), 13.3664 (16), 19.5019 (19) 12.7671 (13), 13.5429 (12), 20.2542 (16) 9.7265 (6), 12.9084 (9), 24.861 (1)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90
V3) 3365.7 (6) 3502.0 (5) 3121.4 (3)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.45 1.84 0.09
Crystal size (mm) 0.22 × 0.21 × 0.18 0.48 × 0.42 × 0.38 0.50 × 0.40 × 0.16
 
Data collection
Diffractometer Bruker D8 Quest Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.] Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.538, 0.643 0.408, 0.497 0.917, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 47663, 4262, 3135 14215, 3838, 3062 11981, 3474, 2492
Rint 0.039 0.029 0.020
(sin θ/λ)max−1) 0.672 0.655 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.02 0.068, 0.146, 1.18 0.041, 0.100, 1.04
No. of reflections 4262 3838 3474
No. of parameters 209 209 212
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.64 1.27, −2.19 0.16, −0.17
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In each of the compounds reported here, the piperazine ring adopts an almost perfect chair conformation with the 4-meth­oxy­phenyl substituent occupying an equatorial site: the geometry at atom N1 is effectively planar and only in compound (I)[link] is there a very slight pyramidalization at this site. For each compound, the reference mol­ecule was selected as one having a ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the atom sequence (N1,C2,C3,N4,C5,C6) which was close to zero, as opposed to values close to 180° for the corresponding enanti­omers. In all of the compounds, the meth­oxy carbon atom C441 is very close to being coplanar with the adjacent aryl ring: the maximum displacement of this atom from the ring plane is 0.216 (16) Å in compound (V)[link]. Associated with this observation, we note that the two exocyclic O—C—C angles at atom C44 always exhibit differences in the range 8–10°: this behaviour is entirely consistent with the that previously observed in planar or nearly planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]). It is inter­esting to note that the meth­oxy group is oriented transoid to the carbonyl group in compounds (I)[link] and (VI)[link], but cisoid in compounds (II)–(V), suggesting that the methyl group may simply be acting in a space-filling role.

3. Supra­molecular features

The supra­molecular assembly in compounds (I)–(V) is dominated by contacts of C—H⋯O and C—H⋯π(arene) types (Table 1[link]) and it is thus appropriate to define explicitly the criteria against which these contacts have been regarded as structurally significant hydrogen bonds. For single-atom acceptors, we adopt the distance criteria recommended in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), based on the well-established concept of van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Nyburg & Faerman, 1985[Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), which provide an upper limit for H⋯O contacts of 2.60 Å, combined with the recommended (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]) lower limit of 140° for the D—H⋯A angle. For the C—H⋯π(arene) contacts in the isomorphous compounds (III)–(V), both the H⋯Cg distances and the C—H⋯Cg angles are entirely typical of C—H⋯π(arene) hydrogen bonds (Braga et al., 1998[Braga, D., Grepioni, F. & Tedesco, E. (1998). Organometallics, 17, 2669-2672.]). On this basis the C—H⋯O contacts in (II)[link] can be regarded as significant, while the nearly linear C—H⋯O contacts in (III)–(V), which appear in each case to act cooperatively with a C–H⋯π hydrogen bond should be regarded as of marginal significance in (III)[link] and (V)[link].

Table 1
Hydrogen bonds and short inter­molecular contacts (Å, °) in compounds (I)–(VI)

Cg1 and Cg2 are the centroids of the C11–C16 and C41–C46 rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C12—H12⋯O17i 0.93 2.61 3.497 (4) 160
(II) C2—H2A⋯O17ii 0.97 2.50 3.387 (4) 152
  C16—H16⋯O17iii 0.93 2.43 3.340 (5) 167
(III) C3—H3A⋯O17iv 0.97 2.61 3.574 (3) 175
  C2—HA⋯Cg1iv 0.97 2.84 3.648 (3) 142
  C15—H15⋯Cg2v 0.93 2.72 3.610 (4) 162
(IV) C3—H3A⋯O17iv 0.97 2.56 3.524 (3) 171
  C2—HA⋯Cg1iv 0.97 2.82 3.630 (3) 142
  C15—H15⋯Cg2v 0.93 2.68 3.579 (4) 164
(V) C3—H3A⋯O17iv 0.97 2.60 3.542 (10) 164
  C2—HACg1iv 0.97 2.87 3.719 (11) 147
  C15—H15⋯Cg2v 0.93 2.73 3.656 (12) 172
(VI) O12—H12⋯O17vi 0.92 (2) 1.81 (2) 3.7327 (15) 175.4 (18)
Symmetry codes: (i) x, 1 − y, −[{1\over 2}] + z; (ii) 1 − x, 1 − y, 1 − z; (iii) 2 − x, 1 − y, 1 − z; (iv) −[{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (v) [{3\over 2}] − x, −[{1\over 2}] + y, z; (vi) −[{1\over 2}] + x, y, [{1\over 2}] − z.

The sole direction-specific short inter­molecular contact in (I)[link] is between mol­ecules related by a glide plane. The mol­ecules of compound (II)[link] are linked by two independent C—H⋯O hydrogen bonds (Table 1[link]) to form a chain of centrosymmetric rings in which R22(10) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings involving atom C2 as the donor and centred at (n + [1\over2], [1\over2], [1\over2]) alternate with R22(10) rings involving atom C16 as the donor and centred at (n, [1\over2], [1\over2]), where n represents an integer in each case (Fig. 7[link]). Chains of this type are linked into sheets by an aromatic ππ stacking inter­action: the fluorinated rings in the mol­ecules at (x, y, z) and (2 − x, 2 − y, 1 − z) are parallel with an inter­planar spacing of 3.520 (2) Å; the ring-centroid separation is 3.774 (2) Å and the ring-centroid offset is 1.360 (2) Å. This inter­action links the hydrogen-bonded chains into a sheet lying parallel to (001) in the domain [1\over4] < z < [3\over4]: a second such sheet, related to the first by the translational symmetry operation, lies in the domain −[1\over4] < z < [1\over4], but there are no direction-specific inter­actions between adjacent sheets.

[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a chain of rings running parallel to the [100] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

As noted previously (see Section 2), the 2-chloro­benzoyl unit in compound (III)[link] is disordered over two sets of atomic sites: however, the occupancy of the minor disorder component is low, and thus only the major component need be considered here. The supra­molecular assembly in each of (III)–(V) is essentially the same. A combination of two C—H⋯π(arene) hydrogen bonds, weakly augmented by a C—H⋯O Inter­action, links the mol­ecules into sheets, whose formation is readily analysed in terms of two one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simpler of the two sub-structures, mol­ecules related by the b-glide at x = [3\over4] are linked by a C—H⋯π(arene) hydrogen bond to form a chain running parallel to the [010] direction (Fig. 8[link]). In the second sub-structure, a C—H⋯π(arene) hydrogen bond links mol­ecules which are related by the 21 screw axis along (x, [1\over4], [1\over2]) to form a chain running parallel to the [100] direction (Fig. 9[link]). These two chain motifs combine to generate a sheet lying parallel to (001) in the domain [1\over4] < z < [3\over4]. A second sheet, related to the first by inversion, lies in the domain [3\over4] < z < [5\over4], but there are no direction-specific inter­actions between adjacent sheets. However there is, in (V)[link], a rather short inter­molecular I⋯O contact where I12⋯O17i = 3.362 (7) Å and C12—I12⋯O17i = 163.5 (2)° [symmetry code: (i) [{3\over 2}] − x, [{1\over 2}] + y, z], as compared with the sum of van der Waals radii of 3.56 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). This contact lies within the chain along [010] and so does not affect the overall two-dimensional nature of the supra­molecular assembly. However, short contacts of this type are not present in the structures of (III)[link] and (IV)[link], where the corresponding Cl⋯O and Br⋯O distances are 3.707 (4) and 3.708 (3) Å, respectively, as compared with the sums of van der Waals radii of 3.30 Å and 3.41 Å respectively. Simple considerations of electronegativity (Allen, 1989[Allen, L. C. (1989). J. Am. Chem. Soc. 111, 9003-9014.]) indicate that in carbon–halogen bonds of type (ar­yl)C—X, the halogen atom carries a residual positive charge when X = I, but a residual negative charge when X = Cl or Br. On this basis (ar­yl)C—X⋯O=C inter­actions are expected to be attractive when X = I, but repulsive when X = Cl or Br, so accounting for the much shorter I⋯O distance in (V)[link] as compared with the corres­ponding distances in (III)[link] and (IV)[link].

[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link] showing the formation of a simple chain running parallel to the [010] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of compound (III)[link] showing the formation of a simple chain running parallel to the [100] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

The supra­molecular assembly in compound (VI)[link] takes the form of simple C(6) chains running parallel to the [100] direction, in which mol­ecules related by the a-glide plane at z = [1\over4] are linked by an O—H⋯O hydrogen bond (Table 1[link]) (Fig. 10[link]). A second chain of this type, related to the first by inversion, and two further chains related to the first pair by the c-glide planes, pass through each unit cell but there are no direction-specific inter­actions between adjacent chains.

[Figure 10]
Figure 10
Part of the crystal structure of compound (VI)[link] showing the formation of a C(6) chain running parallel to the [100] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Thus in summary, the supra­molecular assembly takes the form of a simple chain in compound (VI)[link], a chain of rings in compound (II)[link], and sheets in compounds (III)[link], (IV)[link] and (V)[link].

4. Database survey

It is of inter­est briefly to compare the structures of compounds (I)–(VI) reported here with those of some closely related analogues. In 4-(4-meth­oxy­phen­yl)piperazin-1-ium chloride (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.]), the ions are linked by two independent N—H⋯Cl hydrogen bonds: although the structure was described in the original report as dimeric, the ions are in fact linked into C21(4) chains. The mol­ecules of 1-acetyl-4-(4-hy­droxy­phen­yl)piperazine (Kavitha et al., 2013[Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671.]) are linked by O—H⋯O hydrogen bonds to form simple C(12) chains, while those of 1-(2-iodo­benzo­yl)-4-(pyrimidin-2-yl)pip­erazine (Mahesha, Yathirajan et al., 2019[Mahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129-133.]) are linked by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure which is further strengthened by both aromatic ππ stacking inter­actions and I⋯N halogen bonds. Finally, we note the structures of three closely related 1-(1,3-benzodioxolol-5-yl)methyl-4-(halobenzo­yl) piperazines (Mahesha, Sagar et al., 2019[Mahesha, N., Sagar, B. K., Yathirajan, H. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 202-207.]), where the 3-fluoro­benzoyl derivative forms a three-dimensional framework structure built from C—H⋯O and C—H⋯π(arene) hydrogen bonds, whereas the structures of the 2,6-di­fluoro­benzoyl and 2,4-di­chloro­benzoyl analogues contain no hydrogen bonds of any sort. Examples of attractive iodo⋯carbonyl inter­actions, as found here in (V)[link], have also been reported in a number of systems (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]; Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]; Sirimulla et al., 2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

5. Synthesis and crystallization

For the synthesis of compounds (I)–(VII), 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide (134 mg, 0.7 mmol), 1-hy­droxy­benzotriazole (68 mg, 0.5 mmol) and tri­ethyl­amine (0.5 ml, 1.5 mmol) were added to a solution of the appropriately substituted benzoic acid [benzoic acid for (I)[link], 2-fluoro­benzoic acid for (II)[link], 2-chloro­benzoic acid for (III)[link], 2-bromo­benzoic acid for (IV)[link], 2-iodo­benzoic acid for (V)[link], salicylic acid for (VI)[link] and 4-fluoro­benzoic acid for (VII)] (0.5 mmol) in N,N-di­methyl­formamide (5 ml) and the resulting mixtures were stirred for 20 min at 273 K. A solution of N-(4-meth­oxy­phen­yl)piperazine (100 mg, 0.5 mmol) in N,N-di­methyl­formamide (5 ml) was then added and stirring was continued overnight at ambient temperature. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was then quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydro­chloric acid solution (1 mol dm−3), a saturated solution of sodium hydrogencarbonate and then with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate.

Compound (I)[link]. Yield 81%, m.p. 407–409 K. IR (KBr, cm−1) 1631 (C=O), 1242 (C—N). NMR (CDCl3) δ(1H) 3.04 (t, 4H, piperazine), 3.56 (s, 2H, piperazine), 3.75 (s, 3H, O—CH3), 3.92 (s, 2H, piperazine), 6.83 (d, 2H, meth­oxy­phen­yl), 6.89 (d, 2H, meth­oxy­phen­yl), 7.42 (m, 5H, phen­yl): δ(13C) 47.76, 51.22, 55.48 (O—CH3), 114.46, 118.88, 127.04, 128.46, 129.72, 135.63, 145.19, 154.36, 170.30.

Compound (II)[link]. Yield 80%, m.p. 409–411 K. IR (KBr, cm−1) 1626 (C=O), 1242 (C—N). NMR (CDCl3) δ(1H) 2.99 (s, 2H, piprazine), 3.13 (t, 2H, piperazine), 3.47 (s, 2H, piperazine) 3.75 (s, 3H, O—CH3), 3.95 (t, 2H, piperazine), 6.83 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 6.89 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 7.09 (m, 1H, 2-fluoro­phen­yl), 7.22 (m, 1H, 2-fluoro­phen­yl), 7.40 (m, 2H, 2-fluoro­phen­yl): δ(13C) 47.08, 51.29, 55.47 (O—CH3), 114.47, 118.96, 123.86, 124.60, 129.17, 131.34 145.17, 154.40, 156.82, 159.29, 165.10.

Compound (III)[link]. Yield 79%, m.p. 425–427 K. IR (KBr, cm−1) 1632 (C=O), 1240 (C—N). NMR (CDCl3) δ(1H) 2.94 (m, 1H, piperazine), 3.07 (m, 3H, piperazine), 3.34 (m, 1H, piperazine), 3.42 (m, 1H, piperazine) 3.75 (s, 3H, O—CH3), 3.95 (m, 2H, piperazine), 6.83 (d, 2H, J = 9.2Hz, meth­oxy­phen­yl), 6.88 (t, 2H, 2-chloro­phen­yl), 7.33 (m, 4H, meth­oxy­phenyl and 2-chloro­phen­yl): δ(13C) 46.76, 51.22, 55.48 (O—CH3), 114.47, 118.94, 127.16, 127.73, 129.63 130.19, 130.31, 135.65, 145.10, 154.41, 166.77.

Compound (IV)[link] Yield 80%, m.p. 410–412 K. IR (KBr, cm−1) 1631 (C=O), 1242 (C—N). NMR (CDCl3) δ(1H) 2.99 (m, 1H, piperazine), 3.15 (m, 3H, piperazine), 3.38 (q, 1H, piperazine), 3.45 (m, 1H, piperazine), 3.79 (s, 3H, O—CH3), 3.99 (m, 2H, piperazine), 6.86 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 6.92 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 7.29 (m, 2H, 2-bromo­phen­yl), 7.39 (t, 1H, 2-bromo­phen­yl), 7.61 (d, 1H, J = 8 Hz, 2-bromo­phen­yl): δ(13C) 41.72, 46.86, 50.88, 51.23, 55.54 (O—CH3), 114.53, 119.00, 119.19, 127.75, 130.32, 132.85, 137.91, 145.20, 154.47.

Compound (V)[link]. Yield 79%, m.p. 423–425 K. IR (KBr, cm−1) 1630 (C=O), 1243 (C—N). NMR (CDCl3) δ(1H) 2.93 (m, 1H, piperazine), 3.16 (m, 3H, piperazine), 3.32 (m, 1H, piperazine), 3.42 (m, 1H, piperazine), 3.75 (s, 3H, O—CH3), 3.96 (m, 2H, piperazine), 6.83 (d, 2H, J = 8.8Hz, meth­oxy­phen­yl), 6.89 (d, 2H, J = 8.8Hz, meth­oxy­phen­yl), 7.08 (m, 1H, 2-iodo­phen­yl), 7.22 (m,1H, 2-iodo­phen­yl), 7.39 (m, 1H, 2-iodo­phen­yl), 7.83 (m, 1H, 2-iodo­phen­yl): δ(13C) 46.92, 51.12, 55.49 (O—CH3), 92.48, 114.46, 118.95, 127.02, 128.37, 130.24, 139.22, 142.03, 145.12, 154.39

Compound (VI)[link]. Yield 79%, m.p. 465–467 K. IR (KBr, cm−1) 1631 (C=O), 1228 (C—N). NMR (CDCl3) δ(1H) 3.10 (m, 4H, piperazine), 3.76 (s, 3H, O—CH3), 3.88 (m, 4H, piperazine), 6.85 (m, 5H, meth­oxy­phenyl and 2-hy­droxy­phen­yl), 7.01 (m, 1H, 2-hy­droxy­phen­yl), 7.26 (m,1H, 2-hy­droxy­phen­yl), 7.33 (m,1H, 2-hy­droxy­phen­yl): δ(13C) 45.84, 51.16, 55.48 (O—CH3), 114.51, 116.77, 118.10, 118.53, 118.89, 128.26, 132.69, 145.09, 154.47, 159.09, 170.83.

Compound (VII). Yield 78%, m.p. 401–403 K. IR (KBr, cm−1) 1625 (C=O), 1247 (C—N). NMR (CDCl3) δ(1H) 3.05 (s, 4H, piperazine), 3.62 (m, 2H, piperazine), 3.75 (s, 3H, O—CH3), 3.85 (m, 2H, piperazine), 6.86 (m, 4H, meth­oxy­phen­yl), 7.09 (m, 2H, 4-fluoro­phen­yl), 7.44 (m, 2H, 4-fluoro­phen­yl): δ(13C) 47.77, 51.15, 55.47 (O—CH3), 114.47, 115.44, 118.90, 129.43 131.59, 145.11, 154.41, 162.13, 169.39.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two bad outlier reflections, (080) and (186), were omitted from the final refinements for compound (V)[link]. For the minor disorder component of compound (III)[link], the bonded distances and the 1,3 non-bonded distances were restrained to be the same as those in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. The anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be the same: in addition it was found desirable to constrain the minor component of the chloroaryl ring to be planar, and to apply a rigid-bond restraint to the bond C32—Cl32 in the minor disorder component. Subject to these conditions, the occupancies of the two disorder components refined to 0.942 (2) and 0.058 (2), respectively. After refinement of (IV)[link] as a fully ordered structure, the difference map contained indications of some slight disorder similar to that found for (III)[link]. However, when this structure was refined using a disorder model analogous to that used for (III)[link], the preliminary values of the occupancies were 0.9837 (7) and 0.0163 (7), so that each C atom in the minor disorder component represented less than 0.1 electron: accordingly, it was regarded as unrealistic to pursue this disorder model and that the fully ordered model was preferable. The principal feature in the difference map for (V)[link] is a minimum, −2.24 e Å−3, located 1.80 Å from atom I2 at (x, y, z) and 1.83 Å from atom O17 at ([{3\over 2}] − x, [{1\over 2}] + y, z), although not co-linear with these two atoms, which subtend an angle of 135° at the minimum. All H atoms apart from those in the minor disorder components of compound (III)[link] were located in difference maps. The H atoms bonded to C atoms were all then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atom bonded to an O atom in compound (VI)[link], the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O), giving an O—H distance of 0.92 (2) Å. In the absence of significant resonant scattering in (I)[link], it was not possible to determine the correct orientation of the structure of (I)[link] relative to the polar axis directions: however, this has no chemical significance.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009) for (I), (II), (III), (V), (VI); APEX2 (Bruker, 2015) for (IV). Cell refinement: CrysAlis RED (Oxford Diffraction, 2009) for (I), (II), (III), (V), (VI); SAINT (Bruker, 2015) for (IV). Data reduction: CrysAlis RED (Oxford Diffraction, 2009) for (I), (II), (III), (V), (VI); SAINT (Bruker, 2015) for (IV). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I) top
Crystal data top
C18H20N2O2F(000) = 632
Mr = 296.36Dx = 1.246 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 29.403 (5) ÅCell parameters from 2137 reflections
b = 7.9811 (14) Åθ = 2.7–27.7°
c = 6.7898 (13) ŵ = 0.08 mm1
β = 97.352 (12)°T = 293 K
V = 1580.3 (5) Å3Plate, colourless
Z = 40.48 × 0.48 × 0.28 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2137 independent reflections
Radiation source: Enhance (Mo) X-ray Source1766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 3737
Tmin = 0.951, Tmax = 0.977k = 1010
5476 measured reflectionsl = 48
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.3311P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.14 e Å3
2137 reflectionsΔρmin = 0.13 e Å3
201 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0041 (8)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.46344 (7)0.2520 (2)0.4700 (3)0.0433 (5)
C20.41820 (8)0.2497 (3)0.5365 (3)0.0439 (6)
H2A0.41890.31640.65630.053*
H2B0.41050.13560.56860.053*
C30.38166 (9)0.3177 (3)0.3801 (3)0.0440 (6)
H3A0.35180.30680.42540.053*
H3B0.38720.43580.35890.053*
N40.38189 (7)0.2271 (2)0.1945 (3)0.0391 (5)
C50.42693 (8)0.2452 (3)0.1240 (3)0.0437 (6)
H5A0.43290.36270.10120.052*
H5B0.42680.18620.00090.052*
C60.46440 (9)0.1755 (3)0.2747 (4)0.0453 (6)
H6A0.46060.05520.28500.054*
H6B0.49400.19630.23040.054*
C170.50023 (9)0.2585 (3)0.6128 (4)0.0458 (6)
O170.49611 (7)0.2708 (3)0.7894 (3)0.0697 (6)
C110.54739 (9)0.2548 (3)0.5486 (4)0.0479 (6)
C120.56066 (10)0.3679 (4)0.4144 (5)0.0638 (8)
H120.53990.44690.35580.077*
C130.60510 (11)0.3637 (5)0.3668 (6)0.0780 (10)
H130.61430.44150.27780.094*
C140.63520 (11)0.2479 (5)0.4481 (5)0.0754 (10)
H140.66460.24430.41200.091*
C150.62257 (11)0.1350 (5)0.5841 (5)0.0776 (10)
H150.64350.05610.64110.093*
C160.57874 (10)0.1391 (4)0.6357 (4)0.0626 (8)
H160.57020.06410.72920.075*
C410.34279 (8)0.2454 (3)0.0494 (3)0.0382 (6)
C420.30660 (8)0.3523 (3)0.0761 (4)0.0454 (6)
H420.30890.42150.18700.055*
C430.26735 (9)0.3569 (3)0.0600 (4)0.0497 (7)
H430.24350.42820.03790.060*
C440.26289 (8)0.2581 (4)0.2277 (4)0.0474 (6)
C450.29861 (9)0.1527 (3)0.2590 (4)0.0464 (6)
H450.29630.08570.37190.056*
C460.33796 (9)0.1470 (3)0.1215 (4)0.0444 (6)
H460.36170.07540.14430.053*
O440.22252 (7)0.2728 (3)0.3541 (3)0.0671 (6)
C4410.21605 (15)0.1672 (6)0.5223 (6)0.0907 (12)
H41A0.18550.18110.58890.136*
H41B0.22060.05270.48110.136*
H41C0.23770.19610.61120.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0391 (11)0.0513 (13)0.0412 (11)0.0030 (10)0.0121 (9)0.0049 (9)
C20.0445 (14)0.0484 (14)0.0410 (14)0.0017 (12)0.0139 (11)0.0028 (11)
C30.0435 (13)0.0484 (14)0.0429 (14)0.0032 (12)0.0163 (11)0.0018 (11)
N40.0364 (11)0.0447 (11)0.0384 (11)0.0040 (10)0.0136 (9)0.0015 (9)
C50.0447 (14)0.0510 (15)0.0380 (13)0.0017 (11)0.0154 (11)0.0001 (10)
C60.0413 (13)0.0521 (14)0.0442 (13)0.0038 (12)0.0124 (11)0.0035 (11)
C170.0454 (15)0.0482 (15)0.0448 (15)0.0057 (13)0.0093 (12)0.0004 (11)
O170.0558 (11)0.1098 (18)0.0448 (11)0.0141 (12)0.0117 (9)0.0072 (11)
C110.0444 (14)0.0553 (16)0.0440 (14)0.0069 (13)0.0055 (11)0.0037 (12)
C120.0483 (16)0.074 (2)0.0703 (19)0.0011 (15)0.0131 (14)0.0196 (15)
C130.056 (2)0.103 (3)0.078 (2)0.0136 (18)0.0197 (17)0.020 (2)
C140.0406 (17)0.110 (3)0.078 (2)0.0040 (18)0.0141 (16)0.005 (2)
C150.0518 (19)0.093 (3)0.085 (2)0.0120 (18)0.0028 (16)0.0019 (19)
C160.0510 (17)0.074 (2)0.0608 (18)0.0008 (15)0.0009 (14)0.0100 (15)
C410.0386 (13)0.0376 (13)0.0407 (13)0.0028 (11)0.0144 (11)0.0050 (10)
C420.0402 (14)0.0471 (16)0.0511 (15)0.0014 (11)0.0143 (11)0.0046 (11)
C430.0396 (14)0.0489 (16)0.0633 (17)0.0069 (13)0.0165 (13)0.0004 (13)
C440.0371 (14)0.0555 (16)0.0504 (15)0.0032 (13)0.0093 (11)0.0081 (13)
C450.0504 (15)0.0488 (16)0.0413 (14)0.0014 (13)0.0117 (11)0.0033 (11)
C460.0468 (14)0.0449 (15)0.0439 (14)0.0085 (12)0.0155 (11)0.0000 (11)
O440.0461 (11)0.0883 (16)0.0651 (13)0.0030 (11)0.0007 (9)0.0011 (12)
C4410.076 (2)0.110 (3)0.078 (3)0.001 (2)0.0201 (18)0.015 (2)
Geometric parameters (Å, º) top
N1—C171.358 (3)C13—C141.348 (5)
N1—C21.458 (3)C13—H130.9300
N1—C61.463 (3)C14—C151.375 (5)
C2—C31.511 (4)C14—H140.9300
C2—H2A0.9700C15—C161.378 (4)
C2—H2B0.9700C15—H150.9300
C3—N41.454 (3)C16—H160.9300
C3—H3A0.9700C41—C461.393 (4)
C3—H3B0.9700C41—C421.394 (3)
N4—C411.422 (3)C42—C431.384 (4)
N4—C51.472 (3)C42—H420.9300
C5—C61.511 (4)C43—C441.378 (4)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—O441.378 (3)
C6—H6A0.9700C44—C451.383 (4)
C6—H6B0.9700C45—C461.391 (4)
C17—O171.225 (3)C45—H450.9300
C17—C111.506 (3)C46—H460.9300
C11—C121.374 (4)O44—C4411.412 (4)
C11—C161.383 (4)C441—H41A0.9600
C12—C131.386 (4)C441—H41B0.9600
C12—H120.9300C441—H41C0.9600
C17—N1—C2117.04 (19)C13—C12—H12120.2
C17—N1—C6123.82 (19)C14—C13—C12120.7 (3)
C2—N1—C6113.5 (2)C14—C13—H13119.7
N1—C2—C3111.88 (19)C12—C13—H13119.7
N1—C2—H2A109.2C13—C14—C15120.3 (3)
C3—C2—H2A109.2C13—C14—H14119.8
N1—C2—H2B109.2C15—C14—H14119.8
C3—C2—H2B109.2C14—C15—C16119.8 (3)
H2A—C2—H2B107.9C14—C15—H15120.1
N4—C3—C2110.4 (2)C16—C15—H15120.1
N4—C3—H3A109.6C15—C16—C11120.1 (3)
C2—C3—H3A109.6C15—C16—H16120.0
N4—C3—H3B109.6C11—C16—H16120.0
C2—C3—H3B109.6C46—C41—C42117.1 (2)
H3A—C3—H3B108.1C46—C41—N4120.4 (2)
C41—N4—C3117.17 (18)C42—C41—N4122.4 (2)
C41—N4—C5116.48 (17)C43—C42—C41121.0 (2)
C3—N4—C5109.71 (19)C43—C42—H42119.5
N4—C5—C6110.63 (18)C41—C42—H42119.5
N4—C5—H5A109.5C44—C43—C42121.3 (2)
C6—C5—H5A109.5C44—C43—H43119.3
N4—C5—H5B109.5C42—C43—H43119.3
C6—C5—H5B109.5C43—C44—O44116.7 (2)
H5A—C5—H5B108.1C43—C44—C45118.8 (2)
N1—C6—C5111.3 (2)O44—C44—C45124.5 (3)
N1—C6—H6A109.4C44—C45—C46120.0 (2)
C5—C6—H6A109.4C44—C45—H45120.0
N1—C6—H6B109.4C46—C45—H45120.0
C5—C6—H6B109.4C45—C46—C41121.9 (2)
H6A—C6—H6B108.0C45—C46—H46119.1
O17—C17—N1122.2 (2)C41—C46—H46119.1
O17—C17—C11119.7 (2)C44—O44—C441118.0 (3)
N1—C17—C11118.1 (2)O44—C441—H41A109.5
C12—C11—C16119.5 (3)O44—C441—H41B109.5
C12—C11—C17122.0 (3)H41A—C441—H41B109.5
C16—C11—C17118.5 (2)O44—C441—H41C109.5
C11—C12—C13119.6 (3)H41A—C441—H41C109.5
C11—C12—H12120.2H41B—C441—H41C109.5
C17—N1—C2—C3154.8 (2)C12—C13—C14—C151.9 (6)
C6—N1—C2—C350.5 (3)C13—C14—C15—C160.8 (6)
N1—C2—C3—N455.1 (3)C14—C15—C16—C111.0 (5)
C2—C3—N4—C41164.3 (2)C12—C11—C16—C151.6 (4)
C2—C3—N4—C559.9 (3)C17—C11—C16—C15178.4 (3)
C41—N4—C5—C6163.8 (2)C3—N4—C41—C46172.1 (2)
C3—N4—C5—C660.1 (3)C5—N4—C41—C4655.1 (3)
C17—N1—C6—C5157.0 (2)C3—N4—C41—C423.6 (3)
C2—N1—C6—C550.3 (3)C5—N4—C41—C42129.2 (2)
N4—C5—C6—N154.7 (3)C46—C41—C42—C431.3 (4)
C2—N1—C17—O173.7 (4)N4—C41—C42—C43174.5 (2)
C6—N1—C17—O17155.6 (3)C41—C42—C43—C440.9 (4)
C2—N1—C17—C11177.9 (2)C42—C43—C44—O44179.7 (2)
C6—N1—C17—C1126.1 (3)C42—C43—C44—C450.0 (4)
O17—C17—C11—C12123.5 (3)C43—C44—C45—C460.5 (4)
N1—C17—C11—C1254.9 (4)O44—C44—C45—C46179.8 (2)
O17—C17—C11—C1653.2 (4)C44—C45—C46—C410.1 (4)
N1—C17—C11—C16128.4 (3)C42—C41—C46—C450.8 (4)
C16—C11—C12—C130.6 (5)N4—C41—C46—C45175.1 (2)
C17—C11—C12—C13177.2 (3)C43—C44—O44—C441177.0 (3)
C11—C12—C13—C141.2 (6)C45—C44—O44—C4413.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O17i0.932.613.497 (4)160
Symmetry code: (i) x, y+1, z1/2.
1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II) top
Crystal data top
C18H19FN2O2F(000) = 664
Mr = 314.35Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.998 (2) ÅCell parameters from 3334 reflections
b = 7.938 (2) Åθ = 2.7–28.4°
c = 28.415 (6) ŵ = 0.10 mm1
β = 92.20 (3)°T = 293 K
V = 1577.3 (7) Å3Block, colourless
Z = 40.48 × 0.36 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
3315 independent reflections
Radiation source: Enhance (Mo) X-ray Source1863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 85
Tmin = 0.931, Tmax = 0.970k = 105
6039 measured reflectionsl = 3628
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0566P)2 + 1.2906P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3315 reflectionsΔρmax = 0.21 e Å3
208 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7575 (4)0.5325 (4)0.41972 (9)0.0547 (8)
C20.5981 (5)0.4154 (5)0.42224 (11)0.0560 (9)
H2A0.54010.42560.45260.067*
H2B0.64390.30080.41910.067*
C30.4517 (5)0.4532 (5)0.38354 (11)0.0541 (9)
H3A0.34900.37140.38450.065*
H3B0.39760.56390.38870.065*
N40.5348 (3)0.4485 (3)0.33706 (9)0.0475 (7)
C50.6957 (5)0.5657 (5)0.33544 (11)0.0567 (9)
H5A0.64920.68010.33860.068*
H5B0.75430.55630.30520.068*
C60.8428 (5)0.5301 (5)0.37396 (11)0.0623 (10)
H6A0.89990.42070.36880.075*
H6B0.94330.61420.37330.075*
C170.7990 (4)0.6422 (4)0.45441 (11)0.0464 (8)
O170.7152 (3)0.6409 (3)0.49118 (8)0.0632 (7)
C110.9578 (4)0.7658 (4)0.44823 (10)0.0436 (8)
C120.9203 (4)0.9299 (5)0.43559 (11)0.0516 (8)
F120.7371 (3)0.9715 (3)0.42311 (8)0.0805 (7)
C131.0575 (5)1.0534 (5)0.43537 (12)0.0628 (10)
H131.02611.16350.42700.075*
C141.2416 (5)1.0101 (5)0.44775 (12)0.0630 (10)
H141.33711.09160.44790.076*
C151.2868 (5)0.8473 (6)0.45996 (12)0.0623 (10)
H151.41290.81900.46780.075*
C161.1467 (5)0.7253 (5)0.46063 (11)0.0542 (9)
H161.17850.61560.46940.065*
C410.4022 (4)0.4532 (4)0.29834 (11)0.0466 (8)
C420.2375 (5)0.3540 (4)0.29751 (11)0.0516 (8)
H420.21440.28610.32340.062*
C430.1076 (5)0.3529 (5)0.25972 (11)0.0545 (9)
H430.00100.28570.26060.065*
C440.1383 (5)0.4511 (5)0.22074 (11)0.0529 (9)
C450.3014 (5)0.5483 (5)0.22029 (12)0.0567 (9)
H450.32560.61260.19380.068*
C460.4291 (5)0.5518 (4)0.25840 (11)0.0538 (9)
H460.53580.62140.25750.065*
O440.0183 (4)0.4587 (4)0.18145 (8)0.0718 (8)
C4410.1580 (5)0.3703 (6)0.18248 (13)0.0756 (12)
H41A0.22810.38570.15310.113*
H41B0.13340.25250.18740.113*
H41C0.23170.41280.20770.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0531 (16)0.062 (2)0.0495 (15)0.0161 (15)0.0145 (12)0.0028 (14)
C20.059 (2)0.054 (2)0.0556 (19)0.0119 (18)0.0113 (16)0.0044 (17)
C30.0531 (19)0.058 (2)0.0528 (19)0.0110 (18)0.0184 (15)0.0043 (16)
N40.0481 (14)0.0478 (18)0.0474 (14)0.0074 (13)0.0150 (12)0.0020 (13)
C50.0568 (19)0.065 (2)0.0496 (18)0.0130 (19)0.0224 (16)0.0017 (17)
C60.0518 (19)0.081 (3)0.056 (2)0.013 (2)0.0173 (16)0.0064 (19)
C170.0458 (17)0.046 (2)0.0478 (18)0.0034 (16)0.0095 (14)0.0067 (16)
O170.0736 (16)0.0618 (17)0.0561 (13)0.0101 (13)0.0245 (12)0.0006 (12)
C110.0442 (17)0.048 (2)0.0396 (15)0.0010 (15)0.0066 (12)0.0047 (14)
C120.0423 (17)0.055 (2)0.058 (2)0.0062 (17)0.0018 (14)0.0089 (17)
F120.0519 (12)0.0683 (16)0.1207 (19)0.0103 (11)0.0041 (11)0.0252 (13)
C130.065 (2)0.049 (2)0.074 (2)0.003 (2)0.0074 (18)0.0086 (19)
C140.060 (2)0.069 (3)0.061 (2)0.017 (2)0.0079 (17)0.009 (2)
C150.0420 (18)0.089 (3)0.056 (2)0.001 (2)0.0027 (15)0.001 (2)
C160.0522 (19)0.058 (2)0.0523 (19)0.0106 (18)0.0058 (15)0.0086 (17)
C410.0496 (18)0.0407 (19)0.0511 (18)0.0006 (16)0.0218 (14)0.0056 (15)
C420.061 (2)0.047 (2)0.0485 (18)0.0089 (18)0.0179 (15)0.0018 (16)
C430.0552 (19)0.051 (2)0.058 (2)0.0096 (18)0.0163 (16)0.0074 (18)
C440.0569 (19)0.055 (2)0.0479 (18)0.0019 (18)0.0114 (16)0.0065 (17)
C450.064 (2)0.053 (2)0.054 (2)0.0051 (19)0.0201 (17)0.0065 (17)
C460.0523 (18)0.053 (2)0.057 (2)0.0109 (18)0.0163 (16)0.0021 (17)
O440.0685 (16)0.087 (2)0.0598 (15)0.0122 (15)0.0054 (12)0.0035 (14)
C4410.063 (2)0.097 (3)0.067 (2)0.014 (2)0.0057 (18)0.009 (2)
Geometric parameters (Å, º) top
N1—C171.338 (4)C13—C141.367 (5)
N1—C61.452 (4)C13—H130.9300
N1—C21.456 (4)C14—C151.371 (5)
C2—C31.504 (4)C14—H140.9300
C2—H2A0.9700C15—C161.379 (5)
C2—H2B0.9700C15—H150.9300
C3—N41.464 (4)C16—H160.9300
C3—H3A0.9700C41—C421.396 (4)
C3—H3B0.9700C41—C461.397 (4)
N4—C411.412 (4)C42—C431.380 (4)
N4—C51.462 (4)C42—H420.9300
C5—C61.500 (5)C43—C441.378 (4)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—O441.373 (4)
C6—H6A0.9700C44—C451.378 (5)
C6—H6B0.9700C45—C461.378 (5)
C17—O171.218 (3)C45—H450.9300
C17—C111.498 (4)C46—H460.9300
C11—C121.374 (5)O44—C4411.421 (4)
C11—C161.393 (4)C441—H41A0.9600
C12—F121.358 (4)C441—H41B0.9600
C12—C131.372 (5)C441—H41C0.9600
C17—N1—C6125.6 (3)C13—C12—C11123.5 (3)
C17—N1—C2121.6 (3)C14—C13—C12118.2 (4)
C6—N1—C2112.2 (3)C14—C13—H13120.9
N1—C2—C3109.8 (3)C12—C13—H13120.9
N1—C2—H2A109.7C13—C14—C15120.5 (4)
C3—C2—H2A109.7C13—C14—H14119.7
N1—C2—H2B109.7C15—C14—H14119.7
C3—C2—H2B109.7C14—C15—C16120.6 (3)
H2A—C2—H2B108.2C14—C15—H15119.7
N4—C3—C2111.8 (3)C16—C15—H15119.7
N4—C3—H3A109.2C15—C16—C11120.2 (3)
C2—C3—H3A109.2C15—C16—H16119.9
N4—C3—H3B109.2C11—C16—H16119.9
C2—C3—H3B109.2C42—C41—C46116.1 (3)
H3A—C3—H3B107.9C42—C41—N4121.0 (3)
C41—N4—C5116.3 (2)C46—C41—N4122.8 (3)
C41—N4—C3115.5 (2)C43—C42—C41122.4 (3)
C5—N4—C3110.2 (2)C43—C42—H42118.8
N4—C5—C6111.4 (3)C41—C42—H42118.8
N4—C5—H5A109.3C44—C43—C42120.3 (3)
C6—C5—H5A109.3C44—C43—H43119.9
N4—C5—H5B109.3C42—C43—H43119.9
C6—C5—H5B109.3O44—C44—C45116.7 (3)
H5A—C5—H5B108.0O44—C44—C43124.7 (3)
N1—C6—C5110.9 (3)C45—C44—C43118.6 (3)
N1—C6—H6A109.5C46—C45—C44121.1 (3)
C5—C6—H6A109.5C46—C45—H45119.5
N1—C6—H6B109.5C44—C45—H45119.5
C5—C6—H6B109.5C45—C46—C41121.6 (3)
H6A—C6—H6B108.0C45—C46—H46119.2
O17—C17—N1121.9 (3)C41—C46—H46119.2
O17—C17—C11119.3 (3)C44—O44—C441117.8 (3)
N1—C17—C11118.7 (2)O44—C441—H41A109.5
C12—C11—C16117.0 (3)O44—C441—H41B109.5
C12—C11—C17121.1 (3)H41A—C441—H41B109.5
C16—C11—C17121.4 (3)O44—C441—H41C109.5
F12—C12—C13118.6 (3)H41A—C441—H41C109.5
F12—C12—C11117.9 (3)H41B—C441—H41C109.5
C17—N1—C2—C3116.2 (3)C11—C12—C13—C141.0 (5)
C6—N1—C2—C355.9 (4)C12—C13—C14—C150.1 (5)
N1—C2—C3—N456.2 (4)C13—C14—C15—C161.0 (5)
C2—C3—N4—C41169.4 (3)C14—C15—C16—C110.9 (5)
C2—C3—N4—C556.4 (4)C12—C11—C16—C150.1 (4)
C41—N4—C5—C6170.6 (3)C17—C11—C16—C15172.2 (3)
C3—N4—C5—C655.5 (4)C5—N4—C41—C42176.2 (3)
C17—N1—C6—C5115.8 (4)C3—N4—C41—C4244.8 (4)
C2—N1—C6—C555.9 (4)C5—N4—C41—C465.7 (4)
N4—C5—C6—N155.4 (4)C3—N4—C41—C46137.2 (3)
C6—N1—C17—O17176.7 (3)C46—C41—C42—C430.3 (5)
C2—N1—C17—O175.7 (5)N4—C41—C42—C43178.4 (3)
C6—N1—C17—C115.5 (5)C41—C42—C43—C440.5 (5)
C2—N1—C17—C11176.4 (3)C42—C43—C44—O44179.9 (3)
O17—C17—C11—C1281.2 (4)C42—C43—C44—C450.6 (5)
N1—C17—C11—C12100.9 (4)O44—C44—C45—C46178.8 (3)
O17—C17—C11—C1690.8 (4)C43—C44—C45—C461.8 (5)
N1—C17—C11—C1687.2 (4)C44—C45—C46—C412.1 (5)
C16—C11—C12—F12179.6 (3)C42—C41—C46—C451.0 (5)
C17—C11—C12—F128.1 (4)N4—C41—C46—C45177.1 (3)
C16—C11—C12—C131.0 (5)C45—C44—O44—C441175.1 (3)
C17—C11—C12—C13171.2 (3)C43—C44—O44—C4415.5 (5)
F12—C12—C13—C14179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O17i0.972.503.387 (4)152
C16—H16···O17ii0.932.433.340 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III) top
Crystal data top
C18H19ClN2O2Dx = 1.322 Mg m3
Mr = 330.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3642 reflections
a = 13.0320 (11) Åθ = 2.6–27.8°
b = 13.2470 (13) ŵ = 0.24 mm1
c = 19.258 (2) ÅT = 293 K
V = 3324.6 (6) Å3Block, yellow
Z = 80.50 × 0.40 × 0.38 mm
F(000) = 1392
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
3642 independent reflections
Radiation source: Enhance (Mo) X-ray Source2407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1617
Tmin = 0.862, Tmax = 0.912k = 1617
13862 measured reflectionsl = 1225
Refinement top
Refinement on F226 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.4776P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3642 reflectionsΔρmax = 0.23 e Å3
243 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.68382 (12)0.28146 (13)0.41176 (9)0.0526 (4)
C20.58246 (16)0.25886 (18)0.43972 (13)0.0642 (6)
H2A0.58830.24240.48860.077*
H2B0.55420.20060.41600.077*
C30.51117 (15)0.34757 (17)0.43087 (11)0.0560 (6)
H3A0.44280.32920.44630.067*
H3B0.53490.40350.45920.067*
N40.50753 (11)0.37844 (12)0.35839 (8)0.0447 (4)
C50.60999 (14)0.40544 (16)0.33358 (10)0.0488 (5)
H5A0.63610.46190.36040.059*
H5B0.60610.42610.28530.059*
C60.68172 (15)0.31756 (17)0.34028 (11)0.0539 (5)
H6A0.65950.26350.30980.065*
H6B0.75020.33780.32630.065*
C170.76756 (19)0.26749 (18)0.45027 (14)0.0534 (6)0.942 (2)
O170.76535 (19)0.2354 (2)0.50989 (12)0.0936 (9)0.942 (2)
C110.86962 (18)0.29271 (17)0.41824 (14)0.0470 (5)0.942 (2)
C120.9128 (2)0.38720 (18)0.42449 (16)0.0535 (6)0.942 (2)
Cl120.84046 (7)0.48603 (5)0.46012 (3)0.0799 (3)0.942 (2)
C131.0112 (3)0.4066 (3)0.4020 (2)0.0726 (8)0.942 (2)
H131.03930.47070.40730.087*0.942 (2)
C141.0670 (3)0.3318 (4)0.3718 (3)0.0882 (11)0.942 (2)
H141.13390.34460.35730.106*0.942 (2)
C151.0253 (3)0.2376 (3)0.36267 (19)0.0843 (11)0.942 (2)
H151.06280.18710.34070.101*0.942 (2)
C160.9270 (2)0.2185 (2)0.38639 (15)0.0670 (7)0.942 (2)
H160.89910.15440.38080.080*0.942 (2)
C370.773 (2)0.2975 (19)0.454 (2)0.0534 (6)0.058 (2)
O370.777 (3)0.285 (4)0.517 (2)0.0936 (9)0.058 (2)
C310.871 (3)0.3261 (14)0.418 (2)0.0470 (5)0.058 (2)
C320.935 (2)0.2481 (15)0.3977 (18)0.0670 (7)0.058 (2)
Cl320.8826 (19)0.1267 (11)0.4022 (13)0.162 (10)0.058 (2)
C331.035 (3)0.264 (3)0.379 (3)0.0843 (11)0.058 (2)
H331.07690.21020.36610.101*0.058 (2)
C341.073 (3)0.360 (3)0.381 (5)0.0882 (11)0.058 (2)
H341.14070.37170.36750.106*0.058 (2)
C351.013 (4)0.439 (3)0.403 (4)0.0726 (8)0.058 (2)
H351.03960.50390.40360.087*0.058 (2)
C360.913 (3)0.4206 (16)0.424 (3)0.0535 (6)0.058 (2)
H360.87460.47290.44290.064*0.058 (2)
C410.42740 (14)0.44424 (14)0.33779 (10)0.0415 (4)
C420.35531 (15)0.48382 (16)0.38335 (11)0.0523 (5)
H420.35990.46870.43040.063*
C430.27626 (15)0.54574 (17)0.35992 (11)0.0547 (5)
H430.22900.57160.39140.066*
C440.26749 (14)0.56901 (15)0.29086 (10)0.0469 (5)
C450.33768 (16)0.52910 (16)0.24458 (11)0.0527 (5)
H450.33230.54400.19750.063*
C460.41523 (16)0.46762 (16)0.26773 (10)0.0519 (5)
H460.46110.44070.23570.062*
O440.19396 (11)0.62997 (12)0.26191 (8)0.0676 (5)
C4410.1267 (2)0.6808 (2)0.30737 (15)0.0838 (8)
H41A0.08500.72710.28140.126*
H41B0.16580.71730.34130.126*
H41C0.08340.63250.33030.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0402 (9)0.0602 (11)0.0574 (10)0.0018 (8)0.0043 (8)0.0178 (9)
C20.0463 (12)0.0702 (15)0.0760 (15)0.0061 (11)0.0039 (11)0.0334 (12)
C30.0438 (11)0.0697 (14)0.0546 (12)0.0020 (10)0.0042 (9)0.0198 (11)
N40.0396 (8)0.0489 (9)0.0455 (9)0.0011 (7)0.0009 (7)0.0096 (7)
C50.0410 (10)0.0582 (12)0.0472 (11)0.0023 (10)0.0022 (8)0.0129 (9)
C60.0442 (11)0.0664 (14)0.0510 (12)0.0062 (10)0.0026 (9)0.0051 (10)
C170.0481 (12)0.0511 (14)0.0610 (14)0.0011 (12)0.0065 (10)0.0135 (12)
O170.0598 (12)0.147 (2)0.0735 (12)0.0024 (16)0.0080 (9)0.0564 (16)
C110.0435 (11)0.0495 (13)0.0482 (11)0.0035 (12)0.0107 (9)0.0073 (12)
C120.0615 (13)0.0566 (15)0.0424 (11)0.0085 (15)0.0129 (10)0.0079 (13)
Cl120.1176 (7)0.0594 (4)0.0626 (4)0.0059 (4)0.0025 (4)0.0119 (3)
C130.0680 (16)0.092 (2)0.0575 (14)0.0303 (18)0.0207 (12)0.024 (2)
C140.0466 (14)0.143 (3)0.075 (3)0.000 (2)0.0060 (14)0.041 (2)
C150.0634 (17)0.113 (3)0.076 (3)0.0371 (19)0.0043 (16)0.0098 (19)
C160.0605 (15)0.0611 (17)0.0794 (18)0.0121 (14)0.0092 (13)0.0010 (14)
C370.0481 (12)0.0511 (14)0.0610 (14)0.0011 (12)0.0065 (10)0.0135 (12)
O370.0598 (12)0.147 (2)0.0735 (12)0.0024 (16)0.0080 (9)0.0564 (16)
C310.0435 (11)0.0495 (13)0.0482 (11)0.0035 (12)0.0107 (9)0.0073 (12)
C320.0605 (15)0.0611 (17)0.0794 (18)0.0121 (14)0.0092 (13)0.0010 (14)
Cl320.22 (2)0.072 (9)0.19 (2)0.000 (11)0.011 (17)0.030 (11)
C330.0634 (17)0.113 (3)0.076 (3)0.0371 (19)0.0043 (16)0.0098 (19)
C340.0466 (14)0.143 (3)0.075 (3)0.000 (2)0.0060 (14)0.041 (2)
C350.0680 (16)0.092 (2)0.0575 (14)0.0303 (18)0.0207 (12)0.024 (2)
C360.0615 (13)0.0566 (15)0.0424 (11)0.0085 (15)0.0129 (10)0.0079 (13)
C410.0383 (9)0.0408 (10)0.0454 (10)0.0011 (8)0.0000 (8)0.0008 (8)
C420.0483 (11)0.0649 (13)0.0436 (11)0.0045 (10)0.0057 (9)0.0076 (10)
C430.0422 (11)0.0633 (14)0.0586 (13)0.0070 (10)0.0122 (9)0.0011 (10)
C440.0411 (10)0.0433 (11)0.0563 (12)0.0035 (9)0.0017 (9)0.0012 (9)
C450.0588 (12)0.0577 (12)0.0417 (10)0.0126 (11)0.0039 (9)0.0020 (9)
C460.0523 (12)0.0603 (13)0.0431 (11)0.0163 (10)0.0025 (9)0.0064 (9)
O440.0592 (9)0.0722 (10)0.0715 (10)0.0277 (8)0.0029 (8)0.0013 (8)
C4410.0720 (16)0.0823 (18)0.097 (2)0.0365 (15)0.0069 (15)0.0016 (16)
Geometric parameters (Å, º) top
N1—C171.332 (3)C16—H160.9300
N1—C371.43 (4)C37—O371.222 (10)
N1—C21.458 (3)C37—C311.508 (9)
N1—C61.458 (3)C31—C361.372 (10)
C2—C31.508 (3)C31—C321.381 (9)
C2—H2A0.9700C32—C331.371 (10)
C2—H2B0.9700C32—Cl321.749 (10)
C3—N41.455 (2)C33—C341.362 (10)
C3—H3A0.9700C33—H330.9300
C3—H3B0.9700C34—C351.372 (11)
N4—C411.417 (2)C34—H340.9300
N4—C51.463 (2)C35—C361.385 (10)
C5—C61.499 (3)C35—H350.9300
C5—H5A0.9700C36—H360.9300
C5—H5B0.9700C41—C421.388 (3)
C6—H6A0.9700C41—C461.393 (3)
C6—H6B0.9700C42—C431.392 (3)
C17—O171.225 (3)C42—H420.9300
C17—C111.504 (3)C43—C441.370 (3)
C11—C121.378 (3)C43—H430.9300
C11—C161.379 (3)C44—O441.372 (2)
C12—C131.378 (4)C44—C451.382 (3)
C12—Cl121.753 (3)C45—C461.372 (3)
C13—C141.359 (4)C45—H450.9300
C13—H130.9300C46—H460.9300
C14—C151.373 (5)O44—C4411.410 (3)
C14—H140.9300C441—H41A0.9600
C15—C161.384 (4)C441—H41B0.9600
C15—H150.9300C441—H41C0.9600
C17—N1—C2120.55 (18)C11—C16—C15121.2 (3)
C37—N1—C2123.8 (13)C11—C16—H16119.4
C17—N1—C6125.92 (18)C15—C16—H16119.4
C37—N1—C6120.1 (13)O37—C37—N1125 (3)
C2—N1—C6113.53 (16)O37—C37—C31116.5 (17)
N1—C2—C3110.89 (17)N1—C37—C31118 (3)
N1—C2—H2A109.5C36—C31—C32117.9 (11)
C3—C2—H2A109.5C36—C31—C37122.0 (14)
N1—C2—H2B109.5C32—C31—C37116.9 (12)
C3—C2—H2B109.5C33—C32—C31122.1 (11)
H2A—C2—H2B108.0C33—C32—Cl32121.7 (12)
N4—C3—C2110.33 (18)C31—C32—Cl32116.1 (11)
N4—C3—H3A109.6C34—C33—C32118.9 (13)
C2—C3—H3A109.6C34—C33—H33120.6
N4—C3—H3B109.6C32—C33—H33120.6
C2—C3—H3B109.6C33—C34—C35120.7 (13)
H3A—C3—H3B108.1C33—C34—H34119.7
C41—N4—C3117.74 (15)C35—C34—H34119.7
C41—N4—C5115.52 (14)C34—C35—C36119.6 (13)
C3—N4—C5110.63 (15)C34—C35—H35120.2
N4—C5—C6110.57 (17)C36—C35—H35120.2
N4—C5—H5A109.5C31—C36—C35120.5 (13)
C6—C5—H5A109.5C31—C36—H36119.8
N4—C5—H5B109.5C35—C36—H36119.8
C6—C5—H5B109.5C42—C41—C46116.81 (17)
H5A—C5—H5B108.1C42—C41—N4123.64 (17)
N1—C6—C5110.36 (17)C46—C41—N4119.46 (16)
N1—C6—H6A109.6C41—C42—C43121.23 (19)
C5—C6—H6A109.6C41—C42—H42119.4
N1—C6—H6B109.6C43—C42—H42119.4
C5—C6—H6B109.6C44—C43—C42120.60 (18)
H6A—C6—H6B108.1C44—C43—H43119.7
O17—C17—N1123.4 (2)C42—C43—H43119.7
O17—C17—C11118.9 (2)C43—C44—O44125.84 (18)
N1—C17—C11117.7 (2)C43—C44—C45118.99 (18)
C12—C11—C16117.7 (2)O44—C44—C45115.18 (18)
C12—C11—C17121.8 (2)C46—C45—C44120.32 (19)
C16—C11—C17120.2 (2)C46—C45—H45119.8
C13—C12—C11121.5 (3)C44—C45—H45119.8
C13—C12—Cl12119.0 (2)C45—C46—C41122.02 (18)
C11—C12—Cl12119.53 (19)C45—C46—H46119.0
C14—C13—C12119.8 (3)C41—C46—H46119.0
C14—C13—H13120.1C44—O44—C441117.58 (18)
C12—C13—H13120.1O44—C441—H41A109.5
C13—C14—C15120.4 (3)O44—C441—H41B109.5
C13—C14—H14119.8H41A—C441—H41B109.5
C15—C14—H14119.8O44—C441—H41C109.5
C14—C15—C16119.4 (3)H41A—C441—H41C109.5
C14—C15—H15120.3H41B—C441—H41C109.5
C16—C15—H15120.3
C17—N1—C2—C3127.9 (2)C6—N1—C37—O37168 (2)
C37—N1—C2—C3108.7 (12)C17—N1—C37—C3199 (5)
C6—N1—C2—C352.9 (3)C2—N1—C37—C31176.6 (10)
N1—C2—C3—N454.7 (3)C6—N1—C37—C3116 (2)
C2—C3—N4—C41165.51 (16)O37—C37—C31—C3673 (4)
C2—C3—N4—C558.6 (2)N1—C37—C31—C36110 (3)
C41—N4—C5—C6163.56 (16)O37—C37—C31—C3286 (3)
C3—N4—C5—C659.5 (2)N1—C37—C31—C3290 (3)
C17—N1—C6—C5127.5 (2)C36—C31—C32—C335 (2)
C37—N1—C6—C5109.0 (12)C37—C31—C32—C33165 (3)
C2—N1—C6—C553.4 (2)C36—C31—C32—Cl32171 (3)
N4—C5—C6—N155.8 (2)C37—C31—C32—Cl3211 (4)
C37—N1—C17—O17107 (5)C31—C32—C33—C340 (3)
C2—N1—C17—O170.2 (4)Cl32—C32—C33—C34176 (4)
C6—N1—C17—O17178.8 (2)C32—C33—C34—C352 (6)
C37—N1—C17—C1173 (5)C33—C34—C35—C361 (8)
C2—N1—C17—C11179.8 (2)C32—C31—C36—C358 (5)
C6—N1—C17—C111.2 (3)C37—C31—C36—C35167 (5)
O17—C17—C11—C1289.1 (3)C34—C35—C36—C316 (8)
N1—C17—C11—C1290.9 (3)C3—N4—C41—C422.8 (3)
O17—C17—C11—C1685.4 (3)C5—N4—C41—C42131.0 (2)
N1—C17—C11—C1694.6 (3)C3—N4—C41—C46173.72 (19)
C16—C11—C12—C132.1 (4)C5—N4—C41—C4652.5 (2)
C17—C11—C12—C13172.5 (3)C46—C41—C42—C431.4 (3)
C16—C11—C12—Cl12176.4 (2)N4—C41—C42—C43178.03 (18)
C17—C11—C12—Cl128.9 (3)C41—C42—C43—C440.2 (3)
C11—C12—C13—C141.0 (5)C42—C43—C44—O44179.13 (19)
Cl12—C12—C13—C14177.5 (3)C42—C43—C44—C450.7 (3)
C12—C13—C14—C151.1 (5)C43—C44—C45—C460.4 (3)
C13—C14—C15—C162.1 (5)O44—C44—C45—C46179.50 (19)
C12—C11—C16—C151.2 (4)C44—C45—C46—C410.9 (3)
C17—C11—C16—C15173.6 (3)C42—C41—C46—C451.8 (3)
C14—C15—C16—C110.9 (4)N4—C41—C46—C45178.55 (19)
C17—N1—C37—O3776 (5)C43—C44—O44—C4416.1 (3)
C2—N1—C37—O377 (3)C45—C44—O44—C441173.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O17i0.972.613.574 (3)175
C2—H2A···Cg1i0.972.843.648 (3)142
C15—H15···Cg2ii0.932.723.610 (4)161
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y1/2, z.
1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV) top
Crystal data top
C18H19BrN2O2Dx = 1.481 Mg m3
Mr = 375.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 10112 reflections
a = 12.9119 (14) Åθ = 2.2–30.6°
b = 13.3664 (16) ŵ = 2.45 mm1
c = 19.5019 (19) ÅT = 293 K
V = 3365.7 (6) Å3Block, colourless
Z = 80.22 × 0.21 × 0.18 mm
F(000) = 1536
Data collection top
Bruker D8 Quest
diffractometer
4262 independent reflections
Radiation source: Enhance (Mo) X-ray Source3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 28.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2015
h = 1717
Tmin = 0.538, Tmax = 0.643k = 1717
47663 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0626P)2 + 2.0275P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4262 reflectionsΔρmax = 0.54 e Å3
209 parametersΔρmin = 0.64 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.68078 (15)0.28092 (16)0.41388 (11)0.0487 (5)
C20.57868 (19)0.2622 (2)0.44328 (15)0.0590 (7)
H2A0.58560.24930.49200.071*
H2B0.54870.20320.42210.071*
C30.50766 (18)0.3504 (2)0.43240 (12)0.0519 (6)
H3A0.43880.33400.44870.062*
H3B0.53280.40720.45840.062*
N40.50316 (13)0.37615 (15)0.35983 (9)0.0419 (4)
C50.60654 (17)0.4002 (2)0.33390 (12)0.0473 (5)
H5A0.63410.45720.35870.057*
H5B0.60210.41800.28580.057*
C60.67798 (19)0.3122 (2)0.34234 (12)0.0521 (6)
H6A0.65410.25720.31400.062*
H6B0.74710.33040.32740.062*
C170.76628 (19)0.2666 (2)0.45102 (13)0.0512 (6)
O170.76512 (15)0.2365 (2)0.50994 (12)0.0946 (9)
C110.86917 (17)0.28780 (19)0.41712 (12)0.0454 (5)
C120.91561 (19)0.3799 (2)0.42084 (11)0.0497 (6)
Br120.84357 (3)0.49042 (2)0.45966 (2)0.07101 (15)
C131.0151 (2)0.3952 (3)0.39598 (13)0.0650 (8)
H131.04610.45790.39930.078*
C141.0668 (2)0.3174 (4)0.36663 (16)0.0789 (11)
H141.13390.32670.35040.095*
C151.0212 (3)0.2262 (3)0.36096 (17)0.0798 (10)
H151.05630.17410.33960.096*
C160.9229 (2)0.2107 (2)0.38671 (15)0.0650 (7)
H160.89280.14770.38350.078*
C410.42268 (16)0.44128 (16)0.33883 (11)0.0390 (5)
C420.35098 (18)0.4829 (2)0.38304 (13)0.0491 (6)
H420.35590.46950.42970.059*
C430.27162 (18)0.5446 (2)0.35948 (13)0.0527 (6)
H430.22430.57150.39030.063*
C440.26318 (17)0.56563 (19)0.29071 (11)0.0450 (5)
C450.3328 (2)0.5236 (2)0.24572 (13)0.0527 (6)
H450.32710.53680.19900.063*
C460.41060 (19)0.4627 (2)0.26907 (12)0.0498 (6)
H460.45650.43480.23770.060*
O440.18982 (15)0.62631 (15)0.26166 (10)0.0658 (5)
C4410.1221 (3)0.6779 (3)0.30621 (19)0.0798 (10)
H41A0.07990.72320.28010.120*
H41B0.16180.71480.33920.120*
H41C0.07850.63070.32950.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0384 (10)0.0551 (12)0.0527 (11)0.0020 (9)0.0042 (8)0.0126 (9)
C20.0415 (13)0.0652 (17)0.0704 (16)0.0037 (12)0.0026 (12)0.0291 (14)
C30.0411 (12)0.0667 (16)0.0478 (12)0.0014 (12)0.0032 (10)0.0187 (12)
N40.0346 (9)0.0492 (11)0.0420 (9)0.0031 (8)0.0005 (7)0.0078 (8)
C50.0384 (11)0.0606 (15)0.0429 (11)0.0028 (11)0.0015 (9)0.0121 (11)
C60.0410 (12)0.0690 (17)0.0462 (12)0.0091 (12)0.0034 (10)0.0019 (12)
C170.0444 (13)0.0526 (14)0.0566 (14)0.0029 (11)0.0065 (10)0.0121 (11)
O170.0535 (11)0.158 (3)0.0728 (14)0.0043 (14)0.0081 (10)0.0598 (15)
C110.0395 (11)0.0524 (14)0.0442 (12)0.0042 (10)0.0099 (9)0.0036 (10)
C120.0519 (13)0.0615 (15)0.0357 (11)0.0014 (12)0.0091 (9)0.0028 (10)
Br120.1004 (3)0.0570 (2)0.0557 (2)0.00293 (15)0.00205 (15)0.01036 (12)
C130.0542 (15)0.091 (2)0.0494 (14)0.0214 (16)0.0125 (12)0.0166 (14)
C140.0434 (15)0.134 (3)0.0594 (17)0.0089 (19)0.0024 (13)0.025 (2)
C150.0631 (19)0.107 (3)0.070 (2)0.034 (2)0.0001 (15)0.0001 (19)
C160.0592 (16)0.0640 (17)0.0720 (18)0.0157 (14)0.0086 (13)0.0041 (14)
C410.0361 (10)0.0400 (11)0.0409 (11)0.0010 (9)0.0020 (8)0.0017 (9)
C420.0418 (12)0.0658 (16)0.0398 (12)0.0062 (11)0.0061 (9)0.0092 (11)
C430.0413 (13)0.0646 (16)0.0520 (13)0.0094 (12)0.0085 (10)0.0035 (12)
C440.0380 (11)0.0454 (13)0.0514 (12)0.0051 (10)0.0051 (9)0.0012 (10)
C450.0575 (15)0.0621 (15)0.0386 (11)0.0137 (12)0.0058 (10)0.0035 (11)
C460.0512 (13)0.0608 (15)0.0373 (11)0.0171 (12)0.0018 (10)0.0071 (10)
O440.0611 (11)0.0735 (13)0.0629 (11)0.0303 (10)0.0045 (9)0.0034 (10)
C4410.0693 (19)0.081 (2)0.089 (2)0.0359 (18)0.0017 (17)0.0007 (18)
Geometric parameters (Å, º) top
N1—C171.334 (3)C13—C141.363 (5)
N1—C61.457 (3)C13—H130.9300
N1—C21.459 (3)C14—C151.358 (5)
C2—C31.508 (4)C14—H140.9300
C2—H2A0.9700C15—C161.381 (5)
C2—H2B0.9700C15—H150.9300
C3—N41.458 (3)C16—H160.9300
C3—H3A0.9700C41—C421.382 (3)
C3—H3B0.9700C41—C461.399 (3)
N4—C411.416 (3)C42—C431.393 (3)
N4—C51.463 (3)C42—H420.9300
C5—C61.504 (3)C43—C441.375 (3)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—O441.370 (3)
C6—H6A0.9700C44—C451.376 (3)
C6—H6B0.9700C45—C461.371 (4)
C17—O171.218 (3)C45—H450.9300
C17—C111.511 (3)C46—H460.9300
C11—C121.371 (4)O44—C4411.413 (4)
C11—C161.377 (4)C441—H41A0.9600
C12—C131.389 (4)C441—H41B0.9600
C12—Br121.903 (3)C441—H41C0.9600
C17—N1—C6125.6 (2)C13—C12—Br12118.4 (2)
C17—N1—C2120.6 (2)C14—C13—C12119.2 (3)
C6—N1—C2113.77 (19)C14—C13—H13120.4
N1—C2—C3111.1 (2)C12—C13—H13120.4
N1—C2—H2A109.4C15—C14—C13120.4 (3)
C3—C2—H2A109.4C15—C14—H14119.8
N1—C2—H2B109.4C13—C14—H14119.8
C3—C2—H2B109.4C14—C15—C16120.3 (3)
H2A—C2—H2B108.0C14—C15—H15119.9
N4—C3—C2110.2 (2)C16—C15—H15119.9
N4—C3—H3A109.6C11—C16—C15120.5 (3)
C2—C3—H3A109.6C11—C16—H16119.8
N4—C3—H3B109.6C15—C16—H16119.8
C2—C3—H3B109.6C42—C41—C46116.7 (2)
H3A—C3—H3B108.1C42—C41—N4124.0 (2)
C41—N4—C3117.09 (18)C46—C41—N4119.25 (19)
C41—N4—C5115.76 (18)C41—C42—C43121.7 (2)
C3—N4—C5110.56 (17)C41—C42—H42119.2
N4—C5—C6110.5 (2)C43—C42—H42119.2
N4—C5—H5A109.6C44—C43—C42120.1 (2)
C6—C5—H5A109.6C44—C43—H43120.0
N4—C5—H5B109.6C42—C43—H43120.0
C6—C5—H5B109.6O44—C44—C43125.4 (2)
H5A—C5—H5B108.1O44—C44—C45115.4 (2)
N1—C6—C5110.1 (2)C43—C44—C45119.1 (2)
N1—C6—H6A109.6C46—C45—C44120.6 (2)
C5—C6—H6A109.6C46—C45—H45119.7
N1—C6—H6B109.6C44—C45—H45119.7
C5—C6—H6B109.6C45—C46—C41121.7 (2)
H6A—C6—H6B108.1C45—C46—H46119.1
O17—C17—N1123.3 (2)C41—C46—H46119.1
O17—C17—C11119.1 (2)C44—O44—C441117.6 (2)
N1—C17—C11117.6 (2)O44—C441—H41A109.5
C12—C11—C16118.3 (2)O44—C441—H41B109.5
C12—C11—C17122.0 (2)H41A—C441—H41B109.5
C16—C11—C17119.4 (2)O44—C441—H41C109.5
C11—C12—C13121.3 (3)H41A—C441—H41C109.5
C11—C12—Br12120.29 (19)H41B—C441—H41C109.5
C17—N1—C2—C3129.3 (3)Br12—C12—C13—C14178.5 (2)
C6—N1—C2—C352.6 (3)C12—C13—C14—C150.8 (4)
N1—C2—C3—N454.3 (3)C13—C14—C15—C161.9 (5)
C2—C3—N4—C41165.8 (2)C12—C11—C16—C150.2 (4)
C2—C3—N4—C558.7 (3)C17—C11—C16—C15174.1 (3)
C41—N4—C5—C6163.87 (19)C14—C15—C16—C111.4 (5)
C3—N4—C5—C660.0 (3)C3—N4—C41—C421.7 (3)
C17—N1—C6—C5128.8 (3)C5—N4—C41—C42131.6 (2)
C2—N1—C6—C553.1 (3)C3—N4—C41—C46175.5 (2)
N4—C5—C6—N156.0 (3)C5—N4—C41—C4651.3 (3)
C6—N1—C17—O17176.9 (3)C46—C41—C42—C431.1 (4)
C2—N1—C17—O171.1 (4)N4—C41—C42—C43178.3 (2)
C6—N1—C17—C112.2 (4)C41—C42—C43—C440.2 (4)
C2—N1—C17—C11179.9 (2)C42—C43—C44—O44178.8 (2)
O17—C17—C11—C1289.6 (3)C42—C43—C44—C451.2 (4)
N1—C17—C11—C1291.3 (3)O44—C44—C45—C46179.1 (3)
O17—C17—C11—C1684.4 (4)C43—C44—C45—C460.9 (4)
N1—C17—C11—C1694.7 (3)C44—C45—C46—C410.4 (4)
C16—C11—C12—C131.3 (4)C42—C41—C46—C451.4 (4)
C17—C11—C12—C13172.8 (2)N4—C41—C46—C45178.7 (2)
C16—C11—C12—Br12178.01 (19)C43—C44—O44—C4415.3 (4)
C17—C11—C12—Br127.9 (3)C45—C44—O44—C441174.7 (3)
C11—C12—C13—C140.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O17i0.972.563.524 (3)171
C2—H2A···Cg1i0.972.823.630 (3)142
C15—H15···Cg2ii0.932.683.579 (4)164
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y1/2, z.
1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V) top
Crystal data top
C18H19IN2O2Dx = 1.602 Mg m3
Mr = 422.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3838 reflections
a = 12.7671 (13) Åθ = 2.6–27.7°
b = 13.5429 (12) ŵ = 1.84 mm1
c = 20.2542 (16) ÅT = 293 K
V = 3502.0 (5) Å3Block, orange
Z = 80.48 × 0.42 × 0.38 mm
F(000) = 1680
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
3838 independent reflections
Radiation source: Enhance (Mo) X-ray Source3062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 169
Tmin = 0.408, Tmax = 0.497k = 1712
14215 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + 37.1584P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
3838 reflectionsΔρmax = 1.27 e Å3
209 parametersΔρmin = 2.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6767 (5)0.2532 (5)0.4083 (3)0.0444 (15)
C20.5718 (6)0.2371 (7)0.4337 (5)0.061 (3)
H2A0.57550.22500.48080.073*
H2B0.54210.17890.41300.073*
C30.5017 (6)0.3231 (7)0.4213 (4)0.052 (2)
H3A0.43120.30750.43580.062*
H3B0.52610.37960.44650.062*
N40.5006 (4)0.3478 (4)0.3506 (3)0.0390 (14)
C50.6074 (5)0.3718 (6)0.3295 (4)0.0445 (18)
H5A0.63290.42780.35450.053*
H5B0.60700.38990.28310.053*
C60.6796 (6)0.2846 (6)0.3397 (4)0.0453 (18)
H6A0.65820.23050.31140.054*
H6B0.75060.30300.32790.054*
C170.7611 (6)0.2329 (6)0.4454 (4)0.0467 (18)
O170.7546 (5)0.1949 (5)0.5001 (3)0.0697 (19)
C110.8673 (5)0.2557 (6)0.4170 (4)0.0386 (15)
C120.9137 (6)0.3478 (5)0.4227 (3)0.0397 (16)
I120.83463 (5)0.46721 (5)0.46533 (3)0.0580 (2)
C131.0151 (6)0.3627 (6)0.4001 (4)0.0489 (19)
H131.04610.42460.40410.059*
C141.0693 (7)0.2870 (8)0.3723 (5)0.064 (3)
H141.13710.29760.35710.077*
C151.0243 (8)0.1942 (9)0.3665 (5)0.075 (3)
H151.06140.14230.34760.090*
C160.9247 (7)0.1806 (7)0.3889 (5)0.063 (2)
H160.89450.11840.38510.076*
C410.4211 (5)0.4122 (5)0.3293 (3)0.0362 (15)
C420.3441 (6)0.4490 (6)0.3699 (4)0.0471 (19)
H420.34460.43260.41450.057*
C430.2655 (6)0.5101 (6)0.3459 (4)0.0446 (18)
H430.21380.53290.37440.053*
C440.2632 (6)0.5375 (6)0.2800 (4)0.0427 (16)
C450.3388 (6)0.5001 (6)0.2392 (3)0.0473 (19)
H450.33790.51690.19470.057*
C460.4155 (6)0.4388 (6)0.2622 (4)0.0471 (19)
H460.46510.41410.23290.056*
O440.1910 (5)0.5988 (5)0.2516 (3)0.0615 (16)
C4410.1209 (8)0.6484 (8)0.2934 (5)0.078 (3)
H41A0.07460.68860.26740.117*
H41B0.15950.68960.32340.117*
H41C0.08070.60110.31790.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.036 (3)0.044 (3)0.053 (4)0.000 (3)0.004 (3)0.022 (3)
C20.037 (4)0.076 (6)0.070 (6)0.001 (4)0.004 (4)0.037 (5)
C30.037 (4)0.071 (6)0.048 (4)0.001 (4)0.006 (3)0.029 (4)
N40.030 (3)0.045 (3)0.042 (3)0.000 (3)0.000 (2)0.013 (3)
C50.034 (4)0.060 (5)0.040 (4)0.002 (3)0.000 (3)0.017 (4)
C60.037 (4)0.055 (5)0.044 (4)0.005 (3)0.001 (3)0.010 (4)
C170.037 (4)0.046 (4)0.057 (5)0.006 (3)0.009 (4)0.012 (4)
O170.048 (3)0.094 (5)0.067 (4)0.001 (3)0.008 (3)0.039 (4)
C110.034 (3)0.041 (4)0.041 (4)0.000 (3)0.008 (3)0.003 (3)
C120.041 (4)0.042 (4)0.036 (4)0.003 (3)0.009 (3)0.001 (3)
I120.0702 (4)0.0501 (3)0.0538 (3)0.0045 (3)0.0031 (3)0.0162 (3)
C130.047 (4)0.056 (5)0.044 (4)0.012 (4)0.007 (4)0.001 (4)
C140.036 (4)0.098 (8)0.059 (5)0.005 (5)0.003 (4)0.001 (5)
C150.056 (6)0.088 (8)0.081 (7)0.036 (6)0.007 (5)0.017 (6)
C160.055 (5)0.057 (6)0.077 (6)0.004 (4)0.012 (5)0.008 (5)
C410.031 (3)0.038 (4)0.040 (4)0.002 (3)0.002 (3)0.000 (3)
C420.041 (4)0.061 (5)0.039 (4)0.003 (4)0.008 (3)0.015 (4)
C430.036 (4)0.044 (4)0.053 (4)0.003 (3)0.010 (3)0.006 (3)
C440.036 (4)0.043 (4)0.049 (4)0.003 (3)0.005 (3)0.002 (3)
C450.059 (5)0.054 (5)0.030 (3)0.012 (4)0.006 (3)0.002 (3)
C460.048 (4)0.055 (5)0.038 (4)0.017 (4)0.002 (3)0.003 (3)
O440.057 (4)0.066 (4)0.062 (4)0.026 (3)0.004 (3)0.008 (3)
C4410.062 (6)0.084 (7)0.089 (7)0.032 (6)0.001 (6)0.001 (6)
Geometric parameters (Å, º) top
N1—C171.342 (9)C13—C141.358 (12)
N1—C21.452 (9)C13—H130.9300
N1—C61.453 (9)C14—C151.387 (14)
C2—C31.490 (11)C14—H140.9300
C2—H2A0.9700C15—C161.362 (13)
C2—H2B0.9700C15—H150.9300
C3—N41.471 (9)C16—H160.9300
C3—H3A0.9700C41—C421.375 (10)
C3—H3B0.9700C41—C461.407 (10)
N4—C411.406 (9)C42—C431.388 (10)
N4—C51.464 (8)C42—H420.9300
C5—C61.512 (10)C43—C441.386 (10)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—O441.368 (9)
C6—H6A0.9700C44—C451.368 (10)
C6—H6B0.9700C45—C461.365 (10)
C17—O171.224 (9)C45—H450.9300
C17—C111.505 (10)C46—H460.9300
C11—C161.377 (11)O44—C4411.403 (10)
C11—C121.385 (10)C441—H41A0.9600
C12—C131.389 (10)C441—H41B0.9600
C12—I122.093 (7)C441—H41C0.9600
C17—N1—C2120.8 (6)C13—C12—I12118.2 (6)
C17—N1—C6125.0 (6)C14—C13—C12120.1 (8)
C2—N1—C6114.0 (6)C14—C13—H13119.9
N1—C2—C3112.1 (7)C12—C13—H13119.9
N1—C2—H2A109.2C13—C14—C15120.5 (8)
C3—C2—H2A109.2C13—C14—H14119.7
N1—C2—H2B109.2C15—C14—H14119.7
C3—C2—H2B109.2C16—C15—C14118.7 (9)
H2A—C2—H2B107.9C16—C15—H15120.6
N4—C3—C2110.3 (7)C14—C15—H15120.6
N4—C3—H3A109.6C15—C16—C11122.3 (9)
C2—C3—H3A109.6C15—C16—H16118.8
N4—C3—H3B109.6C11—C16—H16118.8
C2—C3—H3B109.6C42—C41—N4123.9 (6)
H3A—C3—H3B108.1C42—C41—C46116.6 (7)
C41—N4—C5116.5 (6)N4—C41—C46119.4 (6)
C41—N4—C3116.5 (6)C41—C42—C43121.6 (7)
C5—N4—C3109.0 (6)C41—C42—H42119.2
N4—C5—C6110.8 (6)C43—C42—H42119.2
N4—C5—H5A109.5C44—C43—C42120.8 (7)
C6—C5—H5A109.5C44—C43—H43119.6
N4—C5—H5B109.5C42—C43—H43119.6
C6—C5—H5B109.5O44—C44—C45116.5 (7)
H5A—C5—H5B108.1O44—C44—C43125.6 (7)
N1—C6—C5110.1 (6)C45—C44—C43117.9 (7)
N1—C6—H6A109.6C46—C45—C44121.7 (7)
C5—C6—H6A109.6C46—C45—H45119.2
N1—C6—H6B109.6C44—C45—H45119.2
C5—C6—H6B109.6C45—C46—C41121.4 (7)
H6A—C6—H6B108.2C45—C46—H46119.3
O17—C17—N1122.6 (7)C41—C46—H46119.3
O17—C17—C11119.6 (7)C44—O44—C441117.8 (7)
N1—C17—C11117.8 (6)O44—C441—H41A109.5
C16—C11—C12118.2 (7)O44—C441—H41B109.5
C16—C11—C17119.1 (7)H41A—C441—H41B109.5
C12—C11—C17122.6 (7)O44—C441—H41C109.5
C11—C12—C13120.1 (7)H41A—C441—H41C109.5
C11—C12—I12121.6 (5)H41B—C441—H41C109.5
C17—N1—C2—C3133.1 (8)I12—C12—C13—C14179.8 (6)
C6—N1—C2—C351.4 (11)C12—C13—C14—C150.3 (13)
N1—C2—C3—N454.7 (10)C13—C14—C15—C160.3 (15)
C2—C3—N4—C41166.2 (6)C14—C15—C16—C110.1 (15)
C2—C3—N4—C559.6 (9)C12—C11—C16—C150.4 (13)
C41—N4—C5—C6165.0 (6)C17—C11—C16—C15175.2 (8)
C3—N4—C5—C660.7 (8)C5—N4—C41—C42133.4 (8)
C17—N1—C6—C5133.5 (8)C3—N4—C41—C422.6 (10)
C2—N1—C6—C551.2 (9)C5—N4—C41—C4649.2 (10)
N4—C5—C6—N156.1 (8)C3—N4—C41—C46180.0 (7)
C2—N1—C17—O174.4 (13)N4—C41—C42—C43178.1 (7)
C6—N1—C17—O17170.6 (8)C46—C41—C42—C430.6 (12)
C2—N1—C17—C11177.2 (8)C41—C42—C43—C441.1 (12)
C6—N1—C17—C117.8 (12)C42—C43—C44—O44178.5 (7)
O17—C17—C11—C1679.4 (11)C42—C43—C44—C451.9 (12)
N1—C17—C11—C1699.0 (9)O44—C44—C45—C46179.5 (7)
O17—C17—C11—C1295.1 (10)C43—C44—C45—C460.9 (12)
N1—C17—C11—C1286.5 (9)C44—C45—C46—C410.8 (13)
C16—C11—C12—C130.4 (11)C42—C41—C46—C451.6 (12)
C17—C11—C12—C13174.9 (7)N4—C41—C46—C45179.2 (7)
C16—C11—C12—I12179.4 (6)C45—C44—O44—C441171.8 (8)
C17—C11—C12—I124.9 (9)C43—C44—O44—C4418.6 (13)
C11—C12—C13—C140.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O17i0.972.603.542 (10)164
C2—H2A···Cg1i0.972.873.719 (11)147
C15—H15···Cg2ii0.932.733.656 (12)172
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y1/2, z.
1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI) top
Crystal data top
C18H20N2O3Dx = 1.329 Mg m3
Mr = 312.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3474 reflections
a = 9.7265 (6) Åθ = 2.7–27.9°
b = 12.9084 (9) ŵ = 0.09 mm1
c = 24.861 (1) ÅT = 293 K
V = 3121.4 (3) Å3Plate, yellow
Z = 80.50 × 0.40 × 0.16 mm
F(000) = 1328
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
3474 independent reflections
Radiation source: Enhance (Mo) X-ray Source2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 125
Tmin = 0.917, Tmax = 0.986k = 1316
11981 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.038P)2 + 0.9467P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3474 reflectionsΔρmax = 0.16 e Å3
212 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65619 (12)0.42451 (10)0.35751 (5)0.0368 (3)
C20.64088 (15)0.36047 (14)0.40542 (6)0.0448 (4)
H2A0.54980.32980.40570.054*
H2B0.64980.40350.43720.054*
C30.74781 (15)0.27547 (13)0.40711 (6)0.0432 (4)
H3A0.73900.23670.44040.052*
H3B0.73340.22810.37740.052*
N40.88519 (12)0.32027 (10)0.40359 (5)0.0384 (3)
C50.89929 (15)0.38044 (13)0.35376 (6)0.0429 (4)
H5A0.88650.33510.32300.051*
H5B0.99120.40940.35170.051*
C60.79474 (14)0.46694 (12)0.35178 (6)0.0401 (4)
H6A0.81260.51590.38060.048*
H6B0.80230.50350.31780.048*
C170.54733 (14)0.44756 (11)0.32643 (5)0.0324 (3)
O170.43132 (10)0.41265 (8)0.33693 (4)0.0404 (3)
C110.56584 (14)0.52022 (11)0.28009 (6)0.0329 (3)
C120.64738 (14)0.49883 (11)0.23528 (6)0.0349 (3)
O120.71754 (12)0.40749 (9)0.23434 (4)0.0461 (3)
H120.789 (2)0.4130 (15)0.2100 (8)0.069*
C130.65334 (16)0.56961 (12)0.19321 (6)0.0412 (4)
H130.70600.55480.16290.049*
C140.58174 (17)0.66145 (13)0.19606 (6)0.0471 (4)
H140.58880.70920.16820.057*
C150.49942 (17)0.68344 (13)0.23996 (7)0.0483 (4)
H150.45010.74510.24150.058*
C160.49147 (15)0.61263 (12)0.28139 (6)0.0408 (4)
H160.43540.62680.31080.049*
C410.99766 (14)0.25442 (12)0.41654 (6)0.0355 (3)
C420.98274 (16)0.15034 (13)0.42966 (6)0.0419 (4)
H420.89560.12070.42910.050*
C431.09521 (16)0.08983 (13)0.44351 (6)0.0450 (4)
H431.08250.02040.45230.054*
C441.22554 (15)0.13157 (13)0.44442 (6)0.0407 (4)
C451.24231 (15)0.23528 (13)0.43236 (7)0.0451 (4)
H451.32950.26480.43350.054*
C461.13003 (15)0.29544 (13)0.41862 (7)0.0446 (4)
H461.14320.36510.41060.054*
O441.33074 (12)0.06448 (10)0.45724 (5)0.0569 (3)
C4411.46702 (17)0.10399 (16)0.45482 (7)0.0576 (5)
H41A1.53110.04920.46220.086*
H41B1.47780.15790.48110.086*
H41C1.48420.13150.41960.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0309 (6)0.0442 (7)0.0354 (6)0.0022 (5)0.0010 (5)0.0077 (6)
C20.0336 (8)0.0634 (11)0.0374 (8)0.0013 (7)0.0034 (6)0.0138 (8)
C30.0354 (8)0.0504 (10)0.0437 (8)0.0035 (7)0.0016 (7)0.0152 (7)
N40.0308 (6)0.0418 (7)0.0425 (7)0.0002 (5)0.0028 (5)0.0091 (6)
C50.0340 (7)0.0480 (10)0.0466 (9)0.0019 (7)0.0044 (6)0.0096 (7)
C60.0340 (8)0.0407 (9)0.0454 (8)0.0053 (6)0.0044 (6)0.0076 (7)
C170.0336 (7)0.0309 (8)0.0327 (7)0.0007 (6)0.0008 (6)0.0043 (6)
O170.0318 (5)0.0467 (6)0.0428 (6)0.0038 (4)0.0005 (4)0.0058 (5)
C110.0317 (7)0.0342 (8)0.0328 (7)0.0023 (6)0.0033 (6)0.0008 (6)
C120.0340 (7)0.0356 (8)0.0352 (8)0.0029 (6)0.0019 (6)0.0021 (6)
O120.0488 (7)0.0439 (7)0.0456 (6)0.0073 (5)0.0128 (5)0.0021 (5)
C130.0437 (9)0.0464 (9)0.0334 (8)0.0071 (7)0.0001 (6)0.0016 (7)
C140.0597 (10)0.0429 (9)0.0388 (8)0.0052 (8)0.0061 (7)0.0100 (7)
C150.0574 (10)0.0369 (9)0.0507 (10)0.0068 (7)0.0067 (8)0.0035 (7)
C160.0414 (8)0.0408 (9)0.0402 (8)0.0029 (7)0.0008 (7)0.0020 (7)
C410.0339 (7)0.0398 (8)0.0328 (7)0.0008 (6)0.0017 (6)0.0008 (6)
C420.0386 (8)0.0441 (9)0.0430 (8)0.0059 (7)0.0040 (7)0.0038 (7)
C430.0512 (9)0.0375 (9)0.0464 (9)0.0011 (7)0.0037 (7)0.0073 (7)
C440.0407 (8)0.0472 (10)0.0343 (7)0.0075 (7)0.0020 (6)0.0006 (7)
C450.0316 (7)0.0491 (10)0.0545 (10)0.0004 (7)0.0036 (7)0.0016 (8)
C460.0390 (8)0.0359 (8)0.0589 (10)0.0003 (7)0.0040 (7)0.0032 (8)
O440.0447 (7)0.0560 (8)0.0700 (8)0.0120 (6)0.0018 (6)0.0148 (6)
C4410.0427 (10)0.0790 (14)0.0509 (10)0.0160 (9)0.0008 (7)0.0129 (9)
Geometric parameters (Å, º) top
N1—C171.3440 (18)C13—C141.377 (2)
N1—C21.4575 (18)C13—H130.9300
N1—C61.4616 (18)C14—C151.383 (2)
C2—C31.512 (2)C14—H140.9300
C2—H2A0.9700C15—C161.379 (2)
C2—H2B0.9700C15—H150.9300
C3—N41.4587 (18)C16—H160.9300
C3—H3A0.9700C41—C421.390 (2)
C3—H3B0.9700C41—C461.393 (2)
N4—C411.4222 (18)C42—C431.388 (2)
N4—C51.4686 (19)C42—H420.9300
C5—C61.511 (2)C43—C441.378 (2)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—O441.3779 (18)
C6—H6A0.9700C44—C451.382 (2)
C6—H6B0.9700C45—C461.383 (2)
C17—O171.2428 (16)C45—H450.9300
C17—C111.496 (2)C46—H460.9300
C11—C121.395 (2)O44—C4411.422 (2)
C11—C161.395 (2)C441—H41A0.9600
C12—O121.3625 (18)C441—H41B0.9600
C12—C131.390 (2)C441—H41C0.9600
O12—H120.92 (2)
C17—N1—C2120.99 (12)C12—O12—H12108.7 (12)
C17—N1—C6125.97 (12)C14—C13—C12120.40 (14)
C2—N1—C6112.73 (11)C14—C13—H13119.8
N1—C2—C3111.34 (12)C12—C13—H13119.8
N1—C2—H2A109.4C13—C14—C15120.69 (15)
C3—C2—H2A109.4C13—C14—H14119.7
N1—C2—H2B109.4C15—C14—H14119.7
C3—C2—H2B109.4C16—C15—C14119.06 (15)
H2A—C2—H2B108.0C16—C15—H15120.5
N4—C3—C2109.92 (13)C14—C15—H15120.5
N4—C3—H3A109.7C15—C16—C11121.35 (14)
C2—C3—H3A109.7C15—C16—H16119.3
N4—C3—H3B109.7C11—C16—H16119.3
C2—C3—H3B109.7C42—C41—C46117.07 (14)
H3A—C3—H3B108.2C42—C41—N4123.40 (13)
C41—N4—C3117.01 (12)C46—C41—N4119.48 (14)
C41—N4—C5115.80 (11)C43—C42—C41121.33 (14)
C3—N4—C5110.23 (11)C43—C42—H42119.3
N4—C5—C6110.83 (12)C41—C42—H42119.3
N4—C5—H5A109.5C44—C43—C42120.62 (15)
C6—C5—H5A109.5C44—C43—H43119.7
N4—C5—H5B109.5C42—C43—H43119.7
C6—C5—H5B109.5C43—C44—O44116.19 (15)
H5A—C5—H5B108.1C43—C44—C45118.95 (14)
N1—C6—C5109.90 (13)O44—C44—C45124.86 (14)
N1—C6—H6A109.7C44—C45—C46120.29 (15)
C5—C6—H6A109.7C44—C45—H45119.9
N1—C6—H6B109.7C46—C45—H45119.9
C5—C6—H6B109.7C45—C46—C41121.71 (15)
H6A—C6—H6B108.2C45—C46—H46119.1
O17—C17—N1120.95 (13)C41—C46—H46119.1
O17—C17—C11119.87 (12)C44—O44—C441117.20 (14)
N1—C17—C11119.11 (12)O44—C441—H41A109.5
C12—C11—C16118.83 (13)O44—C441—H41B109.5
C12—C11—C17123.99 (13)H41A—C441—H41B109.5
C16—C11—C17117.11 (12)O44—C441—H41C109.5
O12—C12—C13122.33 (13)H41A—C441—H41C109.5
O12—C12—C11118.02 (13)H41B—C441—H41C109.5
C13—C12—C11119.64 (14)
C17—N1—C2—C3131.68 (15)C11—C12—C13—C141.4 (2)
C6—N1—C2—C354.39 (18)C12—C13—C14—C152.0 (2)
N1—C2—C3—N455.85 (17)C13—C14—C15—C160.9 (2)
C2—C3—N4—C41166.38 (12)C14—C15—C16—C110.7 (2)
C2—C3—N4—C558.51 (16)C12—C11—C16—C151.3 (2)
C41—N4—C5—C6164.75 (13)C17—C11—C16—C15178.57 (14)
C3—N4—C5—C659.54 (17)C3—N4—C41—C423.0 (2)
C17—N1—C6—C5132.34 (15)C5—N4—C41—C42129.62 (15)
C2—N1—C6—C554.10 (17)C3—N4—C41—C46174.21 (14)
N4—C5—C6—N156.31 (17)C5—N4—C41—C4653.14 (19)
C2—N1—C17—O171.9 (2)C46—C41—C42—C430.8 (2)
C6—N1—C17—O17174.98 (14)N4—C41—C42—C43178.14 (14)
C2—N1—C17—C11175.29 (13)C41—C42—C43—C440.2 (2)
C6—N1—C17—C112.2 (2)C42—C43—C44—O44178.28 (14)
O17—C17—C11—C12117.64 (16)C42—C43—C44—C451.3 (2)
N1—C17—C11—C1265.13 (19)C43—C44—C45—C461.2 (2)
O17—C17—C11—C1659.44 (18)O44—C44—C45—C46178.31 (15)
N1—C17—C11—C16117.79 (15)C44—C45—C46—C410.1 (2)
C16—C11—C12—O12178.98 (13)C42—C41—C46—C450.9 (2)
C17—C11—C12—O121.9 (2)N4—C41—C46—C45178.32 (14)
C16—C11—C12—C130.2 (2)C43—C44—O44—C441175.77 (14)
C17—C11—C12—C13177.27 (13)C45—C44—O44—C4413.8 (2)
O12—C12—C13—C14179.40 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O17i0.92 (2)1.81 (2)2.7327 (15)175.4 (18)
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen bonds and short intermolecular contacts (Å, °) in compounds (I)–(VI) top
Cg1 and Cg2 are the centroids of the C11–C16 and C41–C46 rings, respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)C12—H12···O17i0.932.613.497 (4)160
(II)C2—H2A···O17ii0.972.503.387 (4)152
C16—H16···O17iii0.932.433.340 (5)167
(III)C3—H3A···O17iv0.972.613.574 (3)175
C2—HA···Cg1iv0.972.843.648 (3)142
C15—H15···Cg2v0.932.723.610 (4)162
(IV)C3—H3A···O17iv0.972.563.524 (3)171
C2—HA···Cg1iv0.972.823.630 (3)142
C15—H15···Cg2v0.932.683.579 (4)164
(V)C3—H3A···O17iv0.972.603.542 (10)164
C2—HA···Cg1iv0.972.873.719 (11)147
C15—H15···Cg2v0.932.733.656 (12)172
(VI)O12—H12···O17vi0.92 (2)1.81 (2)3.7327 (15)175.4 (18)
Symmetry codes: (i) x, 1 - y, -1/2 + z; (ii) 1 - x, 1 - y, 1 - z; (iii) 2 - x, 1 - y, 1 - z; (iv) -1/2 + x, 1/2 - y, 1 - z; (v) 3/2 - x, -1/2 + y, z; (vi) -1/2 + x, y, 1/2 - z.
 

Acknowledgements

HKK thanks the University of Mysore for research facilities, and the UGC–BSR for a stipend. HSY thanks Professor S. Kabilan and Dr Elancheran of Annamalai University for the data collection for compound (IV)[link].

Funding information

HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, L. C. (1989). J. Am. Chem. Soc. 111, 9003–9014.  CrossRef CAS Web of Science Google Scholar
First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 05–11.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Grepioni, F. & Tedesco, E. (1998). Organometallics, 17, 2669–2672.  Web of Science CrossRef CAS Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  CrossRef CAS PubMed Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671.  CSD CrossRef IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chemica, 4, 2470–2488.  CAS Google Scholar
First citationMahesha, N., Sagar, B. K., Yathirajan, H. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 202–207.  CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129–133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharm. 559, 132–137.  CrossRef CAS Google Scholar
First citationNyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationZia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds