research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1,3-bis­­(4-hy­dr­oxy­phen­yl)-1H-imidazol-3-ium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
*Correspondence e-mail: awuah@uky.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 July 2019; accepted 8 August 2019; online 16 August 2019)

Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl, is a new imidazolium salt with a hy­droxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a di­aza­butadiene precursor followed by ring closure using tri­methylchloro­silane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hy­droxy­phenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hy­droxy groups and Cl anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each ππ stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with inter­planar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy inter­molecular inter­action is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hy­droxy O atoms on translationally adjacent mol­ecules (x + 1, y, x + 1).

1. Chemical context

N-Heterocyclic carbenes (NHCs) represent a versatile class of ligand systems for metal-center activation or stabilization in modern organic synthesis (Arduengo et al., 1999[Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.]; Benhamou et al., 2011[Benhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. (2011). Chem. Rev. 111, 2705-2733.]). Chemically, carbenes are nucleophilic `phosphine mimics' that are high in the order of the Tolman electronic and steric parameter scales, which influences their reactivity. Metal complexes bearing NHC ligands are found in many catalytic reactions (Flanigan et al., 2015[Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. (2015). Chem. Rev. 115, 9307-9387.]; Hopkinson et al., 2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]; Huynh, 2018[Huynh, H. V. (2018). Chem. Rev. 118, 9457-9492.]; Marion & Nolan, 2008[Marion, N. & Nolan, S. P. (2008). Chem. Soc. Rev. 37, 1776-1782.]; Scholl et al., 1999[Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953-956.]; Velazquez & Verpoort, 2012[Velazquez, H. D. & Verpoort, F. (2012). Chem. Soc. Rev. 41, 7032-7060.]; Wang et al., 2018[Wang, W., Cui, L., Sun, P., Shi, L., Yue, C. & Li, F. (2018). Chem. Rev. 118, 9843-9929.]), and recently have shown promise as cytotoxic agents (Garrison & Youngs, 2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]; Lam et al., 2018[Lam, N. Y. S., Truong, D., Burmeister, H., Babak, M. V., Holtkamp, H. U., Movassaghi, S., Ayine-Tora, D. M., Zafar, A., Kubanik, M., Oehninger, L., Söhnel, T., Reynisson, J., Jamieson, S. M. F., Gaiddon, C., Ott, I. & Hartinger, C. G. (2018). Inorg. Chem. 57, 14427-14434.]; Liu & Gust, 2013[Liu, W. & Gust, R. (2013). Chem. Soc. Rev. 42, 755-773.]; Mora et al., 2019[Mora, M., Gimeno, M. C. & Visbal, R. (2019). Chem. Soc. Rev. 48, 447-462.]; Riener et al., 2014[Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215-5272.]; Zou et al., 2018[Zou, T., Lok, C.-N., Wan, P.-K., Zhang, Z.-F., Fung, S.-K. & Che, C.-M. (2018). Curr. Opin. Chem. Biol. 43, 30-36.]). Imidazolium salts, which are simple salts of the free carbene, are commonly used in many systems in preference to their free carbene counterparts due to their high stability. Unlike the free carbenes, which readily react with water or oxygen (Alder et al., 1995[Alder, R. W., Allen, P. R. & Williams, S. J. (1995). J. Chem. Soc. Chem. Commun. pp. 1267-1268.]), imidazolium salts are indefinitely stable. Use of the imidazolium salt does not require Schlenk techniques and the corresponding `free' carbene can be prepared in situ via deprotonation with a strong base (e.g. NaOtBu and NaH) (Arduengo et al., 1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 2801-2801.]; McGuinness et al., 2001[McGuinness, D. S., Saendig, N., Yates, B. F. & Cavell, K. J. (2001). J. Am. Chem. Soc. 123, 4029-4040.]; Hauwert et al., 2008[Hauwert, P., Maestri, G., Sprengers, J. W., Catellani, M. & Elsevier, C. J. (2008). Angew. Chem. Int. Ed. 47, 3223-3226.]; Voutchkova et al., 2005[Voutchkova, A. M., Appelhans, L. N., Chianese, A. R. & Crabtree, R. H. (2005). J. Am. Chem. Soc. 127, 17624-17625.]). Expanding the functional diversity of NHC ligands will broaden their utility. The synthesis of the novel imidazolium salt in this report offers a unique extension of previously reported imidazolium salts through the addition of phenolic groups, herein referred to as IOH·Cl, for functionalization (see Scheme). The hydroxyl functional group presents the possibility of tethering other chemical groups for varied applications, including catalysis, materials, and biomedicine. The synthesis of IOH·Cl (Fig. 1[link]) does not require Schlenk techniques and the product is isolated as an air-stable solid that can be stored indefinitely without decomposition. The synthesis is part of a study to develop reaction methods for C—N bond formation from high-oxidation-state transition metals.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of IOH·Cl.

2. Structural commentary

In the structure of IOH·Cl (Fig. 2[link]), there are no unusual bond lengths or angles. The organic cation consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with para-phenol substituents (C4–C9/O1 and C10–C16/O2) bonded to the imidazolium N atoms [N1—C4 = 1.442 (3) Å and N2—C10 = 1.441 (3) Å]. The phenol groups are out-of-plane, forming dihedral angles with the imidazolium ring of 55.27 (7) and 48.85 (11)° for rings C4–C9 and C10–C15, respectively. The hy­droxy H-atom coordinates were refined freely and are slightly out-of-plane of their respective phenolic groups; the torsion angles are 9.1 (19)° for C6—C7—O1—H1O and 11 (2)° for C12—C13—O2—H2O.

[Figure 2]
Figure 2
The mol­ecular structure of IOH·Cl, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The most prominent inter­molecular inter­actions in the crystals of IOH·Cl are O—H⋯Cl hydrogen bonds. These link the Cl anion at (x, y, z) to two different IOH·Cl mol­ecules, one related by inversion and the other by the n-glide. These hydrogen bonds, viz. O1i—H1Oi⋯Cl1 and O2ii—H2Oii—Cl1 [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; Fig. 3[link] and Table 1[link]], have donor–acceptor distances of 2.975 (2) and 3.012 (2) Å, respectively. Weaker bifurcated C—H⋯O inter­actions occur between imidazole ring atoms (C1—H1) and hy­droxy O atoms (O1i and O2iii) on mol­ecules related by different inversion centres. These same hy­droxy O atoms are in close contact with each other, i.e. O1i⋯O2iii = 2.999 (3) Å [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z; Fig. 4[link]]. In addition to hydrogen bonding, there are offset ππ stacking inter­actions (Fig. 5[link]). The perpendicular stacking distance between the C4–C9 benzene ring and an inversion-related equivalent at (−x + 1, −y + 1, −z + 1) is 3.560 (3) Å. The overlap of the C10–C15 benzene ring C10–C15 with an inversion-related equivalent at (−x, −y + 1, −z) is weaker, giving a perpendicular stacking distance of 3.777 (3) Å. All hydrogen-bond inter­actions are readily apparent in the Hirshfeld surface and fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). In Fig. 6[link](a), the prominent deep-red ellipse-shaped regions represent the O—H⋯Cl hydrogen bonds, while the faint-red regions represent the bifurcated C—H⋯O inter­actions (Table 1[link]). Short contacts between the imidazole ring and inversion [C2—H2⋯Cliv; symmetry code: (iv) −x, −y + 1, −z + 1] and 21-screw [C3—H3⋯Clv; symmetry code: (v) −x − [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]] related anions are also apparent (Fig. 6[link]b and Table 1[link]). Hirshfeld-surface `fingerprint plots' (Figs. 7[link]af) qu­antify the majority of inter­molecular contacts as H⋯H (36.2%; Fig. 7[link]b) and C⋯H (21.7%; Fig. 7[link]c). In these diagrams, the O—H⋯Cl hydrogen bonds are indicated by sharp diagonal jutting spikes (Fig. 7[link]d), while C—H⋯O inter­actions give less-pronounced spikes (Fig. 7[link]e). C⋯C contacts, which are all as a result of ππ stacking, account for 6.6% of the inter­molecular contacts (Fig. 7[link]f).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl1i 0.93 (3) 2.06 (3) 2.975 (2) 169 (3)
O2—H2O⋯Cl1ii 0.89 (3) 2.13 (3) 3.0118 (19) 171 (3)
C1—H1⋯O1i 0.95 2.45 3.280 (3) 145
C1—H1⋯O2iii 0.95 2.51 3.271 (3) 137
C2—H2⋯Cl1iv 0.95 2.80 3.647 (3) 150
C3—H3⋯Cl1v 0.95 2.74 3.655 (3) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x, -y+1, -z+1; (v) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A plot of the O—H⋯Cl hydrogen bonds in crystals of IOH·Cl. These inter­actions, drawn as dashed solid lines, link mol­ecules into head-to-tail zigzag chains that extend parallel to the b axis. The unlabelled mol­ecule is related to its labelled counterpart by the crystallographic 21 screw axis (−x + [1 \over 2], y − [1 \over 2], −z + [1 \over 2]).
[Figure 4]
Figure 4
A plot showing the bifurcated C—H⋯O inter­actions (dashed solid lines) and O⋯O close contacts (dotted lines) in crystalline IOH·Cl. The unlabelled mol­ecules are related to the partially labelled mol­ecule by inversion [upper left: (−x, −y + 1, −z); upper right: (−x + 1, −y + 1, −z + 1)].
[Figure 5]
Figure 5
A plot highlighting the ππ stacking (open dashed lines) of benzene rings in crystals of IOH·Cl. Unlabelled mol­ecules are related to the labelled mol­ecule by inversion [lower right: (−x + 1, −y + 1, −z + 1); lower left: (−x, −y + 1, −z)].
[Figure 6]
Figure 6
Two views of the normalized contact distances, dnorm, mapped onto the Hirshfeld surface of IOH·Cl. In (a), the larger red regions correspond to the O—H⋯Cl hydrogen bonds, while the smaller pink regions correspond to the C—H⋯O bifurcated weak hydrogen bonds. In (b), the faint-pink regions in the upper middle of the diagram correspond to close contacts between imidazole-ring C—H groups and Cl anions.
[Figure 7]
Figure 7
(a) The full 2D (two-dimensional) fingerprint plot for IOH·Cl, along with separate plots highlighting the five most important and abundant specific contacts: (b) H⋯H, (c) C⋯H, (d) Cl⋯H, (e) O⋯H, and (f) C⋯C.

4. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.40, November 2018; Groom et al., 2016) on the three-ring fragment of the title compound yielded over 600 hits, ranging from similar simple salts to metal complexes containing analogous NHC frameworks. A search with H atoms bonded to the three carbons of the imidazole ring gave 180 hits. Of these, 28 had mesityl substituents, including IHOQUS (IMes·Cl; Lorber & Vendier, 2009[Lorber, C. & Vendier, L. (2009). Dalton Trans. pp. 6972-6984.]) and GAKCAZ (IMes·BF4; Bethel et al., 2016[Bethel, R., Denny, J. A. & Darensbourg, M. Y. (2016). CSD Private communication. CCDC 1450616. CCDC, Cambridge, England.]), and 62 had 2,6-diiso­propyl­phenyl groups, including KIDKUG (IPr·ClO4; Minaker et al., 2018[Minaker, S. A., Wang, R. & Aquino, M. A. S. (2018). IUCrData, 3, x180516.]), OHURIU (IPr·PF6; Rheingold et al., 2015[Rheingold, A. L., Wang, G. & Glueck, D. S. (2015). CCDC 1408942. CSD Private communication. CCDC, Cambridge, England.]), TAXLOW (IPr·SiF5; Alič et al., 2017[Alič, B., Tramšek, M., Kokalj, A. & Tavčar, G. (2017). Inorg. Chem. 56, 10070-10077.]), and XANPEJ (IPr·I; Solovyev et al., 2010[Solovyev, A., Chu, Q., Geib, S. J., Fensterbank, L., Malacria, M., Lacôte, E. & Curran, D. P. (2010). J. Am. Chem. Soc. 132, 15072-15080.]). Structures most similar to IOH·Cl in the present work include the commonly used IMes·Cl (IHOQUS) and IPr·ClO4 (KIDKUG), and the unsubstituted phenyl analog IPh·ClO4 (DPIMPC; Luger & Ruban, 1975[Luger, P. & Ruban, G. (1975). Z. Kristallogr. 142, 177-185.]). A more restrictive search with only para substitution allowed on the phenyl rings gave 47 hits, of which 44 were carboxyl­ates that formed extended polymeric structures with metal-containing species. The remaining three, BOGVAV (Wan et al., 2008[Wan, Y., Xin, H., Chen, X., Xu, H. & Wu, H. (2008). Acta Cryst. E64, o2159.]), TUPYAF (Garden et al., 2010[Garden, S. J., Gama, P. E., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Howie, R. A. (2010). Acta Cryst. E66, o1438-o1439.]), and DAQKOW (Suisse et al., 2005[Suisse, J.-M., Bellemin-Laponnaz, S., Douce, L., Maisse-François, A. & Welter, R. (2005). Tetrahedron Lett. 46, 4303-4305.]), have –OMe, –Br, and –OC12H25 groups at the para position. One other structure with comparative functionalization is LEBMUC (Schedler et al., 2012[Schedler, M., Fröhlich, R., Daniliuc, C. G. & Glorius, F. (2012). Eur. J. Org. Chem. 2012, 4164-4171.]), which bears bis-meth­oxy groups at the ortho-phenyl-ring positions.

5. Synthesis and crystallization

The overall reaction for the synthesis of the title compound is depicted in Fig. 1[link]. Step 1, Synthesis of the precursor N,N′-bis(4-hydroxyphenyl)-1,4-diazabutadiene (1): to a round-bottomed flask charged with 15 ml of methanol, 4-phenolaniline (813 mg, 7 mmol) was added and stirred until fully dissolved. Glyoxal (174 mg, 3 mmol) was added to the reaction solution with stirring. Upon addition of glyoxal solution, 40 wt.% in H2O, a brown precipitate formed and the solution turned orange. The reaction was further stirred at room temperature for 5 h and the solid was vacuum filtered and washed with cold methanol (612 mg, 85% yield). Step 2, Synthesis of IOH·Cl: ethyl acetate (10 ml) was pre-heated to 343 K. To the hot solution was added (1) (200 mg, 1.2 mmol) and paraformaldehyde (36 mg, 1.2 mmol). The reaction mixture was stirred until all of the paraformaldehyde had dissolved. To this was added a solution of tri­methyl­chloro­silane (TMSCl) (0.2 ml, 130 mg, 1.2 mmol) in ethyl acetate (0.15 ml) dropwise over 5 min while stirring. The solution was stirred for 2 h and then placed in a refrigerator (275 K) overnight. The precipitate was collected by vacuum filtration and washed with cold ethyl acetate and ether until the filtrate was colorless, yielding a dark-orange solid (yield 208 mg, 60%). Crystals were grown by slow evaporation of a concentrated solution in acetone.

6. Refinement

Crystal data, data collection, and structure refinement details are given in Table 2[link]. All H atoms were found in difference Fourier maps. Hy­droxy H-atom coordinates were refined freely, with Uiso(H) = 1.5Ueq(O). Carbon-bound H atoms were included in calculated positions and refined using a standard riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Refinement progress was checked using an R-tensor (Parkin, 2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and checkCIF (https://checkcif.iucr.org/).

Table 2
Experimental details

Crystal data
Chemical formula C15H13N2O2+·Cl
Mr 288.72
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 8.1752 (6), 13.2684 (8), 12.7391 (10)
β (°) 100.105 (3)
V3) 1360.40 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.24 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.821, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 14925, 3109, 1869
Rint 0.103
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.083, 1.01
No. of reflections 3109
No. of parameters 187
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.32
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX, https://xray.uky.edu/Resources/scripts/ciffix.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and CIFFIX (Parkin, 2013).

1,3-Bis(4-hydroxyphenyl)-1H-imidazol-3-ium chloride top
Crystal data top
C15H13N2O2+·ClF(000) = 600
Mr = 288.72Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1752 (6) ÅCell parameters from 1847 reflections
b = 13.2684 (8) Åθ = 3.2–25.1°
c = 12.7391 (10) ŵ = 0.28 mm1
β = 100.105 (3)°T = 90 K
V = 1360.40 (17) Å3Needle, pale yellow
Z = 40.24 × 0.03 × 0.03 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
3109 independent reflections
Radiation source: microsource1869 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.103
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.821, Tmax = 0.928k = 1217
14925 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + 0.9975P]
where P = (Fo2 + 2Fc2)/3
3109 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02919 (8)0.26975 (5)0.32981 (6)0.02188 (17)
N10.1115 (3)0.61456 (15)0.38285 (18)0.0172 (5)
N20.0616 (3)0.59391 (15)0.23466 (18)0.0177 (5)
O10.6632 (2)0.62630 (14)0.70648 (16)0.0267 (5)
H1O0.754 (4)0.658 (2)0.685 (2)0.040*
O20.3960 (2)0.45255 (13)0.15434 (15)0.0246 (5)
H2O0.407 (3)0.386 (2)0.155 (2)0.037*
C10.0899 (3)0.56926 (18)0.2872 (2)0.0196 (6)
H10.1680350.5271750.2613840.023*
C20.0294 (3)0.66978 (18)0.3909 (2)0.0201 (6)
H20.0471000.7091980.4501550.024*
C30.1369 (3)0.65700 (19)0.2986 (2)0.0209 (6)
H30.2444400.6859640.2807130.025*
C40.2593 (3)0.61151 (18)0.4634 (2)0.0170 (6)
C50.4107 (3)0.64043 (18)0.4386 (2)0.0187 (6)
H50.4200250.6578460.3675630.022*
C60.5480 (3)0.64350 (17)0.5191 (2)0.0187 (6)
H60.6531950.6619310.5031570.022*
C70.5329 (3)0.61976 (18)0.6233 (2)0.0195 (6)
C80.3809 (3)0.58845 (18)0.6463 (2)0.0199 (6)
H80.3713540.5704190.7171450.024*
C90.2436 (3)0.58362 (18)0.5658 (2)0.0204 (6)
H90.1396370.5613680.5807020.024*
C100.1400 (3)0.55635 (18)0.1320 (2)0.0173 (6)
C110.1393 (3)0.45368 (19)0.1120 (2)0.0222 (7)
H110.0824860.4085430.1638460.027*
C120.2225 (3)0.41836 (19)0.0158 (2)0.0231 (7)
H120.2214560.3483400.0003650.028*
C130.3082 (3)0.48456 (19)0.0591 (2)0.0186 (6)
C140.3043 (3)0.58696 (19)0.0383 (2)0.0204 (6)
H140.3594890.6324140.0903770.025*
C150.2207 (3)0.62337 (19)0.0576 (2)0.0201 (6)
H150.2185690.6936060.0722080.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0211 (3)0.0216 (3)0.0222 (4)0.0002 (3)0.0016 (3)0.0014 (3)
N10.0161 (12)0.0175 (11)0.0171 (13)0.0012 (9)0.0003 (10)0.001 (1)
N20.0184 (13)0.0184 (11)0.0155 (13)0.0004 (9)0.0008 (10)0.0011 (9)
O10.0184 (11)0.0370 (12)0.0223 (12)0.0078 (9)0.0031 (9)0.0074 (9)
O20.0334 (12)0.0194 (10)0.0176 (12)0.0022 (9)0.0044 (10)0.0014 (9)
C10.0202 (15)0.0199 (14)0.0180 (17)0.0023 (11)0.0015 (13)0.0003 (12)
C20.0191 (15)0.0226 (14)0.0197 (17)0.0058 (11)0.0062 (13)0.0025 (12)
C30.0180 (15)0.0222 (14)0.0222 (17)0.0054 (12)0.0028 (13)0.0001 (12)
C40.0156 (14)0.0183 (13)0.0160 (16)0.0002 (11)0.0000 (12)0.0012 (12)
C50.0222 (16)0.0182 (14)0.0158 (16)0.0015 (11)0.0035 (13)0.0006 (11)
C60.0182 (15)0.0181 (14)0.0198 (16)0.0012 (11)0.0035 (13)0.0017 (12)
C70.0200 (15)0.0185 (13)0.0179 (16)0.0007 (11)0.0021 (13)0.0016 (12)
C80.0228 (16)0.0238 (15)0.0135 (16)0.0018 (12)0.0041 (13)0.0053 (12)
C90.0189 (15)0.0188 (14)0.0229 (18)0.0018 (11)0.0022 (13)0.0006 (12)
C100.0161 (15)0.0196 (14)0.0155 (16)0.0014 (11)0.0005 (12)0.0026 (12)
C110.0227 (16)0.0187 (14)0.0233 (17)0.0040 (12)0.0015 (13)0.0030 (12)
C120.0280 (17)0.0178 (14)0.0225 (18)0.0012 (12)0.0015 (14)0.0001 (12)
C130.0182 (15)0.0238 (14)0.0138 (16)0.0031 (11)0.0026 (12)0.0021 (12)
C140.0258 (16)0.0188 (14)0.0163 (16)0.0027 (12)0.0027 (13)0.0022 (12)
C150.0235 (16)0.0177 (14)0.0185 (16)0.0000 (11)0.0017 (13)0.0010 (12)
Geometric parameters (Å, º) top
N1—C11.342 (3)C5—H50.9500
N1—C21.384 (3)C6—C71.391 (4)
N1—C41.442 (3)C6—H60.9500
N2—C11.341 (3)C7—C81.389 (3)
N2—C31.385 (3)C8—C91.382 (3)
N2—C101.441 (3)C8—H80.9500
O1—C71.366 (3)C9—H90.9500
O1—H1O0.93 (3)C10—C151.380 (3)
O2—C131.364 (3)C10—C111.386 (3)
O2—H2O0.89 (3)C11—C121.376 (4)
C1—H10.9500C11—H110.9500
C2—C31.350 (4)C12—C131.393 (4)
C2—H20.9500C12—H120.9500
C3—H30.9500C13—C141.384 (3)
C4—C91.383 (4)C14—C151.378 (4)
C4—C51.384 (3)C14—H140.9500
C5—C61.381 (4)C15—H150.9500
C1—N1—C2109.0 (2)O1—C7—C6122.6 (2)
C1—N1—C4126.4 (2)C8—C7—C6120.1 (3)
C2—N1—C4124.5 (2)C9—C8—C7119.8 (3)
C1—N2—C3108.7 (2)C9—C8—H8120.1
C1—N2—C10126.4 (2)C7—C8—H8120.1
C3—N2—C10124.7 (2)C8—C9—C4119.3 (3)
C7—O1—H1O110.7 (19)C8—C9—H9120.3
C13—O2—H2O111.0 (19)C4—C9—H9120.3
N2—C1—N1107.9 (2)C15—C10—C11121.6 (3)
N2—C1—H1126.1C15—C10—N2118.9 (2)
N1—C1—H1126.1C11—C10—N2119.4 (2)
C3—C2—N1107.0 (2)C12—C11—C10118.7 (2)
C3—C2—H2126.5C12—C11—H11120.6
N1—C2—H2126.5C10—C11—H11120.6
C2—C3—N2107.4 (2)C11—C12—C13120.4 (2)
C2—C3—H3126.3C11—C12—H12119.8
N2—C3—H3126.3C13—C12—H12119.8
C9—C4—C5121.6 (3)O2—C13—C14117.9 (2)
C9—C4—N1118.3 (2)O2—C13—C12122.4 (2)
C5—C4—N1120.1 (2)C14—C13—C12119.7 (3)
C6—C5—C4118.8 (3)C15—C14—C13120.4 (2)
C6—C5—H5120.6C15—C14—H14119.8
C4—C5—H5120.6C13—C14—H14119.8
C5—C6—C7120.4 (3)C14—C15—C10119.1 (2)
C5—C6—H6119.8C14—C15—H15120.5
C7—C6—H6119.8C10—C15—H15120.5
O1—C7—C8117.4 (3)
C3—N2—C1—N10.4 (3)C6—C7—C8—C91.8 (4)
C10—N2—C1—N1175.5 (2)C7—C8—C9—C40.9 (4)
C2—N1—C1—N20.3 (3)C5—C4—C9—C82.6 (4)
C4—N1—C1—N2177.5 (2)N1—C4—C9—C8174.5 (2)
C1—N1—C2—C30.1 (3)C1—N2—C10—C15135.4 (3)
C4—N1—C2—C3177.3 (2)C3—N2—C10—C1549.3 (4)
N1—C2—C3—N20.2 (3)C1—N2—C10—C1147.6 (4)
C1—N2—C3—C20.4 (3)C3—N2—C10—C11127.8 (3)
C10—N2—C3—C2175.7 (2)C15—C10—C11—C120.5 (4)
C1—N1—C4—C9127.9 (3)N2—C10—C11—C12176.5 (3)
C2—N1—C4—C955.3 (3)C10—C11—C12—C131.2 (4)
C1—N1—C4—C555.0 (4)C11—C12—C13—O2178.2 (3)
C2—N1—C4—C5121.8 (3)C11—C12—C13—C142.5 (4)
C9—C4—C5—C61.5 (4)O2—C13—C14—C15178.5 (3)
N1—C4—C5—C6175.5 (2)C12—C13—C14—C152.2 (4)
C4—C5—C6—C71.2 (4)C13—C14—C15—C100.5 (4)
C5—C6—C7—O1176.8 (2)C11—C10—C15—C140.9 (4)
C5—C6—C7—C82.8 (4)N2—C10—C15—C14176.1 (2)
O1—C7—C8—C9177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl1i0.93 (3)2.06 (3)2.975 (2)169 (3)
O2—H2O···Cl1ii0.89 (3)2.13 (3)3.0118 (19)171 (3)
C1—H1···O1i0.952.453.280 (3)145
C1—H1···O2iii0.952.513.271 (3)137
C2—H2···Cl1iv0.952.803.647 (3)150
C3—H3···Cl1v0.952.743.655 (3)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation (MRI CHE1625732), and by the University of Kentucky.

References

First citationAlder, R. W., Allen, P. R. & Williams, S. J. (1995). J. Chem. Soc. Chem. Commun. pp. 1267–1268.  CrossRef Web of Science Google Scholar
First citationAlič, B., Tramšek, M., Kokalj, A. & Tavčar, G. (2017). Inorg. Chem. 56, 10070–10077.  Web of Science PubMed Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 2801–2801.  CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. (2011). Chem. Rev. 111, 2705–2733.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBethel, R., Denny, J. A. & Darensbourg, M. Y. (2016). CSD Private communication. CCDC 1450616. CCDC, Cambridge, England.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. (2015). Chem. Rev. 115, 9307–9387.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGarden, S. J., Gama, P. E., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Howie, R. A. (2010). Acta Cryst. E66, o1438–o1439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHauwert, P., Maestri, G., Sprengers, J. W., Catellani, M. & Elsevier, C. J. (2008). Angew. Chem. Int. Ed. 47, 3223–3226.  Web of Science CrossRef CAS Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuynh, H. V. (2018). Chem. Rev. 118, 9457–9492.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLam, N. Y. S., Truong, D., Burmeister, H., Babak, M. V., Holtkamp, H. U., Movassaghi, S., Ayine-Tora, D. M., Zafar, A., Kubanik, M., Oehninger, L., Söhnel, T., Reynisson, J., Jamieson, S. M. F., Gaiddon, C., Ott, I. & Hartinger, C. G. (2018). Inorg. Chem. 57, 14427–14434.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, W. & Gust, R. (2013). Chem. Soc. Rev. 42, 755–773.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLorber, C. & Vendier, L. (2009). Dalton Trans. pp. 6972–6984.  Web of Science CSD CrossRef Google Scholar
First citationLuger, P. & Ruban, G. (1975). Z. Kristallogr. 142, 177–185.  CrossRef CAS Web of Science Google Scholar
First citationMarion, N. & Nolan, S. P. (2008). Chem. Soc. Rev. 37, 1776–1782.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcGuinness, D. S., Saendig, N., Yates, B. F. & Cavell, K. J. (2001). J. Am. Chem. Soc. 123, 4029–4040.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMinaker, S. A., Wang, R. & Aquino, M. A. S. (2018). IUCrData, 3, x180516.  Google Scholar
First citationMora, M., Gimeno, M. C. & Visbal, R. (2019). Chem. Soc. Rev. 48, 447–462.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX, https://xray.uky.edu/Resources/scripts/ciffixGoogle Scholar
First citationRheingold, A. L., Wang, G. & Glueck, D. S. (2015). CCDC 1408942. CSD Private communication. CCDC, Cambridge, England.  Google Scholar
First citationRiener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215–5272.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchedler, M., Fröhlich, R., Daniliuc, C. G. & Glorius, F. (2012). Eur. J. Org. Chem. 2012, 4164–4171.  Web of Science CSD CrossRef CAS Google Scholar
First citationScholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolovyev, A., Chu, Q., Geib, S. J., Fensterbank, L., Malacria, M., Lacôte, E. & Curran, D. P. (2010). J. Am. Chem. Soc. 132, 15072–15080.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuisse, J.-M., Bellemin-Laponnaz, S., Douce, L., Maisse-François, A. & Welter, R. (2005). Tetrahedron Lett. 46, 4303–4305.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVelazquez, H. D. & Verpoort, F. (2012). Chem. Soc. Rev. 41, 7032–7060.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVoutchkova, A. M., Appelhans, L. N., Chianese, A. R. & Crabtree, R. H. (2005). J. Am. Chem. Soc. 127, 17624–17625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWan, Y., Xin, H., Chen, X., Xu, H. & Wu, H. (2008). Acta Cryst. E64, o2159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Cui, L., Sun, P., Shi, L., Yue, C. & Li, F. (2018). Chem. Rev. 118, 9843–9929.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZou, T., Lok, C.-N., Wan, P.-K., Zhang, Z.-F., Fung, S.-K. & Che, C.-M. (2018). Curr. Opin. Chem. Biol. 43, 30–36.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds