research communications
The synthesis and κN)thiourea-κS]silver hexafluoridophosphate
of bis[3,3-diethyl-1-(phenylimino-aDepartment of Chemistry, 875 Perimeter Dr. MS 2343 Moscow, ID 83844, USA, and bDepartment of Chemical & Materials Engineering, 875 Perimeter Dr. MS 1021 Moscow, ID 83844, USA
*Correspondence e-mail: kwaynant@uidaho.edu
The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexafluoridophosphate with a concentrated tetrahydrofuran solution of N,N-diethylphenylazothioformamide [ATF; 3,3-diethyl-1-(phenylimino)thiourea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane.
Keywords: crystal structure; arylazothioformamide; silver; distorted square planar; square-pyramidal; polymeric chain; hydrogen bonding.
CCDC reference: 1949718
1. Chemical context
The redox-active azothioformamide (ATF) ligand class was identified as a metal coordinative species over 40 years ago (Bechgaard, 1974, 1977). These ligands were found to coordinate and solvate late transition metal(0) species, particularly Cu, Pd, Pt, and Ni (Nielsen et al., 2007). Further investigations found that ATF ligands were capable of removing similar late transition metal (Cu or Pd) nanoparticles and catalysts from polymeric materials (Nielsen et al., 2005, 2006). As these ligands are redox-active, it was suggested that, during coordination, the two ligands singly reduce as the metal oxidizes to (+2) and coordinates in a 2:1 fashion of ligands to metal. This observation was confirmed utilizing computational comparisons of crystal structures from the found species and a copper(I) complex (Johnson et al., 2017). Those comparisons led to the discovery that ATF ligands stay neutral when mixed with copper(I) salts behaving as 1:1 species in the presence of halide counter-ions and 2:1 species in the presence of non-coordinating counter-ions (such as BF4 and PF6). The copper(I) halide coordination complexes crystallize out of concentrated THF solution as dimers yet exhibit 1:1 coordination as observed in titration studies. The importance of understanding the variability in the binding phenomena of the various oxidation states in metals can help determine how and in which these ligands can coordinate, solvate and remove metals from materials to allow for higher purity. While most trace-metal removal is accomplished with mineral acids, a mild ligand alternative could allow for the removal of metals from acid sensitive materials such as polymers, pharmaceuticals or APIs, or from metals found in electronic waste (e-waste). Silver(I) catalysts and co-catalysts have become increasingly common over the past twenty years, and with silver a precious metal, the potential value of its recycling following synthetic reactions is worthwhile. The investigation of monovalent metals led to this report describing the coordination complex formed when the N,N-diethylphenylazothioformamide (ATF) ligand is treated with an Ag(I) species containing the non-coordinative counter-ion hexafluoridophosphate in concentrated THF solution.
2. Structural commentary
The experiment described herein involved the mixing of AgPF6 with a concentrated THF solution of the ATF ligand at room temperature which yielded the title complex in excellent yield (> 95%).
The molecular structure of the . Selected bond lengths and bond angles involving atom Ag1 are given in Table 1. The silver(I) atom has a distorted square-planar AgN2S2 coordination geometry with a τ4 fourfold parameter of 0.32 (τ4 = 1 for a perfect tetrahedral geometry and 0 for a perfect square-planar geometry. For intermediate structures, including trigonal–pyramidal and seesaw, τ4 falls within the range of 0 to 1; Yang et al., 2007). Such distorted square-planar silver complexes, once considered rare have become more common (Chowdhury et al., 2003; Ino et al., 2000; Suenaga et al., 2002; Young & Hanton, 2008; Pointillart et al., 2008; Hanton & Young, 2006). These compounds usually require strengthened bonds through polymeric networks and herein we try to rationalize our structure through a similar network.
of the title complex is shown in Fig. 1The et al. (2017). The ATF ligand–bond distances in the title complex match more closely to the neutral species than the singly reduced ligand as the presence of a PF6 counter-ion suggests monovalent oxidation of silver. Although the suggests the 2:1 binding species with two S—Ag and two N—Ag bonds, the N4—Ag1 bond is lengthened in comparison with previously mentioned complexes (Johnson et al., 2017). This lengthening has influenced the packing structure of the crystal to allow for an adjacent ATF ligand to interact with the silver atom at a bond distance Ag1⋯S2i of 2.9884 (14) Å, producing a polymeric zigzag chain (Fig. 2 and Table 1). If atom Ag1 is now considered to be fivefold AgN2S3 coordinate it has a perfect square-pyramidal geometry with a τ5 fivefold parameter of 0.04 (τ5 = 1 for perfect trigonal–pyramidal geometry and 0 for perfect square-pyramidal geometry; Addison et al., 1984). Sulfur atom S1 is involved in an intramolecular C—H⋯S hydrogen bond (Fig. 1 and Table 2).
of the ligand ATF has been reported by Johnson
|
The bond distances for ATF ligand complexes were compared to computationally modeled neutral and singly reduced ATF species as to ascertain the absolute et al., 2017). The computationally compared neutral ligand necessitated rotation at 1.33 kcal mol−1 to give a transition state containing the planar 1,4-heterodiene motif while the computationally calculated singly reduced ATF ligand flattens to adopt the binding motif. Table 3 provides comparative bond distances for these species to known bis-bidentate ATF copper(I), copper(II), and palladium (II) species that are found as distorted tetrahedral conformations and square-planar nickel(II) and platinum (II) species (Nielsen et al., 2007; Johnson et al., 2017).
of the ligands (Johnson
|
Also, to note, is that repeated attempts to create the silver(I) tetrafluoroborate variation were unsuccessful. UV–Vis absorbance in acetonitrile displayed no photophysical properties or effects. The melting point of the complex was found to occur at 329 K, which is similar to the melting point of 325 K for the ligand, further suggesting the weak binding interaction.
3. Supramolecular features
In the crystal, the polymeric zigzag chains that propagate along the c-axis direction, are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane (Table 3 and Fig. 3).
The two ligands in the title complex crystal are asymmetric in regard to their respective distances to the silver atom from the coordinating sulfur and nitrogen atoms of each ligand and asymmetric in the geometries of the two diethyl thioformamide units on each ligand (Figs. 1 and 2, and Table 1). It is proposed that the interaction between the adjacent sulfur atom to the bis-coordinated silver, as shown in Fig. 2, provides the asymmetry in the binding interaction as the sulfur of the second ATF (that does not conjugate to a bridging silver atom) is slightly closer to its silver atom than the ligand that contains the polymeric sulfur bridge. The packing structure also displays an alternating coordination throughout the crystalline lattice connecting silver atoms to sulfurs. The distorted square-planar structure is rare in silver(I) systems and it is suggested that the interconnecting sulfur atom ladder-like chain structure strengthens the framework (Shin et al., 2009). Secondly, the second bound ATF ligand displays both ethyl groups in the diethyl group of the thioformamide facing in the same direction instead of opposite directions as seen in the of the ligand (Johnson et al., 2017), and thus a higher energy kinetic state (Shin et al., 2009).
It is suggested that the large PF6 counter-ions inhibit the rotation of the second ethyl group so as to allow for more space. Counter-anion influence for silver coordination complexes has been seen in other systems (Zhao et al., 2012; Huang et al., 2008).
4. Synthesis and crystallization
The reaction scheme for the synthesis of the title complex is given in Fig. 4. Silver hexafluoridophosphate (29.2 mg, 0.115 mmol) was added to a solution of N,N-diethylphenylazothioformamide (ATF; 51 mg, 0.230 mmol) in 3 ml of tetrahydrofuran and the mixture immediately darkened from light orange to a burgundy in color. The solution was concentrated via rotary evaporation and the solid obtained was purified by multiple cold hexane washes to remove any excess ligand, providing 75.0 mg (93.6% yield) of a burgundy solid. For crystallization, 35 mg of the solid were dissolved in 2 ml of THF and allowed to slowly concentrate over two days, yielding dark-brown needle-like crystals upon decantation (m.p. 329 K). Further evaporation gave a burgundy solid. 1H NMR (300MHz, Chloroform-d) δ 7.95–7.85 (m, 2H), 7.70–7.48 (m, 3H), 7.28 (s, 7H), 4.30–4.16 (m, 2H), 4.07 (q, J = 7.2Hz, 2H), 1.55 (t, J = 7.1Hz, 3H), 1.38 (t, J = 7.2Hz, 3H); 13C NMR (75MHz, CDCl3) δ 151.32, 136.86, 130.93, 126.24, 100.85, 52.01, 48.87, 15.53, 11.98.
5. Refinement
Crystal data, data collection and structure . The C-bound H-atoms were included in calculated positions and refined as riding on the parent C atom: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H-atoms.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1949718
https://doi.org/10.1107/S2056989019011824/su5511sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011824/su5511Isup2.hkl
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ag(C11H15N3S)2]PF6 | F(000) = 1408 |
Mr = 695.48 | Dx = 1.575 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.827 (2) Å | Cell parameters from 4249 reflections |
b = 26.243 (4) Å | θ = 2.6–18.2° |
c = 8.1218 (15) Å | µ = 0.95 mm−1 |
β = 95.678 (12)° | T = 296 K |
V = 2932.6 (9) Å3 | Needle, dark_brown |
Z = 4 | 0.50 × 0.10 × 0.02 mm |
Bruker SMART APEXII area detector diffractometer | 5118 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 2829 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.084 |
ω and φ scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −16→16 |
Tmin = 0.867, Tmax = 1.000 | k = −30→30 |
46111 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0336P)2 + 2.2376P] where P = (Fo2 + 2Fc2)/3 |
5118 reflections | (Δ/σ)max < 0.001 |
347 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.79300 (3) | 0.26718 (2) | 0.33206 (6) | 0.08610 (18) | |
S1 | 0.95699 (10) | 0.28141 (5) | 0.4601 (3) | 0.1154 (6) | |
S2 | 0.66730 (9) | 0.24699 (4) | 0.10744 (14) | 0.0641 (3) | |
N1 | 0.8100 (2) | 0.36299 (13) | 0.4266 (4) | 0.0565 (9) | |
N2 | 0.8839 (3) | 0.37758 (13) | 0.5130 (4) | 0.0625 (9) | |
N3 | 1.0378 (3) | 0.35913 (15) | 0.6217 (5) | 0.0857 (12) | |
N4 | 0.7521 (2) | 0.16786 (12) | 0.3449 (4) | 0.0547 (9) | |
N5 | 0.6803 (2) | 0.15201 (13) | 0.2576 (4) | 0.0585 (9) | |
N6 | 0.5405 (3) | 0.17148 (14) | 0.1021 (5) | 0.0708 (10) | |
C1 | 0.9604 (3) | 0.34016 (17) | 0.5348 (6) | 0.0699 (13) | |
C2 | 1.0426 (4) | 0.4114 (2) | 0.6960 (6) | 0.0889 (16) | |
H2A | 0.977716 | 0.422803 | 0.713474 | 0.107* | |
H2B | 1.081255 | 0.410568 | 0.802377 | 0.107* | |
C3 | 1.0867 (5) | 0.4471 (2) | 0.5841 (8) | 0.127 (2) | |
H3A | 1.153509 | 0.438117 | 0.577860 | 0.190* | |
H3B | 1.083027 | 0.481205 | 0.626125 | 0.190* | |
H3C | 1.052130 | 0.445301 | 0.475804 | 0.190* | |
C4 | 1.1360 (4) | 0.3288 (2) | 0.6314 (9) | 0.115 (2) | |
H4A | 1.138731 | 0.308004 | 0.533130 | 0.139* | |
H4B | 1.190720 | 0.352053 | 0.639940 | 0.139* | |
C5 | 1.1387 (6) | 0.2978 (3) | 0.7730 (10) | 0.178 (3) | |
H5A | 1.091958 | 0.270819 | 0.754251 | 0.266* | |
H5B | 1.123377 | 0.317915 | 0.865694 | 0.266* | |
H5C | 1.202479 | 0.283479 | 0.795836 | 0.266* | |
C6 | 0.7355 (3) | 0.40000 (15) | 0.3992 (5) | 0.0550 (11) | |
C7 | 0.7384 (4) | 0.44803 (18) | 0.4695 (6) | 0.0773 (14) | |
H7 | 0.791760 | 0.457888 | 0.541257 | 0.093* | |
C8 | 0.6625 (4) | 0.4811 (2) | 0.4331 (8) | 0.1002 (18) | |
H8 | 0.664225 | 0.513353 | 0.480777 | 0.120* | |
C9 | 0.5837 (4) | 0.4667 (2) | 0.3264 (7) | 0.0987 (18) | |
H9 | 0.532637 | 0.489326 | 0.301544 | 0.118* | |
C10 | 0.5803 (4) | 0.4192 (2) | 0.2566 (6) | 0.0852 (15) | |
H10 | 0.526856 | 0.409577 | 0.184869 | 0.102* | |
C11 | 0.6561 (3) | 0.38565 (18) | 0.2927 (5) | 0.0679 (12) | |
H11 | 0.653846 | 0.353356 | 0.245253 | 0.081* | |
C12 | 0.6259 (3) | 0.18962 (15) | 0.1621 (5) | 0.0547 (11) | |
C13 | 0.4753 (4) | 0.2005 (2) | −0.0208 (6) | 0.0875 (16) | |
H13A | 0.514610 | 0.221663 | −0.085952 | 0.105* | |
H13B | 0.439811 | 0.176640 | −0.095411 | 0.105* | |
C14 | 0.4051 (5) | 0.2331 (3) | 0.0560 (9) | 0.141 (3) | |
H14A | 0.360649 | 0.248003 | −0.028846 | 0.212* | |
H14B | 0.439459 | 0.259682 | 0.118619 | 0.212* | |
H14C | 0.369689 | 0.212916 | 0.128141 | 0.212* | |
C15 | 0.5034 (4) | 0.1206 (2) | 0.1519 (7) | 0.0886 (16) | |
H15A | 0.453556 | 0.108845 | 0.067941 | 0.106* | |
H15B | 0.556110 | 0.096067 | 0.159018 | 0.106* | |
C16 | 0.4625 (5) | 0.1234 (3) | 0.3130 (8) | 0.140 (3) | |
H16A | 0.404716 | 0.143881 | 0.301966 | 0.210* | |
H16B | 0.509426 | 0.138431 | 0.393629 | 0.210* | |
H16C | 0.446866 | 0.089702 | 0.347956 | 0.210* | |
C17 | 0.8103 (3) | 0.12975 (16) | 0.4313 (5) | 0.0554 (11) | |
C18 | 0.7864 (4) | 0.07848 (17) | 0.4280 (6) | 0.0715 (13) | |
H18 | 0.729062 | 0.067045 | 0.370421 | 0.086* | |
C19 | 0.8499 (4) | 0.04485 (19) | 0.5122 (6) | 0.0878 (16) | |
H19 | 0.835162 | 0.010260 | 0.511021 | 0.105* | |
C20 | 0.9342 (4) | 0.0616 (2) | 0.5977 (6) | 0.0809 (15) | |
H20 | 0.976496 | 0.038311 | 0.653103 | 0.097* | |
C21 | 0.9566 (3) | 0.1123 (2) | 0.6018 (6) | 0.0770 (14) | |
H21 | 1.013913 | 0.123608 | 0.660001 | 0.092* | |
C22 | 0.8938 (3) | 0.14649 (17) | 0.5194 (5) | 0.0663 (12) | |
H22 | 0.908173 | 0.181116 | 0.523478 | 0.080* | |
P1 | 0.26919 (10) | 0.40202 (6) | 0.18758 (18) | 0.0830 (4) | |
F1 | 0.2325 (3) | 0.40775 (17) | 0.0024 (4) | 0.1623 (16) | |
F2 | 0.1982 (3) | 0.35750 (18) | 0.2091 (6) | 0.1776 (18) | |
F3 | 0.3494 (3) | 0.36342 (14) | 0.1466 (4) | 0.1379 (13) | |
F4 | 0.3058 (3) | 0.39833 (15) | 0.3751 (4) | 0.1415 (14) | |
F5 | 0.3402 (3) | 0.44721 (16) | 0.1657 (6) | 0.1590 (15) | |
F6 | 0.1902 (3) | 0.44166 (17) | 0.2304 (5) | 0.1541 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0721 (3) | 0.0667 (3) | 0.1133 (4) | −0.0152 (2) | −0.0220 (2) | −0.0073 (2) |
S1 | 0.0699 (9) | 0.0616 (8) | 0.2041 (18) | −0.0018 (7) | −0.0389 (10) | −0.0147 (9) |
S2 | 0.0734 (8) | 0.0597 (7) | 0.0575 (7) | −0.0086 (6) | −0.0027 (6) | 0.0016 (5) |
N1 | 0.051 (2) | 0.058 (2) | 0.060 (2) | −0.0100 (18) | 0.0010 (18) | 0.0033 (18) |
N2 | 0.052 (2) | 0.065 (2) | 0.068 (2) | −0.0124 (19) | −0.003 (2) | −0.0017 (19) |
N3 | 0.060 (3) | 0.075 (3) | 0.115 (3) | −0.010 (2) | −0.028 (2) | 0.002 (2) |
N4 | 0.050 (2) | 0.054 (2) | 0.059 (2) | −0.0007 (17) | 0.0017 (19) | −0.0089 (18) |
N5 | 0.054 (2) | 0.059 (2) | 0.060 (2) | −0.0077 (18) | −0.0050 (19) | −0.0011 (18) |
N6 | 0.062 (2) | 0.073 (3) | 0.074 (3) | −0.013 (2) | −0.009 (2) | 0.005 (2) |
C1 | 0.057 (3) | 0.064 (3) | 0.085 (3) | −0.009 (2) | −0.011 (3) | 0.005 (3) |
C2 | 0.080 (4) | 0.117 (5) | 0.067 (3) | −0.012 (3) | −0.009 (3) | −0.023 (3) |
C3 | 0.152 (6) | 0.098 (5) | 0.138 (6) | −0.036 (4) | 0.050 (5) | −0.012 (4) |
C4 | 0.106 (5) | 0.098 (4) | 0.135 (6) | −0.022 (4) | −0.025 (4) | 0.019 (4) |
C5 | 0.151 (7) | 0.210 (9) | 0.162 (8) | −0.025 (7) | −0.029 (6) | 0.050 (7) |
C6 | 0.048 (3) | 0.056 (3) | 0.062 (3) | −0.008 (2) | 0.008 (2) | 0.000 (2) |
C7 | 0.068 (3) | 0.065 (3) | 0.095 (4) | −0.010 (3) | −0.011 (3) | −0.006 (3) |
C8 | 0.099 (4) | 0.064 (3) | 0.134 (5) | 0.003 (3) | −0.003 (4) | −0.013 (3) |
C9 | 0.080 (4) | 0.086 (4) | 0.127 (5) | 0.016 (3) | −0.007 (4) | −0.005 (4) |
C10 | 0.064 (3) | 0.095 (4) | 0.092 (4) | 0.006 (3) | −0.012 (3) | −0.012 (3) |
C11 | 0.057 (3) | 0.070 (3) | 0.074 (3) | −0.001 (2) | −0.006 (3) | −0.009 (2) |
C12 | 0.053 (3) | 0.058 (3) | 0.052 (3) | −0.008 (2) | 0.004 (2) | −0.009 (2) |
C13 | 0.073 (4) | 0.097 (4) | 0.086 (4) | −0.014 (3) | −0.023 (3) | 0.001 (3) |
C14 | 0.111 (5) | 0.181 (7) | 0.131 (6) | 0.064 (5) | 0.006 (4) | 0.024 (5) |
C15 | 0.077 (4) | 0.094 (4) | 0.091 (4) | −0.023 (3) | −0.013 (3) | −0.005 (3) |
C16 | 0.148 (6) | 0.164 (7) | 0.117 (6) | −0.017 (5) | 0.056 (5) | 0.029 (5) |
C17 | 0.057 (3) | 0.055 (3) | 0.053 (3) | 0.003 (2) | 0.002 (2) | −0.008 (2) |
C18 | 0.080 (3) | 0.062 (3) | 0.068 (3) | −0.004 (3) | −0.010 (3) | −0.001 (3) |
C19 | 0.115 (5) | 0.058 (3) | 0.086 (4) | −0.004 (3) | −0.011 (3) | 0.004 (3) |
C20 | 0.092 (4) | 0.082 (4) | 0.067 (3) | 0.023 (3) | −0.001 (3) | 0.007 (3) |
C21 | 0.066 (3) | 0.086 (4) | 0.075 (3) | 0.007 (3) | −0.009 (3) | 0.000 (3) |
C22 | 0.063 (3) | 0.062 (3) | 0.071 (3) | 0.000 (2) | −0.007 (3) | −0.005 (2) |
P1 | 0.0583 (8) | 0.1078 (11) | 0.0787 (10) | 0.0101 (9) | −0.0138 (7) | 0.0042 (8) |
F1 | 0.172 (4) | 0.209 (4) | 0.092 (3) | 0.006 (3) | −0.057 (2) | 0.006 (3) |
F2 | 0.133 (3) | 0.167 (4) | 0.229 (5) | −0.052 (3) | −0.002 (3) | 0.046 (3) |
F3 | 0.132 (3) | 0.149 (3) | 0.134 (3) | 0.053 (3) | 0.018 (2) | −0.011 (2) |
F4 | 0.155 (3) | 0.174 (4) | 0.086 (2) | 0.061 (3) | −0.037 (2) | −0.007 (2) |
F5 | 0.110 (3) | 0.145 (3) | 0.219 (4) | −0.028 (3) | 0.001 (3) | 0.015 (3) |
F6 | 0.120 (3) | 0.192 (4) | 0.153 (3) | 0.082 (3) | 0.030 (2) | 0.036 (3) |
Ag1—S1 | 2.4280 (14) | C8—H8 | 0.9300 |
Ag1—S2 | 2.4500 (12) | C9—C10 | 1.367 (7) |
Ag1—S2i | 2.9884 (14) | C9—H9 | 0.9300 |
Ag1—N1 | 2.632 (3) | C10—C11 | 1.378 (6) |
Ag1—N4 | 2.671 (3) | C10—H10 | 0.9300 |
S1—C1 | 1.656 (5) | C11—H11 | 0.9300 |
S2—C12 | 1.685 (4) | C13—C14 | 1.478 (7) |
N1—N2 | 1.242 (4) | C13—H13A | 0.9700 |
N1—C6 | 1.417 (5) | C13—H13B | 0.9700 |
N2—C1 | 1.442 (5) | C14—H14A | 0.9600 |
N3—C1 | 1.320 (5) | C14—H14B | 0.9600 |
N3—C2 | 1.497 (6) | C14—H14C | 0.9600 |
N3—C4 | 1.569 (7) | C15—C16 | 1.477 (7) |
N4—N5 | 1.233 (4) | C15—H15A | 0.9700 |
N4—C17 | 1.424 (5) | C15—H15B | 0.9700 |
N5—C12 | 1.424 (5) | C16—H16A | 0.9600 |
N6—C12 | 1.321 (5) | C16—H16B | 0.9600 |
N6—C13 | 1.487 (6) | C16—H16C | 0.9600 |
N6—C15 | 1.501 (6) | C17—C22 | 1.370 (5) |
C2—C3 | 1.479 (7) | C17—C18 | 1.385 (6) |
C2—H2A | 0.9700 | C18—C19 | 1.377 (6) |
C2—H2B | 0.9700 | C18—H18 | 0.9300 |
C3—H3A | 0.9600 | C19—C20 | 1.370 (7) |
C3—H3B | 0.9600 | C19—H19 | 0.9300 |
C3—H3C | 0.9600 | C20—C21 | 1.366 (6) |
C4—C5 | 1.406 (8) | C20—H20 | 0.9300 |
C4—H4A | 0.9700 | C21—C22 | 1.376 (6) |
C4—H4B | 0.9700 | C21—H21 | 0.9300 |
C5—H5A | 0.9600 | C22—H22 | 0.9300 |
C5—H5B | 0.9600 | P1—F1 | 1.546 (3) |
C5—H5C | 0.9600 | P1—F2 | 1.547 (4) |
C6—C11 | 1.381 (5) | P1—F4 | 1.560 (3) |
C6—C7 | 1.383 (6) | P1—F5 | 1.561 (4) |
C7—C8 | 1.372 (7) | P1—F3 | 1.562 (3) |
C7—H7 | 0.9300 | P1—F6 | 1.572 (4) |
C8—C9 | 1.376 (7) | ||
S1—Ag1—S2 | 156.32 (6) | C10—C11—H11 | 120.0 |
S1—Ag1—N1 | 71.07 (7) | C6—C11—H11 | 120.0 |
S1—Ag1—N4 | 109.01 (7) | N6—C12—N5 | 110.9 (4) |
N1—Ag1—N4 | 159.01 (10) | N6—C12—S2 | 122.7 (3) |
S2—Ag1—N4 | 71.38 (7) | N5—C12—S2 | 126.0 (3) |
S2—Ag1—N1 | 117.39 (7) | C14—C13—N6 | 113.1 (5) |
C1—S1—Ag1 | 106.96 (17) | C14—C13—H13A | 109.0 |
C12—S2—Ag1 | 103.39 (15) | N6—C13—H13A | 109.0 |
N2—N1—C6 | 115.0 (3) | C14—C13—H13B | 109.0 |
N2—N1—Ag1 | 120.3 (3) | N6—C13—H13B | 109.0 |
C6—N1—Ag1 | 124.5 (3) | H13A—C13—H13B | 107.8 |
N1—N2—C1 | 114.3 (4) | C13—C14—H14A | 109.5 |
C1—N3—C2 | 124.2 (4) | C13—C14—H14B | 109.5 |
C1—N3—C4 | 119.1 (4) | H14A—C14—H14B | 109.5 |
C2—N3—C4 | 116.2 (4) | C13—C14—H14C | 109.5 |
N5—N4—C17 | 115.4 (3) | H14A—C14—H14C | 109.5 |
N4—N5—C12 | 115.6 (3) | H14B—C14—H14C | 109.5 |
C12—N6—C13 | 121.5 (4) | C16—C15—N6 | 111.4 (5) |
C12—N6—C15 | 122.6 (4) | C16—C15—H15A | 109.3 |
C13—N6—C15 | 115.8 (4) | N6—C15—H15A | 109.3 |
N3—C1—N2 | 110.8 (4) | C16—C15—H15B | 109.3 |
N3—C1—S1 | 122.6 (4) | N6—C15—H15B | 109.3 |
N2—C1—S1 | 126.5 (3) | H15A—C15—H15B | 108.0 |
C3—C2—N3 | 109.8 (4) | C15—C16—H16A | 109.5 |
C3—C2—H2A | 109.7 | C15—C16—H16B | 109.5 |
N3—C2—H2A | 109.7 | H16A—C16—H16B | 109.5 |
C3—C2—H2B | 109.7 | C15—C16—H16C | 109.5 |
N3—C2—H2B | 109.7 | H16A—C16—H16C | 109.5 |
H2A—C2—H2B | 108.2 | H16B—C16—H16C | 109.5 |
C2—C3—H3A | 109.5 | C22—C17—C18 | 120.6 (4) |
C2—C3—H3B | 109.5 | C22—C17—N4 | 116.0 (4) |
H3A—C3—H3B | 109.5 | C18—C17—N4 | 123.4 (4) |
C2—C3—H3C | 109.5 | C19—C18—C17 | 118.3 (4) |
H3A—C3—H3C | 109.5 | C19—C18—H18 | 120.8 |
H3B—C3—H3C | 109.5 | C17—C18—H18 | 120.8 |
C5—C4—N3 | 106.7 (6) | C20—C19—C18 | 121.0 (5) |
C5—C4—H4A | 110.4 | C20—C19—H19 | 119.5 |
N3—C4—H4A | 110.4 | C18—C19—H19 | 119.5 |
C5—C4—H4B | 110.4 | C21—C20—C19 | 120.3 (5) |
N3—C4—H4B | 110.4 | C21—C20—H20 | 119.8 |
H4A—C4—H4B | 108.6 | C19—C20—H20 | 119.8 |
C4—C5—H5A | 109.5 | C20—C21—C22 | 119.5 (5) |
C4—C5—H5B | 109.5 | C20—C21—H21 | 120.2 |
H5A—C5—H5B | 109.5 | C22—C21—H21 | 120.2 |
C4—C5—H5C | 109.5 | C17—C22—C21 | 120.3 (4) |
H5A—C5—H5C | 109.5 | C17—C22—H22 | 119.9 |
H5B—C5—H5C | 109.5 | C21—C22—H22 | 119.9 |
C11—C6—C7 | 119.8 (4) | F1—P1—F2 | 91.9 (3) |
C11—C6—N1 | 115.6 (4) | F1—P1—F4 | 178.0 (2) |
C7—C6—N1 | 124.6 (4) | F2—P1—F4 | 89.5 (3) |
C8—C7—C6 | 119.8 (5) | F1—P1—F5 | 88.0 (2) |
C8—C7—H7 | 120.1 | F2—P1—F5 | 179.6 (3) |
C6—C7—H7 | 120.1 | F4—P1—F5 | 90.7 (2) |
C7—C8—C9 | 120.2 (5) | F1—P1—F3 | 91.6 (2) |
C7—C8—H8 | 119.9 | F2—P1—F3 | 90.3 (3) |
C9—C8—H8 | 119.9 | F4—P1—F3 | 89.9 (2) |
C10—C9—C8 | 120.3 (5) | F5—P1—F3 | 90.0 (2) |
C10—C9—H9 | 119.9 | F1—P1—F6 | 89.0 (2) |
C8—C9—H9 | 119.9 | F2—P1—F6 | 90.7 (3) |
C9—C10—C11 | 120.0 (5) | F4—P1—F6 | 89.5 (2) |
C9—C10—H10 | 120.0 | F5—P1—F6 | 88.9 (2) |
C11—C10—H10 | 120.0 | F3—P1—F6 | 178.8 (3) |
C10—C11—C6 | 119.9 (4) | ||
C6—N1—N2—C1 | −177.8 (3) | C7—C6—C11—C10 | 0.1 (7) |
Ag1—N1—N2—C1 | 7.9 (5) | N1—C6—C11—C10 | −179.3 (4) |
C17—N4—N5—C12 | −175.7 (3) | C13—N6—C12—N5 | −171.3 (4) |
C2—N3—C1—N2 | 3.5 (7) | C15—N6—C12—N5 | 8.1 (6) |
C4—N3—C1—N2 | −168.4 (4) | C13—N6—C12—S2 | 1.0 (6) |
C2—N3—C1—S1 | −177.9 (4) | C15—N6—C12—S2 | −179.5 (4) |
C4—N3—C1—S1 | 10.2 (7) | N4—N5—C12—N6 | −166.2 (4) |
N1—N2—C1—N3 | 177.3 (4) | N4—N5—C12—S2 | 21.7 (5) |
N1—N2—C1—S1 | −1.3 (6) | Ag1—S2—C12—N6 | 160.0 (3) |
Ag1—S1—C1—N3 | 175.7 (4) | Ag1—S2—C12—N5 | −28.8 (4) |
Ag1—S1—C1—N2 | −5.9 (5) | C12—N6—C13—C14 | −92.2 (6) |
C1—N3—C2—C3 | −96.0 (6) | C15—N6—C13—C14 | 88.3 (6) |
C4—N3—C2—C3 | 76.1 (6) | C12—N6—C15—C16 | 80.1 (6) |
C1—N3—C4—C5 | −92.4 (7) | C13—N6—C15—C16 | −100.4 (5) |
C2—N3—C4—C5 | 95.1 (6) | N5—N4—C17—C22 | 175.6 (4) |
N2—N1—C6—C11 | 175.1 (4) | N5—N4—C17—C18 | −4.0 (6) |
Ag1—N1—C6—C11 | −10.9 (5) | C22—C17—C18—C19 | −1.5 (7) |
N2—N1—C6—C7 | −4.3 (6) | N4—C17—C18—C19 | 178.0 (4) |
Ag1—N1—C6—C7 | 169.7 (3) | C17—C18—C19—C20 | 0.3 (8) |
C11—C6—C7—C8 | 0.1 (7) | C18—C19—C20—C21 | 0.5 (8) |
N1—C6—C7—C8 | 179.4 (5) | C19—C20—C21—C22 | −0.1 (8) |
C6—C7—C8—C9 | −0.3 (9) | C18—C17—C22—C21 | 2.0 (7) |
C7—C8—C9—C10 | 0.4 (9) | N4—C17—C22—C21 | −177.6 (4) |
C8—C9—C10—C11 | −0.3 (9) | C20—C21—C22—C17 | −1.2 (7) |
C9—C10—C11—C6 | 0.0 (8) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···S1 | 0.93 | 2.78 | 3.690 (5) | 167 |
C2—H2B···F1ii | 0.97 | 2.52 | 3.435 (6) | 158 |
C15—H15A···F4iii | 0.97 | 2.46 | 3.398 (6) | 164 |
Symmetry codes: (ii) x+1, y, z+1; (iii) x, −y+1/2, z−1/2. |
CSD = Cambridge Structural Database (Groom et al., 2016); DSP = distorted square-planar; DT = distorted tetrahedral. |
Metal | M—N | N═N | N—C | C═S | M—S | M···S | Structure | CSD refcode |
AgIa | 2.632 (N1) | 1.242 (N1═N2) | 1.442 (N2—C1) | 1.656 (C1═S1) | 2.428 (S1) | DSP | ||
AgIa | 2.671 (N4) | 1.233 (N4═N5) | 1.424 (N5—C12) | 1.685 (C12═S2) | 2.450 (S2) | 2.988 (S2i) | ||
CuIb | 1.986 / 2.005 | 1.265 / 1.263 | 1.417 / 1.429 | 1.691 / 1.689 | 2.280 / 2.275 | DT | WELGAY | |
CuIb | 1.994 / 1.985 | 1.272 / 1.273 | 1.427 / 1.428 | 1.701 / 1.696 | 2.280 / 2.284 | DT | WELFUR | |
CuIIc | 1.922 | 1.323 | 1.371 | 1.722 | 2.276 | DT | KEYBIA | |
PdIIc | 1.993 | 1.339 | 1.34 | 1.741 | 2.293 | DT | KEYBOG | |
PtIIc | 1.964 | 1.349 | 1.326 | 1.742 | 2.293 | DSP | KEXCAT | |
NiIIc | 1.873 | 1.336 | 1.358 | 1.721 | 2.209 | DSP | NIEPZF01 | |
ATF (crystal)b | 1.244 | 1.44 | 1.662 | WELFOL | ||||
ATF TS (modeled) | 1.254 | 1.448 | 1.671 | |||||
ATF SOMO (modeled) | 1.329 | 1.357 | 1.72 |
Notes: (a) This study; (b) Johnson et al. (2017); (c) Nielsen et al. (2007). Symmetry code: (i) x, -y + 1/2, z + 1/2. |
Acknowledgements
The Bruker (Siemens) SMART APEX diffraction facility was established at the University of Idaho with the assistance of the NSF–EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bechgaard, K. (1977). Acta Chem. Scand. A, 31, 683–688. CrossRef CAS Web of Science Google Scholar
Bechgaard, K. (1974). Acta Chem. Scand. A, 28, 185–193. CrossRef CAS Web of Science Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chowdhury, S., Drew, M. G. B. & Datta, D. (2003). New J. Chem. 27, 831–835. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanton, L. R. & Young, A. G. (2006). Cryst. Growth Des. 6, 833–835. CrossRef CAS Google Scholar
Huang, Y. Q., Shen, Z. L., Okamura, T. A., Wang, Y., Wang, X. F., Sun, W. Y., Yu, J. Q. & Ueyama, N. (2008). Dalton Trans. pp. 204–213. CrossRef Google Scholar
Ino, I., Wu, L. P., Munakata, M., Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Kitamori, Y. (2000). Inorg. Chem. 39, 2146–2151. CrossRef PubMed CAS Google Scholar
Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576–5581. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nielsen, K. T., Bechgaard, K. & Krebs, F. C. (2005). Macromolecules, 38, 658–659. CrossRef CAS Google Scholar
Nielsen, K. T., Bechgaard, K. & Krebs, F. C. (2006). Synthesis, pp. 1639–1644. CrossRef Google Scholar
Nielsen, K. T., Harris, P., Bechgaard, K. & Krebs, F. C. (2007). Acta Cryst. B63, 151–156. CrossRef IUCr Journals Google Scholar
Pointillart, F., Herson, P., Boubekeur, K. & Train, C. (2008). Inorg. Chim. Acta, 361, 373–379. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Han, J. H., Kim, B. G., Jang, S. H., Lee, S. G. & Min, K. S. (2009). Inorg. Chem. Commun. 12, 1220–1223. CrossRef CAS Google Scholar
Suenaga, Y., Kitamura, K., Kuroda-Sowa, T., Maekawa, M. & Munakata, M. (2002). Inorg. Chim. Acta, 328, 105–110. CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386. Web of Science CrossRef CAS Google Scholar
Zhao, Y., Zhai, L. L., Lv, G. C., Zhou, X. & Sun, W. Y. (2012). Inorg. Chim. Acta, 392, 38–45. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.