research communications
Synthesis and H-imidazol-3-ium chloride
of 1,3-bis(4-hydroxyphenyl)-1aDepartment of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
*Correspondence e-mail: awuah@uky.edu
Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis(4-hydroxyphenyl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl−, is a new imidazolium salt with a hydroxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a diazabutadiene precursor followed by ring closure using trimethylchlorosilane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hydroxyphenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hydroxy groups and Cl− anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − , −y + , z − ), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each π–π stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with interplanar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy intermolecular interaction is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hydroxy O atoms on translationally adjacent molecules (x + 1, y, x + 1).
Keywords: crystal structure; imidazolium salt; N-heterocyclic carbene; hydrogen bonding; Hirshfeld surface.
CCDC reference: 1946122
1. Chemical context
N-Heterocyclic et al., 1999; Benhamou et al., 2011). Chemically, are nucleophilic `phosphine mimics' that are high in the order of the Tolman electronic and steric parameter scales, which influences their reactivity. Metal complexes bearing NHC ligands are found in many catalytic reactions (Flanigan et al., 2015; Hopkinson et al., 2014; Huynh, 2018; Marion & Nolan, 2008; Scholl et al., 1999; Velazquez & Verpoort, 2012; Wang et al., 2018), and recently have shown promise as cytotoxic agents (Garrison & Youngs, 2005; Lam et al., 2018; Liu & Gust, 2013; Mora et al., 2019; Riener et al., 2014; Zou et al., 2018). Imidazolium salts, which are simple salts of the free carbene, are commonly used in many systems in preference to their free carbene counterparts due to their high stability. Unlike the free which readily react with water or oxygen (Alder et al., 1995), imidazolium salts are indefinitely stable. Use of the imidazolium salt does not require Schlenk techniques and the corresponding `free' carbene can be prepared in situ via deprotonation with a strong base (e.g. NaOtBu and NaH) (Arduengo et al., 1991; McGuinness et al., 2001; Hauwert et al., 2008; Voutchkova et al., 2005). Expanding the functional diversity of NHC ligands will broaden their utility. The synthesis of the novel imidazolium salt in this report offers a unique extension of previously reported imidazolium salts through the addition of phenolic groups, herein referred to as IOH·Cl, for functionalization (see Scheme). The hydroxyl presents the possibility of tethering other chemical groups for varied applications, including catalysis, materials, and biomedicine. The synthesis of IOH·Cl (Fig. 1) does not require Schlenk techniques and the product is isolated as an air-stable solid that can be stored indefinitely without decomposition. The synthesis is part of a study to develop reaction methods for C—N bond formation from high-oxidation-state transition metals.
(NHCs) represent a versatile class of ligand systems for metal-center activation or stabilization in modern organic synthesis (Arduengo2. Structural commentary
In the structure of IOH·Cl (Fig. 2), there are no unusual bond lengths or angles. The organic cation consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with para-phenol substituents (C4–C9/O1 and C10–C16/O2) bonded to the imidazolium N atoms [N1—C4 = 1.442 (3) Å and N2—C10 = 1.441 (3) Å]. The phenol groups are out-of-plane, forming dihedral angles with the imidazolium ring of 55.27 (7) and 48.85 (11)° for rings C4–C9 and C10–C15, respectively. The hydroxy H-atom coordinates were refined freely and are slightly out-of-plane of their respective phenolic groups; the torsion angles are 9.1 (19)° for C6—C7—O1—H1O and 11 (2)° for C12—C13—O2—H2O.
3. Supramolecular features
The most prominent intermolecular interactions in the crystals of IOH·Cl are O—H⋯Cl hydrogen bonds. These link the Cl− anion at (x, y, z) to two different IOH·Cl molecules, one related by inversion and the other by the n-glide. These hydrogen bonds, viz. O1i—H1Oi⋯Cl1 and O2ii—H2Oii—Cl1 [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + , −y + , z + ; Fig. 3 and Table 1], have donor–acceptor distances of 2.975 (2) and 3.012 (2) Å, respectively. Weaker bifurcated C—H⋯O interactions occur between imidazole ring atoms (C1—H1) and hydroxy O atoms (O1i and O2iii) on molecules related by different inversion centres. These same hydroxy O atoms are in close contact with each other, i.e. O1i⋯O2iii = 2.999 (3) Å [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z; Fig. 4]. In addition to hydrogen bonding, there are offset π–π stacking interactions (Fig. 5). The perpendicular stacking distance between the C4–C9 benzene ring and an inversion-related equivalent at (−x + 1, −y + 1, −z + 1) is 3.560 (3) Å. The overlap of the C10–C15 benzene ring C10–C15 with an inversion-related equivalent at (−x, −y + 1, −z) is weaker, giving a perpendicular stacking distance of 3.777 (3) Å. All hydrogen-bond interactions are readily apparent in the Hirshfeld surface and fingerprint plots (McKinnon et al., 2007; Turner et al., 2017; Tan et al., 2019). In Fig. 6(a), the prominent deep-red ellipse-shaped regions represent the O—H⋯Cl hydrogen bonds, while the faint-red regions represent the bifurcated C—H⋯O interactions (Table 1). Short contacts between the imidazole ring and inversion [C2—H2⋯Cliv; symmetry code: (iv) −x, −y + 1, −z + 1] and 21-screw [C3—H3⋯Clv; symmetry code: (v) −x − , y + , −z + ] related anions are also apparent (Fig. 6b and Table 1). Hirshfeld-surface `fingerprint plots' (Figs. 7a–f) quantify the majority of intermolecular contacts as H⋯H (36.2%; Fig. 7b) and C⋯H (21.7%; Fig. 7c). In these diagrams, the O—H⋯Cl hydrogen bonds are indicated by sharp diagonal jutting spikes (Fig. 7d), while C—H⋯O interactions give less-pronounced spikes (Fig. 7e). C⋯C contacts, which are all as a result of π–π stacking, account for 6.6% of the intermolecular contacts (Fig. 7f).
4. Database survey
A search of the Cambridge Structural Database (CSD; Version 5.40, November 2018; Groom et al., 2016) on the three-ring fragment of the title compound yielded over 600 hits, ranging from similar simple salts to metal complexes containing analogous NHC frameworks. A search with H atoms bonded to the three carbons of the imidazole ring gave 180 hits. Of these, 28 had mesityl substituents, including IHOQUS (IMes·Cl; Lorber & Vendier, 2009) and GAKCAZ (IMes·BF4; Bethel et al., 2016), and 62 had 2,6-diisopropylphenyl groups, including KIDKUG (IPr·ClO4; Minaker et al., 2018), OHURIU (IPr·PF6; Rheingold et al., 2015), TAXLOW (IPr·SiF5; Alič et al., 2017), and XANPEJ (IPr·I; Solovyev et al., 2010). Structures most similar to IOH·Cl in the present work include the commonly used IMes·Cl (IHOQUS) and IPr·ClO4 (KIDKUG), and the unsubstituted phenyl analog IPh·ClO4 (DPIMPC; Luger & Ruban, 1975). A more restrictive search with only para substitution allowed on the phenyl rings gave 47 hits, of which 44 were carboxylates that formed extended polymeric structures with metal-containing species. The remaining three, BOGVAV (Wan et al., 2008), TUPYAF (Garden et al., 2010), and DAQKOW (Suisse et al., 2005), have –OMe, –Br, and –OC12H25 groups at the para position. One other structure with comparative functionalization is LEBMUC (Schedler et al., 2012), which bears bis-methoxy groups at the ortho-phenyl-ring positions.
5. Synthesis and crystallization
The overall reaction for the synthesis of the title compound is depicted in Fig. 1. Step 1, Synthesis of the precursor N,N′-bis(4-hydroxyphenyl)-1,4-diazabutadiene (1): to a round-bottomed flask charged with 15 ml of methanol, 4-phenolaniline (813 mg, 7 mmol) was added and stirred until fully dissolved. Glyoxal (174 mg, 3 mmol) was added to the reaction solution with stirring. Upon addition of glyoxal solution, 40 wt.% in H2O, a brown precipitate formed and the solution turned orange. The reaction was further stirred at room temperature for 5 h and the solid was vacuum filtered and washed with cold methanol (612 mg, 85% yield). Step 2, Synthesis of IOH·Cl: ethyl acetate (10 ml) was pre-heated to 343 K. To the hot solution was added (1) (200 mg, 1.2 mmol) and paraformaldehyde (36 mg, 1.2 mmol). The reaction mixture was stirred until all of the paraformaldehyde had dissolved. To this was added a solution of trimethylchlorosilane (TMSCl) (0.2 ml, 130 mg, 1.2 mmol) in ethyl acetate (0.15 ml) dropwise over 5 min while stirring. The solution was stirred for 2 h and then placed in a refrigerator (275 K) overnight. The precipitate was collected by vacuum filtration and washed with cold ethyl acetate and ether until the filtrate was colorless, yielding a dark-orange solid (yield 208 mg, 60%). Crystals were grown by slow evaporation of a concentrated solution in acetone.
6. Refinement
Crystal data, data collection, and structure . All H atoms were found in difference Fourier maps. Hydroxy H-atom coordinates were refined freely, with Uiso(H) = 1.5Ueq(O). Carbon-bound H atoms were included in calculated positions and refined using a standard riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). progress was checked using an R-tensor (Parkin, 2000), PLATON (Spek, 2009), and checkCIF (https://checkcif.iucr.org/).
details are given in Table 2
|
Supporting information
CCDC reference: 1946122
https://doi.org/10.1107/S2056989019011058/su5504sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011058/su5504Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and CIFFIX (Parkin, 2013).C15H13N2O2+·Cl− | F(000) = 600 |
Mr = 288.72 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1752 (6) Å | Cell parameters from 1847 reflections |
b = 13.2684 (8) Å | θ = 3.2–25.1° |
c = 12.7391 (10) Å | µ = 0.28 mm−1 |
β = 100.105 (3)° | T = 90 K |
V = 1360.40 (17) Å3 | Needle, pale yellow |
Z = 4 | 0.24 × 0.03 × 0.03 mm |
Bruker D8 Venture dual source diffractometer | 3109 independent reflections |
Radiation source: microsource | 1869 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.103 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.821, Tmax = 0.928 | k = −12→17 |
14925 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: mixed |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + 0.9975P] where P = (Fo2 + 2Fc2)/3 |
3109 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement progress was checked using Platon (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.02919 (8) | 0.26975 (5) | 0.32981 (6) | 0.02188 (17) | |
N1 | 0.1115 (3) | 0.61456 (15) | 0.38285 (18) | 0.0172 (5) | |
N2 | −0.0616 (3) | 0.59391 (15) | 0.23466 (18) | 0.0177 (5) | |
O1 | 0.6632 (2) | 0.62630 (14) | 0.70648 (16) | 0.0267 (5) | |
H1O | 0.754 (4) | 0.658 (2) | 0.685 (2) | 0.040* | |
O2 | −0.3960 (2) | 0.45255 (13) | −0.15434 (15) | 0.0246 (5) | |
H2O | −0.407 (3) | 0.386 (2) | −0.155 (2) | 0.037* | |
C1 | 0.0899 (3) | 0.56926 (18) | 0.2872 (2) | 0.0196 (6) | |
H1 | 0.168035 | 0.527175 | 0.261384 | 0.023* | |
C2 | −0.0294 (3) | 0.66978 (18) | 0.3909 (2) | 0.0201 (6) | |
H2 | −0.047100 | 0.709198 | 0.450155 | 0.024* | |
C3 | −0.1369 (3) | 0.65700 (19) | 0.2986 (2) | 0.0209 (6) | |
H3 | −0.244440 | 0.685964 | 0.280713 | 0.025* | |
C4 | 0.2593 (3) | 0.61151 (18) | 0.4634 (2) | 0.0170 (6) | |
C5 | 0.4107 (3) | 0.64043 (18) | 0.4386 (2) | 0.0187 (6) | |
H5 | 0.420025 | 0.657846 | 0.367563 | 0.022* | |
C6 | 0.5480 (3) | 0.64350 (17) | 0.5191 (2) | 0.0187 (6) | |
H6 | 0.653195 | 0.661931 | 0.503157 | 0.022* | |
C7 | 0.5329 (3) | 0.61976 (18) | 0.6233 (2) | 0.0195 (6) | |
C8 | 0.3809 (3) | 0.58845 (18) | 0.6463 (2) | 0.0199 (6) | |
H8 | 0.371354 | 0.570419 | 0.717145 | 0.024* | |
C9 | 0.2436 (3) | 0.58362 (18) | 0.5658 (2) | 0.0204 (6) | |
H9 | 0.139637 | 0.561368 | 0.580702 | 0.024* | |
C10 | −0.1400 (3) | 0.55635 (18) | 0.1320 (2) | 0.0173 (6) | |
C11 | −0.1393 (3) | 0.45368 (19) | 0.1120 (2) | 0.0222 (7) | |
H11 | −0.082486 | 0.408543 | 0.163846 | 0.027* | |
C12 | −0.2225 (3) | 0.41836 (19) | 0.0158 (2) | 0.0231 (7) | |
H12 | −0.221456 | 0.348340 | 0.000365 | 0.028* | |
C13 | −0.3082 (3) | 0.48456 (19) | −0.0591 (2) | 0.0186 (6) | |
C14 | −0.3043 (3) | 0.58696 (19) | −0.0383 (2) | 0.0204 (6) | |
H14 | −0.359489 | 0.632414 | −0.090377 | 0.025* | |
C15 | −0.2207 (3) | 0.62337 (19) | 0.0576 (2) | 0.0201 (6) | |
H15 | −0.218569 | 0.693606 | 0.072208 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0211 (3) | 0.0216 (3) | 0.0222 (4) | 0.0002 (3) | 0.0016 (3) | 0.0014 (3) |
N1 | 0.0161 (12) | 0.0175 (11) | 0.0171 (13) | 0.0012 (9) | 0.0003 (10) | −0.001 (1) |
N2 | 0.0184 (13) | 0.0184 (11) | 0.0155 (13) | 0.0004 (9) | 0.0008 (10) | −0.0011 (9) |
O1 | 0.0184 (11) | 0.0370 (12) | 0.0223 (12) | −0.0078 (9) | −0.0031 (9) | 0.0074 (9) |
O2 | 0.0334 (12) | 0.0194 (10) | 0.0176 (12) | −0.0022 (9) | −0.0044 (10) | −0.0014 (9) |
C1 | 0.0202 (15) | 0.0199 (14) | 0.0180 (17) | 0.0023 (11) | 0.0015 (13) | 0.0003 (12) |
C2 | 0.0191 (15) | 0.0226 (14) | 0.0197 (17) | 0.0058 (11) | 0.0062 (13) | −0.0025 (12) |
C3 | 0.0180 (15) | 0.0222 (14) | 0.0222 (17) | 0.0054 (12) | 0.0028 (13) | −0.0001 (12) |
C4 | 0.0156 (14) | 0.0183 (13) | 0.0160 (16) | −0.0002 (11) | 0.0000 (12) | −0.0012 (12) |
C5 | 0.0222 (16) | 0.0182 (14) | 0.0158 (16) | 0.0015 (11) | 0.0035 (13) | −0.0006 (11) |
C6 | 0.0182 (15) | 0.0181 (14) | 0.0198 (16) | −0.0012 (11) | 0.0035 (13) | 0.0017 (12) |
C7 | 0.0200 (15) | 0.0185 (13) | 0.0179 (16) | 0.0007 (11) | −0.0021 (13) | 0.0016 (12) |
C8 | 0.0228 (16) | 0.0238 (15) | 0.0135 (16) | −0.0018 (12) | 0.0041 (13) | 0.0053 (12) |
C9 | 0.0189 (15) | 0.0188 (14) | 0.0229 (18) | −0.0018 (11) | 0.0022 (13) | 0.0006 (12) |
C10 | 0.0161 (15) | 0.0196 (14) | 0.0155 (16) | −0.0014 (11) | 0.0005 (12) | −0.0026 (12) |
C11 | 0.0227 (16) | 0.0187 (14) | 0.0233 (17) | 0.0040 (12) | −0.0015 (13) | 0.0030 (12) |
C12 | 0.0280 (17) | 0.0178 (14) | 0.0225 (18) | −0.0012 (12) | 0.0015 (14) | 0.0001 (12) |
C13 | 0.0182 (15) | 0.0238 (14) | 0.0138 (16) | −0.0031 (11) | 0.0026 (12) | −0.0021 (12) |
C14 | 0.0258 (16) | 0.0188 (14) | 0.0163 (16) | 0.0027 (12) | 0.0027 (13) | 0.0022 (12) |
C15 | 0.0235 (16) | 0.0177 (14) | 0.0185 (16) | 0.0000 (11) | 0.0017 (13) | −0.0010 (12) |
N1—C1 | 1.342 (3) | C5—H5 | 0.9500 |
N1—C2 | 1.384 (3) | C6—C7 | 1.391 (4) |
N1—C4 | 1.442 (3) | C6—H6 | 0.9500 |
N2—C1 | 1.341 (3) | C7—C8 | 1.389 (3) |
N2—C3 | 1.385 (3) | C8—C9 | 1.382 (3) |
N2—C10 | 1.441 (3) | C8—H8 | 0.9500 |
O1—C7 | 1.366 (3) | C9—H9 | 0.9500 |
O1—H1O | 0.93 (3) | C10—C15 | 1.380 (3) |
O2—C13 | 1.364 (3) | C10—C11 | 1.386 (3) |
O2—H2O | 0.89 (3) | C11—C12 | 1.376 (4) |
C1—H1 | 0.9500 | C11—H11 | 0.9500 |
C2—C3 | 1.350 (4) | C12—C13 | 1.393 (4) |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C13—C14 | 1.384 (3) |
C4—C9 | 1.383 (4) | C14—C15 | 1.378 (4) |
C4—C5 | 1.384 (3) | C14—H14 | 0.9500 |
C5—C6 | 1.381 (4) | C15—H15 | 0.9500 |
C1—N1—C2 | 109.0 (2) | O1—C7—C6 | 122.6 (2) |
C1—N1—C4 | 126.4 (2) | C8—C7—C6 | 120.1 (3) |
C2—N1—C4 | 124.5 (2) | C9—C8—C7 | 119.8 (3) |
C1—N2—C3 | 108.7 (2) | C9—C8—H8 | 120.1 |
C1—N2—C10 | 126.4 (2) | C7—C8—H8 | 120.1 |
C3—N2—C10 | 124.7 (2) | C8—C9—C4 | 119.3 (3) |
C7—O1—H1O | 110.7 (19) | C8—C9—H9 | 120.3 |
C13—O2—H2O | 111.0 (19) | C4—C9—H9 | 120.3 |
N2—C1—N1 | 107.9 (2) | C15—C10—C11 | 121.6 (3) |
N2—C1—H1 | 126.1 | C15—C10—N2 | 118.9 (2) |
N1—C1—H1 | 126.1 | C11—C10—N2 | 119.4 (2) |
C3—C2—N1 | 107.0 (2) | C12—C11—C10 | 118.7 (2) |
C3—C2—H2 | 126.5 | C12—C11—H11 | 120.6 |
N1—C2—H2 | 126.5 | C10—C11—H11 | 120.6 |
C2—C3—N2 | 107.4 (2) | C11—C12—C13 | 120.4 (2) |
C2—C3—H3 | 126.3 | C11—C12—H12 | 119.8 |
N2—C3—H3 | 126.3 | C13—C12—H12 | 119.8 |
C9—C4—C5 | 121.6 (3) | O2—C13—C14 | 117.9 (2) |
C9—C4—N1 | 118.3 (2) | O2—C13—C12 | 122.4 (2) |
C5—C4—N1 | 120.1 (2) | C14—C13—C12 | 119.7 (3) |
C6—C5—C4 | 118.8 (3) | C15—C14—C13 | 120.4 (2) |
C6—C5—H5 | 120.6 | C15—C14—H14 | 119.8 |
C4—C5—H5 | 120.6 | C13—C14—H14 | 119.8 |
C5—C6—C7 | 120.4 (3) | C14—C15—C10 | 119.1 (2) |
C5—C6—H6 | 119.8 | C14—C15—H15 | 120.5 |
C7—C6—H6 | 119.8 | C10—C15—H15 | 120.5 |
O1—C7—C8 | 117.4 (3) | ||
C3—N2—C1—N1 | 0.4 (3) | C6—C7—C8—C9 | −1.8 (4) |
C10—N2—C1—N1 | −175.5 (2) | C7—C8—C9—C4 | −0.9 (4) |
C2—N1—C1—N2 | −0.3 (3) | C5—C4—C9—C8 | 2.6 (4) |
C4—N1—C1—N2 | −177.5 (2) | N1—C4—C9—C8 | −174.5 (2) |
C1—N1—C2—C3 | 0.1 (3) | C1—N2—C10—C15 | −135.4 (3) |
C4—N1—C2—C3 | 177.3 (2) | C3—N2—C10—C15 | 49.3 (4) |
N1—C2—C3—N2 | 0.2 (3) | C1—N2—C10—C11 | 47.6 (4) |
C1—N2—C3—C2 | −0.4 (3) | C3—N2—C10—C11 | −127.8 (3) |
C10—N2—C3—C2 | 175.7 (2) | C15—C10—C11—C12 | −0.5 (4) |
C1—N1—C4—C9 | −127.9 (3) | N2—C10—C11—C12 | 176.5 (3) |
C2—N1—C4—C9 | 55.3 (3) | C10—C11—C12—C13 | −1.2 (4) |
C1—N1—C4—C5 | 55.0 (4) | C11—C12—C13—O2 | −178.2 (3) |
C2—N1—C4—C5 | −121.8 (3) | C11—C12—C13—C14 | 2.5 (4) |
C9—C4—C5—C6 | −1.5 (4) | O2—C13—C14—C15 | 178.5 (3) |
N1—C4—C5—C6 | 175.5 (2) | C12—C13—C14—C15 | −2.2 (4) |
C4—C5—C6—C7 | −1.2 (4) | C13—C14—C15—C10 | 0.5 (4) |
C5—C6—C7—O1 | −176.8 (2) | C11—C10—C15—C14 | 0.9 (4) |
C5—C6—C7—C8 | 2.8 (4) | N2—C10—C15—C14 | −176.1 (2) |
O1—C7—C8—C9 | 177.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···Cl1i | 0.93 (3) | 2.06 (3) | 2.975 (2) | 169 (3) |
O2—H2O···Cl1ii | 0.89 (3) | 2.13 (3) | 3.0118 (19) | 171 (3) |
C1—H1···O1i | 0.95 | 2.45 | 3.280 (3) | 145 |
C1—H1···O2iii | 0.95 | 2.51 | 3.271 (3) | 137 |
C2—H2···Cl1iv | 0.95 | 2.80 | 3.647 (3) | 150 |
C3—H3···Cl1v | 0.95 | 2.74 | 3.655 (3) | 163 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, −y+1, −z; (iv) −x, −y+1, −z+1; (v) −x−1/2, y+1/2, −z+1/2. |
Funding information
Funding for this research was provided by: National Science Foundation (MRI CHE1625732), and by the University of Kentucky.
References
Alder, R. W., Allen, P. R. & Williams, S. J. (1995). J. Chem. Soc. Chem. Commun. pp. 1267–1268. CrossRef Web of Science Google Scholar
Alič, B., Tramšek, M., Kokalj, A. & Tavčar, G. (2017). Inorg. Chem. 56, 10070–10077. Web of Science PubMed Google Scholar
Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 2801–2801. CrossRef CAS Web of Science Google Scholar
Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534. Web of Science CSD CrossRef CAS Google Scholar
Benhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. (2011). Chem. Rev. 111, 2705–2733. Web of Science CrossRef CAS PubMed Google Scholar
Bethel, R., Denny, J. A. & Darensbourg, M. Y. (2016). CSD Private communication. CCDC 1450616. CCDC, Cambridge, England. Google Scholar
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. (2015). Chem. Rev. 115, 9307–9387. Web of Science CrossRef CAS PubMed Google Scholar
Garden, S. J., Gama, P. E., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Howie, R. A. (2010). Acta Cryst. E66, o1438–o1439. Web of Science CSD CrossRef IUCr Journals Google Scholar
Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008. Web of Science CrossRef PubMed CAS Google Scholar
Hauwert, P., Maestri, G., Sprengers, J. W., Catellani, M. & Elsevier, C. J. (2008). Angew. Chem. Int. Ed. 47, 3223–3226. Web of Science CrossRef CAS Google Scholar
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496. Web of Science CrossRef CAS PubMed Google Scholar
Huynh, H. V. (2018). Chem. Rev. 118, 9457–9492. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lam, N. Y. S., Truong, D., Burmeister, H., Babak, M. V., Holtkamp, H. U., Movassaghi, S., Ayine-Tora, D. M., Zafar, A., Kubanik, M., Oehninger, L., Söhnel, T., Reynisson, J., Jamieson, S. M. F., Gaiddon, C., Ott, I. & Hartinger, C. G. (2018). Inorg. Chem. 57, 14427–14434. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, W. & Gust, R. (2013). Chem. Soc. Rev. 42, 755–773. Web of Science CrossRef CAS PubMed Google Scholar
Lorber, C. & Vendier, L. (2009). Dalton Trans. pp. 6972–6984. Web of Science CSD CrossRef Google Scholar
Luger, P. & Ruban, G. (1975). Z. Kristallogr. 142, 177–185. CrossRef CAS Web of Science Google Scholar
Marion, N. & Nolan, S. P. (2008). Chem. Soc. Rev. 37, 1776–1782. Web of Science CrossRef PubMed CAS Google Scholar
McGuinness, D. S., Saendig, N., Yates, B. F. & Cavell, K. J. (2001). J. Am. Chem. Soc. 123, 4029–4040. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Minaker, S. A., Wang, R. & Aquino, M. A. S. (2018). IUCrData, 3, x180516. Google Scholar
Mora, M., Gimeno, M. C. & Visbal, R. (2019). Chem. Soc. Rev. 48, 447–462. Web of Science CrossRef CAS PubMed Google Scholar
Parkin, S. (2000). Acta Cryst. A56, 157–162. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parkin, S. (2013). CIFFIX, https://xray.uky.edu/Resources/scripts/ciffix. Google Scholar
Rheingold, A. L., Wang, G. & Glueck, D. S. (2015). CCDC 1408942. CSD Private communication. CCDC, Cambridge, England. Google Scholar
Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215–5272. Web of Science CrossRef CAS PubMed Google Scholar
Schedler, M., Fröhlich, R., Daniliuc, C. G. & Glorius, F. (2012). Eur. J. Org. Chem. 2012, 4164–4171. Web of Science CSD CrossRef CAS Google Scholar
Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solovyev, A., Chu, Q., Geib, S. J., Fensterbank, L., Malacria, M., Lacôte, E. & Curran, D. P. (2010). J. Am. Chem. Soc. 132, 15072–15080. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suisse, J.-M., Bellemin-Laponnaz, S., Douce, L., Maisse-François, A. & Welter, R. (2005). Tetrahedron Lett. 46, 4303–4305. Web of Science CSD CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Velazquez, H. D. & Verpoort, F. (2012). Chem. Soc. Rev. 41, 7032–7060. Web of Science CrossRef CAS PubMed Google Scholar
Voutchkova, A. M., Appelhans, L. N., Chianese, A. R. & Crabtree, R. H. (2005). J. Am. Chem. Soc. 127, 17624–17625. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wan, Y., Xin, H., Chen, X., Xu, H. & Wu, H. (2008). Acta Cryst. E64, o2159. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, W., Cui, L., Sun, P., Shi, L., Yue, C. & Li, F. (2018). Chem. Rev. 118, 9843–9929. Web of Science CrossRef CAS PubMed Google Scholar
Zou, T., Lok, C.-N., Wan, P.-K., Zhang, Z.-F., Fung, S.-K. & Che, C.-M. (2018). Curr. Opin. Chem. Biol. 43, 30–36. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.