research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­methyl­ammonium 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and bSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
*Correspondence e-mail: bogdgv@gmail.com

Edited by M. Nieger, University of Helsinki, Finland (Received 22 April 2019; accepted 14 August 2019; online 23 August 2019)

The title compound, C4H12N+·C11H5N4, contains one tetra­methyl­ammonium cation and one 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide anion in the asymmetric unit. The anion is in an all-trans conjugated C=C bonds conformation. Two terminal C(CN)2 di­nitrile moieties are slightly twisted from the polymethine main chain to which they are attached [C(CN)2/C5 dihedral angles = 6.1 (2) and 7.1 (1)°]. The C—C bond distances along the hepta­dienyl chain vary in the narrow range 1.382 (2)–1.394 (2) Å, thus indicating the significant degree of conjugation. In the crystal, the anions are linked into zigzag chains along the [10[\overline{1}]] direction by C—H⋯N(nitrile) short contacts. The anti­parallel chains stack along the [110] direction with alternating separations between the neighboring anions in stacks of 3.291 and 3.504 Å. The C—H⋯N short contacts and stacking inter­actions combine to link the anions into layers parallel to the ([\overline{1}]01) plane and separated by columns of tetra­methyl­ammonium cations.

1. Chemical context

Polymethines, being fully conjugated hydro­carbons, represent the simplest `mol­ecular wires' with potential uses in organic electronic applications thanks to their easily tuned band gaps, and their wide range of absorption covering the visible spectrum (Etemad & Heeger, 1982[Etemad, S. & Heeger, A. J. (1982). Annu. Rev. Phys. Chem. 33, 443-469.]; Meisner et al., 2012[Meisner, J. S., Sedbrook, D. F., Krikorian, M., Chen, J., Sattler, A., Carnes, M. E., Murray, C. B., Steigerwald, M. & Nuckolls, C. (2012). Chem. Sci. 3, 1007-1014.]; Jayamurugan et al., 2014[Jayamurugan, G., Finke, A. D., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. & Diederich, F. (2014). J. Org. Chem. 79, 426-431.]). Crystallographic data for polymethines are rather scare because of their instability and low solubility (Chetkina & Bel'skii, 2002[Chetkina, L. A. & Bel'skii, V. K. (2002). Sov. Phys. Crystallogr. 47, 581-602.]; Meisner et al., 2012[Meisner, J. S., Sedbrook, D. F., Krikorian, M., Chen, J., Sattler, A., Carnes, M. E., Murray, C. B., Steigerwald, M. & Nuckolls, C. (2012). Chem. Sci. 3, 1007-1014.]; Tsuji & Hoffmann, 2016[Tsuji, Y. & Hoffmann, R. (2016). Chem. Eur. J. 22, 4878-4888.]). A successful strategy to increase the chemical stability with respect to oxidative decomposition has been reported (Meisner et al., 2012[Meisner, J. S., Sedbrook, D. F., Krikorian, M., Chen, J., Sattler, A., Carnes, M. E., Murray, C. B., Steigerwald, M. & Nuckolls, C. (2012). Chem. Sci. 3, 1007-1014.]) that includes the decoration of polyenes with cyano groups and which resulted in the synthesis of a library of odd-numbered members from three to thirteen linear conjugated olefins and the determination of their crystal structures.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes with one cation and one anion per asymmetric unit, both entities residing in general positions. The trimethyl­ammonium cation has a common tetra­hedral geometry (2460 hits for this cation in CSD version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with three of the four methyl groups being disordered (see Refinement). In the linear anion, the bond lengths vary in the narrow range 1.382 (2)–1.394 (2) Å, thus indicating a significant degree of conjugation along the hydro­carbon chain. Such a structural and electronic configuration in which the difference in bond lengths along the conjugated backbone approaches zero is known as a cyanine-like structure (Marder et al., 1994[Marder, S. R., Gorman, C. B., Meyers, F., Perry, J. W., Bourhill, G., Brédas, J.-L. & Pierce, B. M. (1994). Science, 265, 632-635.]). The anion is slightly distorted from a planar arrangement as shown by the r.m.s. deviation of 0.098 Å for non-hydrogen atoms from the least-square plane calculated through the entire carbanion. The dihedral angles between the perfectly planar terminal di­cyano-groups, C(CN)2 and the linear C4–C8 central fragment in the anion are 6.1 (2) and 7.1 (1)°. The bond lengths and angles and the overall conformation of the anion are close to those reported for the same anion in N-(7-(di­methyl­amino)­hepta-2,4,6-trienyl­idene)-N,N-di­methyl­ammonium 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide (NEQHOH; Reck & Dahne, 2006[Reck, G. & Dahne, L. (2006). Private Communication (refcode NEQHOH). CCDC, Cambridge, England.]), and for its di­cyano derivative, 1,1,2,6,7,7-hexa­cyano­hepta­trienide in the ammonium salt (Edmonds et al., 1970[Edmonds, J., Herdklotz, J. K. & Sass, R. L. (1970). Acta Cryst. B26, 1355-1362.]).

[Figure 1]
Figure 1
The formula unit of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major components of the disordered methyl groups in the cation are shown.

3. Supra­molecular features

In the crystal, anions related by the twofold screw axis are linked by C4—H4⋯N3i short contacts (Table 1[link]), forming zigzag chains along the [10[\overline{1}]] direction in which adjacent mol­ecules have a nearly orthogonal arrangement, as indicated by the dihedral angle between their skeletons of 87.62°. The anti­parallel chains stack along the [110] direction with alternating separations between neighboring anions in the stacks of 3.291 and 3.504 Å. The C—H⋯N short contacts (Table 1[link]) and stacking inter­actions of 3.291 and 3.504 Å combine to form layers of anions parallel to the ([\overline{1}]01) plane and separated by columns of tetra­methyl­ammonium cations (Fig. 2[link]). A similar arrangement with separation of the anionic and cationic regions was noted in the crystal structure of tetra­methyl­ammonium 1,1,2,4,5,5-hexa­cyano­penta­dienide (HXCPEN; Sass & Nichols, 1974[Sass, R. L. & Nichols, T. D. (1974). Z. Kristallogr. Cryst. Mater. 140, 1-9.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N3i 0.95 2.58 3.4819 (18) 159
C12—H12A⋯N2ii 0.98 2.51 3.373 (2) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing in the title compound showing (a) supra­molecular anionic chains with C—H⋯N inter­actions packed in a layer parallel to the ([\overline{1}]01) plane and (b) the packing. The minor disorder component is omitted for clarity.

4. Database survey

The Cambridge Structural Database (CSD version 5.40, last update November 18, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) provides very scare solid-state structural information on linear oligoenes, a search for linear tetra­cyano­hepta­trienide analogues of the title compound yielding only two structures: ammonium 1,1,2,6,7,7-hexa­cyano­hepta­trienide (AHCNPI; Edmonds et al., 1970[Edmonds, J., Herdklotz, J. K. & Sass, R. L. (1970). Acta Cryst. B26, 1355-1362.]) and N-(7-(di­methyl­amino)­hepta-2,4,6-trienyl­idene)-N,N-di­methyl­ammonium 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide (NEQHOH; Reck & Dahne, 2006[Reck, G. & Dahne, L. (2006). Private Communication (refcode NEQHOH). CCDC, Cambridge, England.]). The reported room-temperature data revealed the similar values for the bond lengths along the hepta­trienide backbone, which are in the range 1.378–1.390 Å in AHCNPI (Fig. 3[link]) and 1.368 (5)–1.389 (5) Å in NEQHOH (Fig. 4[link]). For the two nearest homologues of the title compound with six and eight carbon atoms in the main chains, seven hits (DBPHCN and PHXTCN; Noerenberg et al., 1977[Noerenberg, H., Kratzin, H., Boldt, P. & Sheldrick, W. S. (1977). Chem. Ber. 110, 1284-1293.]; QAGXUU, QAGYAB, QAGYEF, QAGYIJ and QAGYOP; Jayamurugan et al., 2014[Jayamurugan, G., Finke, A. D., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. & Diederich, F. (2014). J. Org. Chem. 79, 426-431.]) and one (QAGXOO, Jayamurugan et al., 2014[Jayamurugan, G., Finke, A. D., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. & Diederich, F. (2014). J. Org. Chem. 79, 426-431.]) hit were found in the CSD, all of which represent individual mol­ecules decorated by either phenyl or nitrile substituents.

[Figure 3]
Figure 3
Chemical structure of AHCNPI.
[Figure 4]
Figure 4
Chemical structure of NEQHOH.

5. Synthesis and crystallization

The synthesis is shown in Fig. 5[link].

[Figure 5]
Figure 5
Synthesis of the title compound.

N-(2,4-di­nitro­phen­yl)pyridinium chloride. Pyridine (4.00 mL, 49.4 mmol) was added to a solution of 2,4-di­nitro­chloro­benzene (10.00 g, 49.37 mmol) in dry acetone (4 mL). The resulting mixture was brought to reflux for 1 h before being cooled to room temperature. The crude product was collected by filtration and recrystallized from ethanol to give N-(2,4-di­nitro­phen­yl)pyridinium chloride (11.26 g, 91%), m.p. 462–463 K. 1H NMR (500 MHz, CDCl3) δ 9.38 (d, J = 5.3 Hz, 2H), 9.12 (d, J = 2.3 Hz, 1H), 8.99 (dd, J = 8.2, 2.3 Hz, 1H), 8.95 (t, J = 8.0 Hz, 1H), 8.44 (m, 3H).

Tetra­methyl­ammonium (2E,4E)-1,1,7,7-tetra­cyano­hepta-2,4,6-trien-1-ide. Malono­nitrile (0.42 g, 6.3 mmol) was added to a refluxing solution of fresh sodium ethoxide, prepared by adding sodium metal (0.20 g, 8.7 mmol) to absolute ethanol (5 mL). To this solution, was added a solution of N-(2,4-di­nitro­phen­yl)pyridinium chloride (0.71 g, 2.5 mmol) in ethanol (2 mL), and the reaction mixture was stirred at reflux for 1 h before being cooled to room temperature and stirred for a further hour. A solution of tetra­methyl­ammonium bromide (0.39 g, 2.5 mmol) in water (10 mL) was added to the reaction. After about an hour, the deep-red mixture was extracted with di­chloro­methane (3 × 30 mL), dried over magnesium sulfate, and the solvent was removed in vacuo. The deep-violet residue was purified by column chromatography (silica gel, 10% acetone in CHCl2). 1H NMR (500 MHz, CDCl3) δ 7.06 (d, J = 12.9 Hz, 2H), 6.95 (t, J = 12.9 Hz, 1H), 6.06 (t, J = 12.8 Hz, 2H), 3.68 (s, 12H).

Crystallization. Crystals of the title compound were grown over a period of 2–4 weeks by the vapour-diffusion method using di­chloro­methane as the solvent and hexane as the non-solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were fixed geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, with Uiso(H) set to 1.2Ueq(C) for aromatic and 1.5Ueq(C-meth­yl). To obtain an idealized geometry of the cation, 1,2 and 1,3 restraints for C—N mean bond distances and C—N—C bond angles were used. In the tetra­methyl ammonium cation, three methyl groups are each disordered over two positions about the N5—C12 axis and were refined with partial occupancies of 0.66 (1) and 0.34 (1). The positions of all disordered atoms were refined in an isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula C4H12N+·C11H5N4
Mr 267.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.6043 (5), 9.4168 (4), 16.4423 (7)
β (°) 107.8856 (17)
V3) 1562.55 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.654, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 64536, 6914, 3657
Rint 0.097
(sin θ/λ)max−1) 0.810
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.221, 1.03
No. of reflections 6914
No. of parameters 179
No. of restraints 51
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.51
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetramethylammonium 1,1,7,7-tetracyanohepta-2,4,6-trienide top
Crystal data top
C4H12N+·C11H5N4F(000) = 568
Mr = 267.33Dx = 1.136 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6043 (5) ÅCell parameters from 6241 reflections
b = 9.4168 (4) Åθ = 2.6–25.6°
c = 16.4423 (7) ŵ = 0.07 mm1
β = 107.8856 (17)°T = 150 K
V = 1562.55 (12) Å3Block, light blue
Z = 40.35 × 0.21 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3657 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.097
φ and ω scansθmax = 35.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1717
Tmin = 0.654, Tmax = 0.747k = 1515
64536 measured reflectionsl = 2626
6914 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0941P)2 + 0.374P]
where P = (Fo2 + 2Fc2)/3
6914 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.50 e Å3
51 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.54341 (16)0.24960 (18)0.22446 (9)0.0608 (4)
N20.36705 (18)0.37537 (19)0.04834 (9)0.0631 (4)
N30.17214 (16)0.90748 (17)0.16118 (8)0.0548 (4)
N40.29656 (17)1.11815 (18)0.04221 (10)0.0617 (4)
C10.46618 (16)0.31235 (16)0.17174 (9)0.0439 (3)
C20.37143 (14)0.39111 (14)0.10849 (8)0.0375 (3)
C30.37173 (16)0.37974 (16)0.02231 (9)0.0433 (3)
C40.28203 (14)0.48084 (14)0.12984 (8)0.0360 (3)
H40.2869270.4866000.1884110.043*
C50.18676 (15)0.56214 (15)0.07251 (8)0.0391 (3)
H50.1787260.5531070.0135870.047*
C60.10204 (14)0.65596 (15)0.09478 (8)0.0374 (3)
H60.1075020.6638520.1533640.045*
C70.00981 (15)0.73879 (15)0.03587 (8)0.0385 (3)
H70.0019580.7264810.0228240.046*
C80.07162 (13)0.83809 (14)0.05642 (8)0.0356 (3)
H80.0682860.8462080.1146370.043*
C90.15824 (14)0.92700 (15)0.00276 (8)0.0363 (3)
C100.16767 (14)0.91795 (16)0.09079 (9)0.0400 (3)
C110.23544 (16)1.03238 (17)0.02185 (9)0.0432 (3)
N50.93087 (11)0.33415 (12)0.26390 (7)0.0352 (2)
C120.90376 (19)0.17881 (17)0.25738 (11)0.0514 (4)
H12A0.9243190.1381850.3148510.077*
H12B0.8100760.1625830.2261830.077*
H12C0.9590350.1333840.2267980.077*
C130.8536 (4)0.4046 (3)0.18099 (17)0.0490 (7)*0.663 (9)
H13A0.8711240.5070130.1849310.073*0.663 (9)
H13B0.8810000.3647540.1339870.073*0.663 (9)
H13C0.7587110.3878890.1702960.073*0.663 (9)
C140.8909 (4)0.4015 (3)0.3353 (2)0.0435 (7)*0.663 (9)
H14A0.9103200.5033800.3373930.065*0.663 (9)
H14B0.7957490.3873360.3252450.065*0.663 (9)
H14C0.9405540.3575000.3897330.065*0.663 (9)
C151.0755 (3)0.3641 (3)0.2819 (2)0.0496 (8)*0.663 (9)
H15A1.0903590.4669480.2858210.074*0.663 (9)
H15B1.1254480.3194060.3360040.074*0.663 (9)
H15C1.1054130.3256130.2355510.074*0.663 (9)
C13A1.0743 (7)0.3428 (10)0.3146 (7)0.088 (3)*0.337 (9)
H13D1.0882170.2977540.3704140.132*0.337 (9)
H13E1.1273430.2936920.2838710.132*0.337 (9)
H13F1.1013350.4426390.3227820.132*0.337 (9)
C14A0.9016 (9)0.3989 (6)0.1798 (3)0.0563 (16)*0.337 (9)
H14D0.9203390.5009380.1860740.084*0.337 (9)
H14E0.9568520.3551270.1486160.084*0.337 (9)
H14F0.8078930.3843260.1480010.084*0.337 (9)
C15A0.8467 (7)0.3965 (5)0.3131 (4)0.0457 (14)*0.337 (9)
H15D0.8683800.3511020.3693450.069*0.337 (9)
H15E0.8636370.4987390.3202880.069*0.337 (9)
H15F0.7530210.3804330.2818600.069*0.337 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0710 (10)0.0648 (10)0.0455 (8)0.0213 (8)0.0162 (7)0.0058 (7)
N20.0830 (11)0.0716 (10)0.0389 (7)0.0087 (9)0.0247 (7)0.0069 (7)
N30.0652 (9)0.0656 (9)0.0338 (6)0.0110 (7)0.0155 (6)0.0044 (6)
N40.0747 (10)0.0625 (10)0.0571 (9)0.0175 (8)0.0339 (8)0.0059 (7)
C10.0545 (9)0.0407 (8)0.0379 (7)0.0050 (6)0.0166 (6)0.0010 (6)
C20.0480 (7)0.0346 (6)0.0301 (6)0.0007 (5)0.0121 (5)0.0019 (5)
C30.0543 (8)0.0401 (7)0.0368 (7)0.0020 (6)0.0160 (6)0.0050 (6)
C40.0469 (7)0.0354 (6)0.0264 (5)0.0043 (5)0.0123 (5)0.0018 (5)
C50.0501 (8)0.0398 (7)0.0273 (6)0.0012 (6)0.0120 (5)0.0001 (5)
C60.0453 (7)0.0372 (7)0.0303 (6)0.0028 (5)0.0125 (5)0.0000 (5)
C70.0468 (7)0.0407 (7)0.0286 (6)0.0004 (6)0.0128 (5)0.0003 (5)
C80.0412 (7)0.0390 (7)0.0278 (6)0.0043 (5)0.0125 (5)0.0010 (5)
C90.0402 (7)0.0416 (7)0.0292 (6)0.0010 (5)0.0138 (5)0.0011 (5)
C100.0414 (7)0.0454 (8)0.0335 (6)0.0037 (6)0.0118 (5)0.0038 (5)
C110.0491 (8)0.0486 (8)0.0353 (7)0.0024 (6)0.0179 (6)0.0043 (6)
N50.0400 (6)0.0364 (6)0.0307 (5)0.0003 (4)0.0133 (4)0.0001 (4)
C120.0688 (11)0.0371 (8)0.0521 (9)0.0016 (7)0.0243 (8)0.0000 (6)
Geometric parameters (Å, º) top
N1—C11.156 (2)N5—C14A1.455 (5)
N2—C31.1481 (19)N5—C15A1.496 (5)
N3—C101.1480 (18)C12—H12A0.9800
N4—C111.148 (2)C12—H12B0.9800
C1—C21.414 (2)C12—H12C0.9800
C2—C31.4220 (19)C13—H13A0.9800
C2—C41.3929 (19)C13—H13B0.9800
C4—H40.9500C13—H13C0.9800
C4—C51.382 (2)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C5—C61.387 (2)C14—H14C0.9800
C6—H60.9500C15—H15A0.9800
C6—C71.386 (2)C15—H15B0.9800
C7—H70.9500C15—H15C0.9800
C7—C81.3832 (19)C13A—H13D0.9800
C8—H80.9500C13A—H13E0.9800
C8—C91.3938 (19)C13A—H13F0.9800
C9—C101.4225 (18)C14A—H14D0.9800
C9—C111.422 (2)C14A—H14E0.9800
N5—C121.4883 (19)C14A—H14F0.9800
N5—C131.511 (3)C15A—H15D0.9800
N5—C141.505 (3)C15A—H15E0.9800
N5—C151.497 (3)C15A—H15F0.9800
N5—C13A1.495 (7)
N1—C1—C2178.84 (17)H12A—C12—H12B109.5
C1—C2—C3118.35 (13)H12A—C12—H12C109.5
C4—C2—C1121.18 (12)H12B—C12—H12C109.5
C4—C2—C3120.45 (13)N5—C13—H13A109.5
N2—C3—C2176.64 (18)N5—C13—H13B109.5
C2—C4—H4117.4N5—C13—H13C109.5
C5—C4—C2125.15 (12)H13A—C13—H13B109.5
C5—C4—H4117.4H13A—C13—H13C109.5
C4—C5—H5117.6H13B—C13—H13C109.5
C4—C5—C6124.74 (12)N5—C14—H14A109.5
C6—C5—H5117.6N5—C14—H14B109.5
C5—C6—H6118.3N5—C14—H14C109.5
C7—C6—C5123.32 (12)H14A—C14—H14B109.5
C7—C6—H6118.3H14A—C14—H14C109.5
C6—C7—H7117.7H14B—C14—H14C109.5
C8—C7—C6124.69 (12)N5—C15—H15A109.5
C8—C7—H7117.7N5—C15—H15B109.5
C7—C8—H8117.9N5—C15—H15C109.5
C7—C8—C9124.23 (12)H15A—C15—H15B109.5
C9—C8—H8117.9H15A—C15—H15C109.5
C8—C9—C10119.98 (12)H15B—C15—H15C109.5
C8—C9—C11122.28 (12)N5—C13A—H13D109.5
C11—C9—C10117.69 (13)N5—C13A—H13E109.5
N3—C10—C9177.83 (16)N5—C13A—H13F109.5
N4—C11—C9179.3 (2)H13D—C13A—H13E109.5
C12—N5—C13109.12 (15)H13D—C13A—H13F109.5
C12—N5—C14112.07 (14)H13E—C13A—H13F109.5
C12—N5—C15111.28 (15)N5—C14A—H14D109.5
C12—N5—C13A103.6 (4)N5—C14A—H14E109.5
C12—N5—C15A106.9 (2)N5—C14A—H14F109.5
C14—N5—C13108.31 (17)H14D—C14A—H14E109.5
C15—N5—C13109.50 (18)H14D—C14A—H14F109.5
C15—N5—C14106.48 (17)H14E—C14A—H14F109.5
C13A—N5—C15A110.5 (4)N5—C15A—H15D109.5
C14A—N5—C12111.3 (3)N5—C15A—H15E109.5
C14A—N5—C13A113.0 (4)N5—C15A—H15F109.5
C14A—N5—C15A111.2 (3)H15D—C15A—H15E109.5
N5—C12—H12A109.5H15D—C15A—H15F109.5
N5—C12—H12B109.5H15E—C15A—H15F109.5
N5—C12—H12C109.5
C1—C2—C4—C5179.67 (14)C5—C6—C7—C8176.78 (14)
C2—C4—C5—C6176.99 (14)C6—C7—C8—C9175.87 (14)
C3—C2—C4—C51.4 (2)C7—C8—C9—C100.6 (2)
C4—C5—C6—C7178.25 (14)C7—C8—C9—C11176.86 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.952.583.4819 (18)159
C12—H12A···N2ii0.982.513.373 (2)147
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR-1523611).

References

First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChetkina, L. A. & Bel'skii, V. K. (2002). Sov. Phys. Crystallogr. 47, 581–602.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdmonds, J., Herdklotz, J. K. & Sass, R. L. (1970). Acta Cryst. B26, 1355–1362.  CSD CrossRef IUCr Journals Google Scholar
First citationEtemad, S. & Heeger, A. J. (1982). Annu. Rev. Phys. Chem. 33, 443–469.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJayamurugan, G., Finke, A. D., Gisselbrecht, J.-P., Boudon, C., Schweizer, W. B. & Diederich, F. (2014). J. Org. Chem. 79, 426–431.  CSD CrossRef CAS PubMed Google Scholar
First citationMarder, S. R., Gorman, C. B., Meyers, F., Perry, J. W., Bourhill, G., Brédas, J.-L. & Pierce, B. M. (1994). Science, 265, 632–635.  CrossRef PubMed CAS Google Scholar
First citationMeisner, J. S., Sedbrook, D. F., Krikorian, M., Chen, J., Sattler, A., Carnes, M. E., Murray, C. B., Steigerwald, M. & Nuckolls, C. (2012). Chem. Sci. 3, 1007–1014.  CSD CrossRef CAS Google Scholar
First citationNoerenberg, H., Kratzin, H., Boldt, P. & Sheldrick, W. S. (1977). Chem. Ber. 110, 1284–1293.  CSD CrossRef CAS Google Scholar
First citationReck, G. & Dahne, L. (2006). Private Communication (refcode NEQHOH). CCDC, Cambridge, England.  Google Scholar
First citationSass, R. L. & Nichols, T. D. (1974). Z. Kristallogr. Cryst. Mater. 140, 1–9.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsuji, Y. & Hoffmann, R. (2016). Chem. Eur. J. 22, 4878–4888.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds