research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The synthesis and crystal structure of bis­­[3,3-di­ethyl-1-(phenyl­imino-κN)thio­urea-κS]silver hexa­fluorido­phosphate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, 875 Perimeter Dr. MS 2343 Moscow, ID 83844, USA, and bDepartment of Chemical & Materials Engineering, 875 Perimeter Dr. MS 1021 Moscow, ID 83844, USA
*Correspondence e-mail: kwaynant@uidaho.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 August 2019; accepted 27 August 2019; online 30 August 2019)

The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexa­fluorido­phosphate with a concentrated tetra­hydro­furan solution of N,N-di­ethyl­phenyl­azo­thio­formamide [ATF; systematic name: 3,3-diethyl-1-(phenyl­imino)­thio­urea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane.

1. Chemical context

The redox-active azo­thio­formamide (ATF) ligand class was identified as a metal coordinative species over 40 years ago (Bechgaard, 1974[Bechgaard, K. (1974). Acta Chem. Scand. A, 28, 185-193.], 1977[Bechgaard, K. (1977). Acta Chem. Scand. A, 31, 683-688.]). These ligands were found to coord­inate and solvate late transition metal(0) species, particularly Cu, Pd, Pt, and Ni (Nielsen et al., 2007[Nielsen, K. T., Harris, P., Bechgaard, K. & Krebs, F. C. (2007). Acta Cryst. B63, 151-156.]). Further investigations found that ATF ligands were capable of removing similar late transition metal (Cu or Pd) nanoparticles and catalysts from polymeric materials (Nielsen et al., 2005[Nielsen, K. T., Bechgaard, K. & Krebs, F. C. (2005). Macromolecules, 38, 658-659.], 2006[Nielsen, K. T., Bechgaard, K. & Krebs, F. C. (2006). Synthesis, pp. 1639-1644.]). As these ligands are redox-active, it was suggested that, during coord­ination, the two ligands singly reduce as the metal oxidizes to (+2) and coordinates in a 2:1 fashion of ligands to metal. This observation was confirmed utilizing computational comparisons of crystal structures from the found species and a copper(I) complex (Johnson et al., 2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]). Those comparisons led to the discovery that ATF ligands stay neutral when mixed with copper(I) salts behaving as 1:1 species in the presence of halide counter-ions and 2:1 species in the presence of non-coordinating counter-ions (such as BF4 and PF6). The copper(I) halide coordination complexes crystallize out of concentrated THF solution as dimers yet exhibit 1:1 coordination as observed in titration studies. The importance of understanding the variability in the binding phenomena of the various oxidation states in metals can help determine how and in which oxidation state these ligands can coordinate, solvate and remove metals from materials to allow for higher purity. While most trace-metal removal is accomplished with mineral acids, a mild ligand alternative could allow for the removal of metals from acid sensitive materials such as polymers, pharmaceuticals or APIs, or from metals found in electronic waste (e-waste). Silver(I) catalysts and co-catalysts have become increasingly common over the past twenty years, and with silver a precious metal, the potential value of its recycling following synthetic reactions is worthwhile. The investigation of monovalent metals led to this report describing the coordination complex formed when the N,N-di­ethyl­phenyl­azo­thio­formamide (ATF) ligand is treated with an Ag(I) species containing the non-coordinative counter-ion hexa­fluorido­phosphate in concentrated THF solution.

[Scheme 1]

2. Structural commentary

The experiment described herein involved the mixing of AgPF6 with a concentrated THF solution of the ATF ligand at room temperature which yielded the title complex in excellent yield (> 95%).

The mol­ecular structure of the asymmetric unit of the title complex is shown in Fig. 1[link]. Selected bond lengths and bond angles involving atom Ag1 are given in Table 1[link]. The silver(I) atom has a distorted square-planar AgN2S2 coordination geometry with a τ4 fourfold parameter of 0.32 (τ4 = 1 for a perfect tetra­hedral geometry and 0 for a perfect square-planar geometry. For inter­mediate structures, including trigonal–pyramidal and seesaw, τ4 falls within the range of 0 to 1; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Such distorted square-planar silver complexes, once considered rare have become more common (Chowdhury et al., 2003[Chowdhury, S., Drew, M. G. B. & Datta, D. (2003). New J. Chem. 27, 831-835.]; Ino et al., 2000[Ino, I., Wu, L. P., Munakata, M., Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Kitamori, Y. (2000). Inorg. Chem. 39, 2146-2151.]; Suenaga et al., 2002[Suenaga, Y., Kitamura, K., Kuroda-Sowa, T., Maekawa, M. & Munakata, M. (2002). Inorg. Chim. Acta, 328, 105-110.]; Young & Hanton, 2008[Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346-1386.]; Pointillart et al., 2008[Pointillart, F., Herson, P., Boubekeur, K. & Train, C. (2008). Inorg. Chim. Acta, 361, 373-379.]; Hanton & Young, 2006[Hanton, L. R. & Young, A. G. (2006). Cryst. Growth Des. 6, 833-835.]). These compounds usually require strengthened bonds through polymeric networks and herein we try to rationalize our structure through a similar network.

Table 1
Selected geometric parameters (Å, °)

Ag1—S1 2.4280 (14) Ag1—N1 2.632 (3)
Ag1—S2 2.4500 (12) Ag1—N4 2.671 (3)
Ag1—S2i 2.9884 (14)    
       
S1—Ag1—S2 156.32 (6) N1—Ag1—N4 159.01 (10)
S1—Ag1—N1 71.07 (7) S2—Ag1—N4 71.38 (7)
S1—Ag1—N4 109.01 (7) S2—Ag1—N1 117.39 (7)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the asymmetric unit of the title complex, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

The crystal structure of the ligand ATF has been reported by Johnson et al. (2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]). The ATF ligand–bond distances in the title complex match more closely to the neutral species than the singly reduced ligand as the presence of a PF6 counter-ion suggests monovalent oxidation of silver. Although the asymmetric unit suggests the 2:1 binding species with two S—Ag and two N—Ag bonds, the N4—Ag1 bond is lengthened in comparison with previously mentioned complexes (Johnson et al., 2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]). This lengthening has influenced the packing structure of the crystal to allow for an adjacent ATF ligand to inter­act with the silver atom at a bond distance Ag1⋯S2i of 2.9884 (14) Å, producing a polymeric zigzag chain (Fig. 2[link] and Table 1[link]). If atom Ag1 is now considered to be fivefold AgN2S3 coordinate it has a perfect square-pyramidal geometry with a τ5 fivefold parameter of 0.04 (τ5 = 1 for perfect trigonal–pyramidal geometry and 0 for perfect square-pyramidal geometry; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Sulfur atom S1 is involved in an intra­molecular C—H⋯S hydrogen bond (Fig. 1[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯S1 0.93 2.78 3.690 (5) 167
C2—H2B⋯F1ii 0.97 2.52 3.435 (6) 158
C15—H15A⋯F4iii 0.97 2.46 3.398 (6) 164
Symmetry codes: (ii) x+1, y, z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title complex. For clarity, the PF6 anions and the H atoms have been omitted.

The bond distances for ATF ligand complexes were compared to computationally modeled neutral and singly reduced ATF species as to ascertain the absolute oxidation state of the ligands (Johnson et al., 2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]). The computationally compared neutral ligand necessitated rotation at 1.33 kcal mol−1 to give a transition state containing the planar 1,4-heterodiene motif while the computationally calculated singly reduced ATF ligand flattens to adopt the binding motif. Table 3[link] provides comparative bond distances for these species to known bis-bidentate ATF copper(I), copper(II), and palladium (II) species that are found as distorted tetra­hedral conformations and square-planar nickel(II) and platinum (II) species (Nielsen et al., 2007[Nielsen, K. T., Harris, P., Bechgaard, K. & Krebs, F. C. (2007). Acta Cryst. B63, 151-156.]; Johnson et al., 2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]).

Table 3
Bond lengths (Å) and characteristic geometries of related ATF mono- and divalent metal complexes

CSD = Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]); DSP = distorted square-planar; DT = distorted tetra­hedral.

Metal M—N N=N N—C C=S M—S M⋯S Structure CSD refcode
AgIa 2.632 (N1) 1.242 (N1=N2) 1.442 (N2—C1) 1.656 (C1=S1) 2.428 (S1)   DSP  
AgIa 2.671 (N4) 1.233 (N4=N5) 1.424 (N5—C12) 1.685 (C12=S2) 2.450 (S2) 2.988 (S2i)    
CuIb 1.986 / 2.005 1.265 / 1.263 1.417 / 1.429 1.691 / 1.689 2.280 / 2.275   DT WELGAY
CuIb 1.994 / 1.985 1.272 / 1.273 1.427 / 1.428 1.701 / 1.696 2.280 / 2.284   DT WELFUR
                 
CuIIc 1.922 1.323 1.371 1.722 2.276   DT KEYBIA
PdIIc 1.993 1.339 1.34 1.741 2.293   DT KEYBOG
PtIIc 1.964 1.349 1.326 1.742 2.293   DSP KEXCAT
NiIIc 1.873 1.336 1.358 1.721 2.209   DSP NIEPZF01
                 
ATF (crystal)b   1.244 1.44 1.662       WELFOL
ATF TS (modeled)   1.254 1.448 1.671        
ATF SOMO (modeled)   1.329 1.357 1.72        
Notes: (a) This study; (b) Johnson et al. (2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]); (c) Nielsen et al. (2007[Nielsen, K. T., Harris, P., Bechgaard, K. & Krebs, F. C. (2007). Acta Cryst. B63, 151-156.]). Symmetry code: (i) x, −y + [{1\over 2}], z + [{1\over 2}].

Also, to note, is that repeated attempts to create the silver(I) tetra­fluoro­borate variation were unsuccessful. UV–Vis absorbance in aceto­nitrile displayed no photophysical properties or effects. The melting point of the complex was found to occur at 329 K, which is similar to the melting point of 325 K for the ligand, further suggesting the weak binding inter­action.

3. Supra­molecular features

In the crystal, the polymeric zigzag chains that propagate along the c-axis direction, are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane (Table 3[link] and Fig. 3[link]).

[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title complex. The C—H⋯S and C—H⋯F hydrogen bonds are shown as dashed lines. For clarity, only the H atoms involved in hydrogen bonding have been included.

The two ligands in the title complex crystal are asymmetric in regard to their respective distances to the silver atom from the coordinating sulfur and nitro­gen atoms of each ligand and asymmetric in the geometries of the two diethyl thio­formamide units on each ligand (Figs. 1[link] and 2[link], and Table 1[link]). It is proposed that the inter­action between the adjacent sulfur atom to the bis-coordinated silver, as shown in Fig. 2[link], provides the asymmetry in the binding inter­action as the sulfur of the second ATF (that does not conjugate to a bridging silver atom) is slightly closer to its silver atom than the ligand that contains the polymeric sulfur bridge. The packing structure also displays an alternating coordination throughout the crystalline lattice connecting silver atoms to sulfurs. The distorted square-planar structure is rare in silver(I) systems and it is suggested that the inter­connecting sulfur atom ladder-like chain structure strengthens the framework (Shin et al., 2009[Shin, J. W., Han, J. H., Kim, B. G., Jang, S. H., Lee, S. G. & Min, K. S. (2009). Inorg. Chem. Commun. 12, 1220-1223.]). Secondly, the second bound ATF ligand displays both ethyl groups in the diethyl group of the thio­formamide facing in the same direction instead of opposite directions as seen in the crystal structure of the ligand (Johnson et al., 2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576-5581.]), and thus a higher energy kinetic state (Shin et al., 2009[Shin, J. W., Han, J. H., Kim, B. G., Jang, S. H., Lee, S. G. & Min, K. S. (2009). Inorg. Chem. Commun. 12, 1220-1223.]).

It is suggested that the large PF6 counter-ions inhibit the rotation of the second ethyl group so as to allow for more space. Counter-anion influence for silver coordination complexes has been seen in other systems (Zhao et al., 2012[Zhao, Y., Zhai, L. L., Lv, G. C., Zhou, X. & Sun, W. Y. (2012). Inorg. Chim. Acta, 392, 38-45.]; Huang et al., 2008[Huang, Y. Q., Shen, Z. L., Okamura, T. A., Wang, Y., Wang, X. F., Sun, W. Y., Yu, J. Q. & Ueyama, N. (2008). Dalton Trans. pp. 204-213.]).

4. Synthesis and crystallization

The reaction scheme for the synthesis of the title complex is given in Fig. 4[link]. Silver hexa­fluorido­phosphate (29.2 mg, 0.115 mmol) was added to a solution of N,N-di­ethyl­phenyl­azo­thio­formamide (ATF; 51 mg, 0.230 mmol) in 3 ml of tetra­hydro­furan and the mixture immediately darkened from light orange to a burgundy in color. The solution was concentrated via rotary evaporation and the solid obtained was purified by multiple cold hexane washes to remove any excess ligand, providing 75.0 mg (93.6% yield) of a burgundy solid. For crystallization, 35 mg of the solid were dissolved in 2 ml of THF and allowed to slowly concentrate over two days, yielding dark-brown needle-like crystals upon deca­ntation (m.p. 329 K). Further evaporation gave a burgundy solid. 1H NMR (300MHz, Chloro­form-d) δ 7.95–7.85 (m, 2H), 7.70–7.48 (m, 3H), 7.28 (s, 7H), 4.30–4.16 (m, 2H), 4.07 (q, J = 7.2Hz, 2H), 1.55 (t, J = 7.1Hz, 3H), 1.38 (t, J = 7.2Hz, 3H); 13C NMR (75MHz, CDCl3) δ 151.32, 136.86, 130.93, 126.24, 100.85, 52.01, 48.87, 15.53, 11.98.

[Figure 4]
Figure 4
The reaction scheme for the synthesis of the title complex.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H-atoms were included in calculated positions and refined as riding on the parent C atom: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H-atoms.

Table 4
Experimental details

Crystal data
Chemical formula [Ag(C11H15N3S)2]PF6
Mr 695.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.827 (2), 26.243 (4), 8.1218 (15)
β (°) 95.678 (12)
V3) 2932.6 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.95
Crystal size (mm) 0.50 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.867, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46111, 5118, 2829
Rint 0.084
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.00
No. of reflections 5118
No. of parameters 347
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[3,3-diethyl-1-(phenylimino-κN)thiourea-κS]silver hexafluoridophosphate top
Crystal data top
[Ag(C11H15N3S)2]PF6F(000) = 1408
Mr = 695.48Dx = 1.575 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.827 (2) ÅCell parameters from 4249 reflections
b = 26.243 (4) Åθ = 2.6–18.2°
c = 8.1218 (15) ŵ = 0.95 mm1
β = 95.678 (12)°T = 296 K
V = 2932.6 (9) Å3Needle, dark_brown
Z = 40.50 × 0.10 × 0.02 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
5118 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2829 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.084
ω and φ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.867, Tmax = 1.000k = 3030
46111 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0336P)2 + 2.2376P]
where P = (Fo2 + 2Fc2)/3
5118 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.79300 (3)0.26718 (2)0.33206 (6)0.08610 (18)
S10.95699 (10)0.28141 (5)0.4601 (3)0.1154 (6)
S20.66730 (9)0.24699 (4)0.10744 (14)0.0641 (3)
N10.8100 (2)0.36299 (13)0.4266 (4)0.0565 (9)
N20.8839 (3)0.37758 (13)0.5130 (4)0.0625 (9)
N31.0378 (3)0.35913 (15)0.6217 (5)0.0857 (12)
N40.7521 (2)0.16786 (12)0.3449 (4)0.0547 (9)
N50.6803 (2)0.15201 (13)0.2576 (4)0.0585 (9)
N60.5405 (3)0.17148 (14)0.1021 (5)0.0708 (10)
C10.9604 (3)0.34016 (17)0.5348 (6)0.0699 (13)
C21.0426 (4)0.4114 (2)0.6960 (6)0.0889 (16)
H2A0.9777160.4228030.7134740.107*
H2B1.0812550.4105680.8023770.107*
C31.0867 (5)0.4471 (2)0.5841 (8)0.127 (2)
H3A1.1535090.4381170.5778600.190*
H3B1.0830270.4812050.6261250.190*
H3C1.0521300.4453010.4758040.190*
C41.1360 (4)0.3288 (2)0.6314 (9)0.115 (2)
H4A1.1387310.3080040.5331300.139*
H4B1.1907200.3520530.6399400.139*
C51.1387 (6)0.2978 (3)0.7730 (10)0.178 (3)
H5A1.0919580.2708190.7542510.266*
H5B1.1233770.3179150.8656940.266*
H5C1.2024790.2834790.7958360.266*
C60.7355 (3)0.40000 (15)0.3992 (5)0.0550 (11)
C70.7384 (4)0.44803 (18)0.4695 (6)0.0773 (14)
H70.7917600.4578880.5412570.093*
C80.6625 (4)0.4811 (2)0.4331 (8)0.1002 (18)
H80.6642250.5133530.4807770.120*
C90.5837 (4)0.4667 (2)0.3264 (7)0.0987 (18)
H90.5326370.4893260.3015440.118*
C100.5803 (4)0.4192 (2)0.2566 (6)0.0852 (15)
H100.5268560.4095770.1848690.102*
C110.6561 (3)0.38565 (18)0.2927 (5)0.0679 (12)
H110.6538460.3533560.2452530.081*
C120.6259 (3)0.18962 (15)0.1621 (5)0.0547 (11)
C130.4753 (4)0.2005 (2)0.0208 (6)0.0875 (16)
H13A0.5146100.2216630.0859520.105*
H13B0.4398110.1766400.0954110.105*
C140.4051 (5)0.2331 (3)0.0560 (9)0.141 (3)
H14A0.3606490.2480030.0288460.212*
H14B0.4394590.2596820.1186190.212*
H14C0.3696890.2129160.1281410.212*
C150.5034 (4)0.1206 (2)0.1519 (7)0.0886 (16)
H15A0.4535560.1088450.0679410.106*
H15B0.5561100.0960670.1590180.106*
C160.4625 (5)0.1234 (3)0.3130 (8)0.140 (3)
H16A0.4047160.1438810.3019660.210*
H16B0.5094260.1384310.3936290.210*
H16C0.4468660.0897020.3479560.210*
C170.8103 (3)0.12975 (16)0.4313 (5)0.0554 (11)
C180.7864 (4)0.07848 (17)0.4280 (6)0.0715 (13)
H180.7290620.0670450.3704210.086*
C190.8499 (4)0.04485 (19)0.5122 (6)0.0878 (16)
H190.8351620.0102600.5110210.105*
C200.9342 (4)0.0616 (2)0.5977 (6)0.0809 (15)
H200.9764960.0383110.6531030.097*
C210.9566 (3)0.1123 (2)0.6018 (6)0.0770 (14)
H211.0139130.1236080.6600010.092*
C220.8938 (3)0.14649 (17)0.5194 (5)0.0663 (12)
H220.9081730.1811160.5234780.080*
P10.26919 (10)0.40202 (6)0.18758 (18)0.0830 (4)
F10.2325 (3)0.40775 (17)0.0024 (4)0.1623 (16)
F20.1982 (3)0.35750 (18)0.2091 (6)0.1776 (18)
F30.3494 (3)0.36342 (14)0.1466 (4)0.1379 (13)
F40.3058 (3)0.39833 (15)0.3751 (4)0.1415 (14)
F50.3402 (3)0.44721 (16)0.1657 (6)0.1590 (15)
F60.1902 (3)0.44166 (17)0.2304 (5)0.1541 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0721 (3)0.0667 (3)0.1133 (4)0.0152 (2)0.0220 (2)0.0073 (2)
S10.0699 (9)0.0616 (8)0.2041 (18)0.0018 (7)0.0389 (10)0.0147 (9)
S20.0734 (8)0.0597 (7)0.0575 (7)0.0086 (6)0.0027 (6)0.0016 (5)
N10.051 (2)0.058 (2)0.060 (2)0.0100 (18)0.0010 (18)0.0033 (18)
N20.052 (2)0.065 (2)0.068 (2)0.0124 (19)0.003 (2)0.0017 (19)
N30.060 (3)0.075 (3)0.115 (3)0.010 (2)0.028 (2)0.002 (2)
N40.050 (2)0.054 (2)0.059 (2)0.0007 (17)0.0017 (19)0.0089 (18)
N50.054 (2)0.059 (2)0.060 (2)0.0077 (18)0.0050 (19)0.0011 (18)
N60.062 (2)0.073 (3)0.074 (3)0.013 (2)0.009 (2)0.005 (2)
C10.057 (3)0.064 (3)0.085 (3)0.009 (2)0.011 (3)0.005 (3)
C20.080 (4)0.117 (5)0.067 (3)0.012 (3)0.009 (3)0.023 (3)
C30.152 (6)0.098 (5)0.138 (6)0.036 (4)0.050 (5)0.012 (4)
C40.106 (5)0.098 (4)0.135 (6)0.022 (4)0.025 (4)0.019 (4)
C50.151 (7)0.210 (9)0.162 (8)0.025 (7)0.029 (6)0.050 (7)
C60.048 (3)0.056 (3)0.062 (3)0.008 (2)0.008 (2)0.000 (2)
C70.068 (3)0.065 (3)0.095 (4)0.010 (3)0.011 (3)0.006 (3)
C80.099 (4)0.064 (3)0.134 (5)0.003 (3)0.003 (4)0.013 (3)
C90.080 (4)0.086 (4)0.127 (5)0.016 (3)0.007 (4)0.005 (4)
C100.064 (3)0.095 (4)0.092 (4)0.006 (3)0.012 (3)0.012 (3)
C110.057 (3)0.070 (3)0.074 (3)0.001 (2)0.006 (3)0.009 (2)
C120.053 (3)0.058 (3)0.052 (3)0.008 (2)0.004 (2)0.009 (2)
C130.073 (4)0.097 (4)0.086 (4)0.014 (3)0.023 (3)0.001 (3)
C140.111 (5)0.181 (7)0.131 (6)0.064 (5)0.006 (4)0.024 (5)
C150.077 (4)0.094 (4)0.091 (4)0.023 (3)0.013 (3)0.005 (3)
C160.148 (6)0.164 (7)0.117 (6)0.017 (5)0.056 (5)0.029 (5)
C170.057 (3)0.055 (3)0.053 (3)0.003 (2)0.002 (2)0.008 (2)
C180.080 (3)0.062 (3)0.068 (3)0.004 (3)0.010 (3)0.001 (3)
C190.115 (5)0.058 (3)0.086 (4)0.004 (3)0.011 (3)0.004 (3)
C200.092 (4)0.082 (4)0.067 (3)0.023 (3)0.001 (3)0.007 (3)
C210.066 (3)0.086 (4)0.075 (3)0.007 (3)0.009 (3)0.000 (3)
C220.063 (3)0.062 (3)0.071 (3)0.000 (2)0.007 (3)0.005 (2)
P10.0583 (8)0.1078 (11)0.0787 (10)0.0101 (9)0.0138 (7)0.0042 (8)
F10.172 (4)0.209 (4)0.092 (3)0.006 (3)0.057 (2)0.006 (3)
F20.133 (3)0.167 (4)0.229 (5)0.052 (3)0.002 (3)0.046 (3)
F30.132 (3)0.149 (3)0.134 (3)0.053 (3)0.018 (2)0.011 (2)
F40.155 (3)0.174 (4)0.086 (2)0.061 (3)0.037 (2)0.007 (2)
F50.110 (3)0.145 (3)0.219 (4)0.028 (3)0.001 (3)0.015 (3)
F60.120 (3)0.192 (4)0.153 (3)0.082 (3)0.030 (2)0.036 (3)
Geometric parameters (Å, º) top
Ag1—S12.4280 (14)C8—H80.9300
Ag1—S22.4500 (12)C9—C101.367 (7)
Ag1—S2i2.9884 (14)C9—H90.9300
Ag1—N12.632 (3)C10—C111.378 (6)
Ag1—N42.671 (3)C10—H100.9300
S1—C11.656 (5)C11—H110.9300
S2—C121.685 (4)C13—C141.478 (7)
N1—N21.242 (4)C13—H13A0.9700
N1—C61.417 (5)C13—H13B0.9700
N2—C11.442 (5)C14—H14A0.9600
N3—C11.320 (5)C14—H14B0.9600
N3—C21.497 (6)C14—H14C0.9600
N3—C41.569 (7)C15—C161.477 (7)
N4—N51.233 (4)C15—H15A0.9700
N4—C171.424 (5)C15—H15B0.9700
N5—C121.424 (5)C16—H16A0.9600
N6—C121.321 (5)C16—H16B0.9600
N6—C131.487 (6)C16—H16C0.9600
N6—C151.501 (6)C17—C221.370 (5)
C2—C31.479 (7)C17—C181.385 (6)
C2—H2A0.9700C18—C191.377 (6)
C2—H2B0.9700C18—H180.9300
C3—H3A0.9600C19—C201.370 (7)
C3—H3B0.9600C19—H190.9300
C3—H3C0.9600C20—C211.366 (6)
C4—C51.406 (8)C20—H200.9300
C4—H4A0.9700C21—C221.376 (6)
C4—H4B0.9700C21—H210.9300
C5—H5A0.9600C22—H220.9300
C5—H5B0.9600P1—F11.546 (3)
C5—H5C0.9600P1—F21.547 (4)
C6—C111.381 (5)P1—F41.560 (3)
C6—C71.383 (6)P1—F51.561 (4)
C7—C81.372 (7)P1—F31.562 (3)
C7—H70.9300P1—F61.572 (4)
C8—C91.376 (7)
S1—Ag1—S2156.32 (6)C10—C11—H11120.0
S1—Ag1—N171.07 (7)C6—C11—H11120.0
S1—Ag1—N4109.01 (7)N6—C12—N5110.9 (4)
N1—Ag1—N4159.01 (10)N6—C12—S2122.7 (3)
S2—Ag1—N471.38 (7)N5—C12—S2126.0 (3)
S2—Ag1—N1117.39 (7)C14—C13—N6113.1 (5)
C1—S1—Ag1106.96 (17)C14—C13—H13A109.0
C12—S2—Ag1103.39 (15)N6—C13—H13A109.0
N2—N1—C6115.0 (3)C14—C13—H13B109.0
N2—N1—Ag1120.3 (3)N6—C13—H13B109.0
C6—N1—Ag1124.5 (3)H13A—C13—H13B107.8
N1—N2—C1114.3 (4)C13—C14—H14A109.5
C1—N3—C2124.2 (4)C13—C14—H14B109.5
C1—N3—C4119.1 (4)H14A—C14—H14B109.5
C2—N3—C4116.2 (4)C13—C14—H14C109.5
N5—N4—C17115.4 (3)H14A—C14—H14C109.5
N4—N5—C12115.6 (3)H14B—C14—H14C109.5
C12—N6—C13121.5 (4)C16—C15—N6111.4 (5)
C12—N6—C15122.6 (4)C16—C15—H15A109.3
C13—N6—C15115.8 (4)N6—C15—H15A109.3
N3—C1—N2110.8 (4)C16—C15—H15B109.3
N3—C1—S1122.6 (4)N6—C15—H15B109.3
N2—C1—S1126.5 (3)H15A—C15—H15B108.0
C3—C2—N3109.8 (4)C15—C16—H16A109.5
C3—C2—H2A109.7C15—C16—H16B109.5
N3—C2—H2A109.7H16A—C16—H16B109.5
C3—C2—H2B109.7C15—C16—H16C109.5
N3—C2—H2B109.7H16A—C16—H16C109.5
H2A—C2—H2B108.2H16B—C16—H16C109.5
C2—C3—H3A109.5C22—C17—C18120.6 (4)
C2—C3—H3B109.5C22—C17—N4116.0 (4)
H3A—C3—H3B109.5C18—C17—N4123.4 (4)
C2—C3—H3C109.5C19—C18—C17118.3 (4)
H3A—C3—H3C109.5C19—C18—H18120.8
H3B—C3—H3C109.5C17—C18—H18120.8
C5—C4—N3106.7 (6)C20—C19—C18121.0 (5)
C5—C4—H4A110.4C20—C19—H19119.5
N3—C4—H4A110.4C18—C19—H19119.5
C5—C4—H4B110.4C21—C20—C19120.3 (5)
N3—C4—H4B110.4C21—C20—H20119.8
H4A—C4—H4B108.6C19—C20—H20119.8
C4—C5—H5A109.5C20—C21—C22119.5 (5)
C4—C5—H5B109.5C20—C21—H21120.2
H5A—C5—H5B109.5C22—C21—H21120.2
C4—C5—H5C109.5C17—C22—C21120.3 (4)
H5A—C5—H5C109.5C17—C22—H22119.9
H5B—C5—H5C109.5C21—C22—H22119.9
C11—C6—C7119.8 (4)F1—P1—F291.9 (3)
C11—C6—N1115.6 (4)F1—P1—F4178.0 (2)
C7—C6—N1124.6 (4)F2—P1—F489.5 (3)
C8—C7—C6119.8 (5)F1—P1—F588.0 (2)
C8—C7—H7120.1F2—P1—F5179.6 (3)
C6—C7—H7120.1F4—P1—F590.7 (2)
C7—C8—C9120.2 (5)F1—P1—F391.6 (2)
C7—C8—H8119.9F2—P1—F390.3 (3)
C9—C8—H8119.9F4—P1—F389.9 (2)
C10—C9—C8120.3 (5)F5—P1—F390.0 (2)
C10—C9—H9119.9F1—P1—F689.0 (2)
C8—C9—H9119.9F2—P1—F690.7 (3)
C9—C10—C11120.0 (5)F4—P1—F689.5 (2)
C9—C10—H10120.0F5—P1—F688.9 (2)
C11—C10—H10120.0F3—P1—F6178.8 (3)
C10—C11—C6119.9 (4)
C6—N1—N2—C1177.8 (3)C7—C6—C11—C100.1 (7)
Ag1—N1—N2—C17.9 (5)N1—C6—C11—C10179.3 (4)
C17—N4—N5—C12175.7 (3)C13—N6—C12—N5171.3 (4)
C2—N3—C1—N23.5 (7)C15—N6—C12—N58.1 (6)
C4—N3—C1—N2168.4 (4)C13—N6—C12—S21.0 (6)
C2—N3—C1—S1177.9 (4)C15—N6—C12—S2179.5 (4)
C4—N3—C1—S110.2 (7)N4—N5—C12—N6166.2 (4)
N1—N2—C1—N3177.3 (4)N4—N5—C12—S221.7 (5)
N1—N2—C1—S11.3 (6)Ag1—S2—C12—N6160.0 (3)
Ag1—S1—C1—N3175.7 (4)Ag1—S2—C12—N528.8 (4)
Ag1—S1—C1—N25.9 (5)C12—N6—C13—C1492.2 (6)
C1—N3—C2—C396.0 (6)C15—N6—C13—C1488.3 (6)
C4—N3—C2—C376.1 (6)C12—N6—C15—C1680.1 (6)
C1—N3—C4—C592.4 (7)C13—N6—C15—C16100.4 (5)
C2—N3—C4—C595.1 (6)N5—N4—C17—C22175.6 (4)
N2—N1—C6—C11175.1 (4)N5—N4—C17—C184.0 (6)
Ag1—N1—C6—C1110.9 (5)C22—C17—C18—C191.5 (7)
N2—N1—C6—C74.3 (6)N4—C17—C18—C19178.0 (4)
Ag1—N1—C6—C7169.7 (3)C17—C18—C19—C200.3 (8)
C11—C6—C7—C80.1 (7)C18—C19—C20—C210.5 (8)
N1—C6—C7—C8179.4 (5)C19—C20—C21—C220.1 (8)
C6—C7—C8—C90.3 (9)C18—C17—C22—C212.0 (7)
C7—C8—C9—C100.4 (9)N4—C17—C22—C21177.6 (4)
C8—C9—C10—C110.3 (9)C20—C21—C22—C171.2 (7)
C9—C10—C11—C60.0 (8)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···S10.932.783.690 (5)167
C2—H2B···F1ii0.972.523.435 (6)158
C15—H15A···F4iii0.972.463.398 (6)164
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.
Bond lengths (Å) and characteristic geometries of related ATF mono- and divalent metal complexes top
CSD = Cambridge Structural Database (Groom et al., 2016); DSP = distorted square-planar; DT = distorted tetrahedral.
MetalM—NNNN—CCSM—SM···SStructureCSD refcode
AgIa2.632 (N1)1.242 (N1N2)1.442 (N2—C1)1.656 (C1S1)2.428 (S1)DSP
AgIa2.671 (N4)1.233 (N4N5)1.424 (N5—C12)1.685 (C12S2)2.450 (S2)2.988 (S2i)
CuIb1.986 / 2.0051.265 / 1.2631.417 / 1.4291.691 / 1.6892.280 / 2.275DTWELGAY
CuIb1.994 / 1.9851.272 / 1.2731.427 / 1.4281.701 / 1.6962.280 / 2.284DTWELFUR
CuIIc1.9221.3231.3711.7222.276DTKEYBIA
PdIIc1.9931.3391.341.7412.293DTKEYBOG
PtIIc1.9641.3491.3261.7422.293DSPKEXCAT
NiIIc1.8731.3361.3581.7212.209DSPNIEPZF01
ATF (crystal)b1.2441.441.662WELFOL
ATF TS (modeled)1.2541.4481.671
ATF SOMO (modeled)1.3291.3571.72
Notes: (a) This study; (b) Johnson et al. (2017); (c) Nielsen et al. (2007). Symmetry code: (i) x, -y + 1/2, z + 1/2.
 

Acknowledgements

The Bruker (Siemens) SMART APEX diffraction facility was established at the University of Idaho with the assistance of the NSF–EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBechgaard, K. (1977). Acta Chem. Scand. A, 31, 683–688.  CrossRef CAS Web of Science Google Scholar
First citationBechgaard, K. (1974). Acta Chem. Scand. A, 28, 185–193.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowdhury, S., Drew, M. G. B. & Datta, D. (2003). New J. Chem. 27, 831–835.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanton, L. R. & Young, A. G. (2006). Cryst. Growth Des. 6, 833–835.  CrossRef CAS Google Scholar
First citationHuang, Y. Q., Shen, Z. L., Okamura, T. A., Wang, Y., Wang, X. F., Sun, W. Y., Yu, J. Q. & Ueyama, N. (2008). Dalton Trans. pp. 204–213.  CrossRef Google Scholar
First citationIno, I., Wu, L. P., Munakata, M., Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Kitamori, Y. (2000). Inorg. Chem. 39, 2146–2151.  CrossRef PubMed CAS Google Scholar
First citationJohnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. pp. 5576–5581.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNielsen, K. T., Bechgaard, K. & Krebs, F. C. (2005). Macromolecules, 38, 658–659.  CrossRef CAS Google Scholar
First citationNielsen, K. T., Bechgaard, K. & Krebs, F. C. (2006). Synthesis, pp. 1639–1644.  CrossRef Google Scholar
First citationNielsen, K. T., Harris, P., Bechgaard, K. & Krebs, F. C. (2007). Acta Cryst. B63, 151–156.  CrossRef IUCr Journals Google Scholar
First citationPointillart, F., Herson, P., Boubekeur, K. & Train, C. (2008). Inorg. Chim. Acta, 361, 373–379.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Han, J. H., Kim, B. G., Jang, S. H., Lee, S. G. & Min, K. S. (2009). Inorg. Chem. Commun. 12, 1220–1223.  CrossRef CAS Google Scholar
First citationSuenaga, Y., Kitamura, K., Kuroda-Sowa, T., Maekawa, M. & Munakata, M. (2002). Inorg. Chim. Acta, 328, 105–110.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoung, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y., Zhai, L. L., Lv, G. C., Zhou, X. & Sun, W. Y. (2012). Inorg. Chim. Acta, 392, 38–45.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds