research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­(benzoato-κ2O,O′)[bis­­(pyridin-2-yl-κN)amine]nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat, University, Klong Luang, Pathum Thani 12121, Thailand, and bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by M. Zeller, Purdue University, USA (Received 24 July 2019; accepted 3 August 2019; online 13 August 2019)

A new mononuclear NiII complex with bis­(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octa­hedral geometry with an [NiN2O4] chromophore. In the crystal, the complex mol­ecules are linked together into a one-dimensional chain by symmetry-related ππ stacking inter­actions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π inter­actions, which were investigated by Hirshfeld surface analysis.

1. Chemical context

Nickel(II) complexes have been of wide inter­est in many fields such as coordination chemistry (Devereux et al., 2007[Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kędziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]; Lee et al., 2012[Lee, J. H., Park, H. M., Jang, S. P., Eom, G. H., Bae, J. M., Kim, C., Kim, Y. & Kim, S.-J. (2012). Inorg. Chem. Commun. 15, 212-215.]) and bioinorganic chemistry (Morgant et al., 2006[Morgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229-2235.]; Luo et al., 2007[Luo, W., Meng, X., Sun, X., Xiao, F., Shen, J., Zhou, Y., Cheng, G. & Ji, Z. (2007). Inorg. Chem. Commun. 10, 1351-1354.]; Zianna et al., 2016[Zianna, A., Psomas, G., Hatzidimitriou, A. & Lalia-Kantouri, M. (2016). J. Inorg. Biochem. 163, 131-142.]), to name just a few. Generally, an NiII ion is stable in its [Ar]3d8 electronic configuration. Among the various types of NiII complexes, mononuclear NiII complexes containing mixed carboxyl­ate and N-donor ligands have received considerable attention because of their inter­esting properties such as their behaviour catalysis in transesterification (Lee et al., 2012[Lee, J. H., Park, H. M., Jang, S. P., Eom, G. H., Bae, J. M., Kim, C., Kim, Y. & Kim, S.-J. (2012). Inorg. Chem. Commun. 15, 212-215.]) and their occasional bioactivity (Zianna et al., 2016[Zianna, A., Psomas, G., Hatzidimitriou, A. & Lalia-Kantouri, M. (2016). J. Inorg. Biochem. 163, 131-142.]). One of the aims of our research group is to explore and study the coordination chemistry and bioactivities of new mononuclear complexes containing first row transition metal(II) ions and mixed ligands such as benzoate and N-donor bi­pyridine derivatives. Moreover we are interested in understanding the crystal structures and stability of the self-assembly between mononuclear units through non-covalent inter­actions, and the resulting properties of the material. Generally, a carboxyl­ate group of e.g. a benzoate can give rise to various types of coordination modes, leading to a variety of coordination geometries and coordination frameworks, while a phenyl ring is able to provide ππ stacking inter­actions that can support crystal stability. For N-donor ligands, bi­pyridine derivatives can act as chelating agents to form mononuclear units as building blocks for constructing 1D, 2D and 3D supra­molecular frameworks through weak inter­actions such as hydrogen bonding, ππ stacking among others, depending on the exact nature of the ligand. As part of our ongoing research into the coordination chemistry and bioactivities of new discrete NiII complexes containing benzoate and chelating N-donor ligands, we have synthesized a new mononuclear NiII complex containing benzoate (benz) and bis­(pyridin-2-yl)amine (dpyam) mixed ligands, [Ni(dpyam)(benz)2]. Herein, the crystal structure determination and Hirshfeld surface analysis of the title complex is reported.

[Scheme 1]

2. Structural commentary

The title complex crystallizes in the monoclinic crystal system in the P21/c space group. The asymmetric unit consists of one NiII ion, one dpyam, and two benzoate ligands. The NiII ion is six-coordinated by two nitro­gen atoms from the dpyam chelating ligand and four oxygen atoms from two benzoate chelating ligands, adopting a cis-distorted octa­hedral geometry as shown in Fig. 1[link]. The Ni—N and Ni—O bond lengths range from 2.032 (2) to 2.045 (2) Å and 2.041 (2) to 2.221 (2) Å, respectively, whereas the bond angles around the central Ni atom are 61.53 (7)–159.84 (8)° (see Table 1[link]). These values in the title complex are comparable to those of related NiII complexes such as [Ni(bpy)(benz)2] (bpy = 2,2′-bi­pyridine; Baruah et al., 2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479-4488.]), and are shorter than those of other isostructural metal(II) complexes with the same ligand set, such as [M(dpyam)(benz)2], where M = Zn (Lee et al., 2007[Lee, Y. M., Hong, S. J., Kim, H. J., Lee, S. H., Kwak, H., Kim, C., Kim, S.-J. & Kim, Y. (2007). Inorg. Chem. Commun. 10, 287-291.]), Cd (Park et al., 2010[Park, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S.-J. & Kim, Y. (2010). Polyhedron, 29, 773-786.]) and Hg (Lee et al., 2012[Lee, J. H., Park, H. M., Jang, S. P., Eom, G. H., Bae, J. M., Kim, C., Kim, Y. & Kim, S.-J. (2012). Inorg. Chem. Commun. 15, 212-215.]), because of the different sizes of the central metal ions.

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.0414 (18) Ni1—O4 2.1540 (19)
Ni1—O2 2.2208 (19) Ni1—N1 2.045 (2)
Ni1—O3 2.1050 (18) Ni1—N3 2.032 (2)
       
O1—Ni1—O2 61.53 (7) N1—Ni1—O3 98.10 (8)
O1—Ni1—O3 154.01 (7) N1—Ni1—O4 159.84 (8)
O1—Ni1—O4 97.18 (7) N3—Ni1—O1 97.87 (8)
O1—Ni1—N1 101.45 (8) N3—Ni1—O2 159.25 (8)
O3—Ni1—O2 99.93 (7) N3—Ni1—O3 98.67 (8)
O3—Ni1—O4 61.85 (7) N3—Ni1—O4 93.84 (8)
O4—Ni1—O2 86.91 (7) N3—Ni1—N1 91.21 (8)
N1—Ni1—O2 95.19 (8)    
[Figure 1]
Figure 1
ORTEP representation of the title complex with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, adjacent complex mol­ecules are linked into dimeric species, Fig. 2[link]a, through aromatic ππ stacking inter­actions involving the pyridyl rings of the dpyam ligands with a centroid-to-centroid distance of 3.7257 (17) Å [Cg1⋯Cg2viii, symmetry code: (viii) −x, 2 − y, 1 − z; Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C6–C10 rings, respectively] and an inter­planar spacing between dpyam ligands of 3.448 (2) Å. The π-stacking inter­action is augmented by a pair of inversion-symmetry-equivalent N—H⋯O hydrogen bonds (Table 2[link]) between the NH and carboxyl­ate groups. The dimers are linked into a chain along the a axis via C—H⋯O hydrogen-bonding inter­actions, C—H(dpyam)⋯O1(benzoate) and C—H(benzoate)⋯O(benzoate), as shown in Fig. 2[link]b. C—H⋯O inter­actions are augmented by a second set of weaker ππ inter­actions that alternate with the first along the chain direction, Fig. 2[link]b. The latter set of weak π-stacking inter­actions presents a centroid-to-centroid distance of 4.3565 (17) Å [Cg1⋯Cg2ix, symmetry code: (ix) 1 − x, 2 − y,1 − z] and an inter­planar spacing between dpyam ligands of 3.492 (3) Å. The chains are further connected by C—H⋯π inter­actions in the bc plane, Fig. 3[link], giving rise to a three-dimensional supra­molecular network, Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C12-C17 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.93 2.41 3.077 (4) 129
C10—H10⋯O4 0.93 2.49 3.038 (3) 118
N2—H5⋯O3i 0.83 (3) 2.12 (3) 2.913 (3) 159 (3)
C7—H7⋯O1ii 0.93 2.43 3.029 (3) 123
C24—H24⋯O1iii 0.93 2.44 3.338 (3) 162
C14—H14⋯O2iv 0.93 2.53 3.391 (3) 154
C9—H9⋯Cg3v 0.93 2.79 3.593 (3) 145
C22—H22⋯Cg3vi 0.93 2.89 3.671 (4) 143
C15—H15⋯Cg4vii 0.93 2.76 3.634 (3) 157
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Views of lattice arrangement of the title complex along the [100] direction, (a) top view and (b) the weak inter­molecular inter­actions, N—H⋯O, C—H⋯O and ππ, between dimeric units, showing the one-dimensional supra­molecular chain-like structure.
[Figure 3]
Figure 3
View of the C—H⋯π inter­molecular inter­actions of the title complex.
[Figure 4]
Figure 4
View of the three-dimensional supra­molecular network of the title complex.

4. Hirshfeld surface analysis

The inter­actions stabilizing the supra­molecular framework of the title complex have been further studied by the analysis of the Hirshfeld surfaces and their two-dimensional fingerprint plots. These results were visualized using the program CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The three-dimensional Hirshfeld surface of the title complex is shown in Fig. 5[link]a. Inter­actions are represented using different colours, red indicating distances closer than the sum of the van der Waals radii, white indicating distances near the van der Waals radii separation, and blue indicating distances longer than the van der Waals radii (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The strong inter­molecular N—H⋯O and C—H⋯O hydrogen bonding and C—H⋯π inter­actions in the crystal of the title complex are represented as red spots on dnorm. Selected two-dimensional fingerprint plots are shown in Fig. 5[link]b for all contacts as well as individual H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts, whose percentage contribution is also given. H⋯H inter­molecular contacts make the highest percentage contribution (44.0%), a result of the prevalence of hydrogen from the organic ligand. The C⋯H/H⋯C and O⋯H/H⋯O inter­molecular contacts are due to the attractive C—H⋯π and hydrogen-bonding inter­actions with percentage contrib­utions of 30.7 and 15.7%, respectively, indicating these to be the dominant stabilizing inter­actions in this crystal. The C⋯C contacts, with a percentage contribution of only 4.8%, indicate that the ππ inter­actions in the crystal of the title complex are weak compared to the other types of inter­actions, despite their prominent apparent role when visually inspecting the crystal structure.

[Figure 5]
Figure 5
Views of (a) the Hirshfeld surface mapped over dnorm in the range −0.526 to +1.5208 (arbitrary units) and (b) Hirshfeld surface fingerprint plots for the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts of the title complex.

5. Characterization

The IR spectrum (see Fig. S1 in the supporting information) of the title complex presents characteristic peaks at 3323, 3219 and 3148 cm−1 for N—H stretching and 1642 cm−1 for N—H bending, 1595 cm−1 for C=N aromatic stretching and 1421 cm−1 for C—N stretching in the coordinated dpyam ligand. Asymmetric and symmetric COO peaks of the chelating benzoate ligand are present at 1528 and 1489 cm−1, respectively. The peaks at 865, 772 and 687 cm−1 are assigned to C—H bending of aromatic rings. The peaks at 526 and 443 cm−1 have been assigned to Ni—O and Ni—N stretching, respectively (Zianna et al., 2016[Zianna, A., Psomas, G., Hatzidimitriou, A. & Lalia-Kantouri, M. (2016). J. Inorg. Biochem. 163, 131-142.]).

The solid-state diffuse reflectance spectrum (Fig. S2) of the title complex presents three peaks at 391, 669 and 1044 nm that can be attributed to the allowed transitions 3A2g3T1g(P), 3A2g3T1g(F) and 3A2g3T2g, respectively. In addition, the spectrum also shows a shoulder peak at 793 nm which can be attributed to a forbidden transition, 3A2g1Eg. This spectroscopic feature agrees with the typical dd transitions of the NiII ion in a distorted octa­hedral geometry (Al-Riyahee et al., 2018[Al-Riyahee, A. A. A., Hadadd, H. H. & Jaaz, B. H. (2018). Orient. J. Chem. 34, 2927-2941.]).

A PXRD pattern of the title complex was collected at room temperature (Fig. S3). The result shows that the pattern of the as-synthesized bulk material matches its simulated pattern, confirming the phase purity of the title complex.

6. Database survey

Previously reported complexes related to the title complex are [M(dpyam)(benz)2], M = Zn [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode GIJMAO; Lee et al., 2007[Lee, Y. M., Hong, S. J., Kim, H. J., Lee, S. H., Kwak, H., Kim, C., Kim, S.-J. & Kim, Y. (2007). Inorg. Chem. Commun. 10, 287-291.]], Cd (WUVGOK; Park et al., 2010[Park, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S.-J. & Kim, Y. (2010). Polyhedron, 29, 773-786.]) and Hg (QATXUG; Lee et al., 2012[Lee, J. H., Park, H. M., Jang, S. P., Eom, G. H., Bae, J. M., Kim, C., Kim, Y. & Kim, S.-J. (2012). Inorg. Chem. Commun. 15, 212-215.]). These complexes are isostructural. However, the size of the metal center in these complexes affects the metal-to-ligand distances (Alvarez, 2015[Alvarez, S. (2015). Chem. Rev. 115, 13447-13483.]) with the M—O/N bond lengths following the order NiII < ZnII < CdII < HgII in the corresponding complexes, leading to a different degree of distortion in their coordination spheres.

7. Synthesis and crystallization

A methano­lic solution (15 mL) of dpyam (0.1712 g, 1 mmol) was slowly added into a warmed solution of Ni(NO3)2·6H2O (0.2908 g, 1 mmol) in distilled water (5 mL), under constant stirring for about 15 min; the resulting solution was kept at 333 K. Subsequently, solid sodium benzoate (0.2882 g, 2 mmol) was added slowly, resulting in a green precipitate. Then DMF (15 mL) was added dropwise and the solution was stirred until it became clear and green in colour. The solution mixture was filtered and left to stand at room temperature in air for slow evaporation. After a day, light-green rod-shaped crystals were obtained, collected by filtration, and air-dried [30.3% yield based on nickel(II) salt]. Elemental analysis calculated for C24H19NiN3O4: C, 60.80; H, 4.46; N, 8.86. Found: C, 60.56; H, 5.01; N, 8.26. IR (KBr, ν/cm−1): 3323w, 3219w, 3148w, 1642m, 1595m, 1541s, 1528s, 1489s, 1421s, 1242w, 1158w, 2021w, 865w, 772m, 729m, 687w, 526w, 443w.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to the N atom of dpyam was located in a difference-Fourier map and was freely refined.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C7H5O2)2(C10H9N3)]
Mr 472.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.4199 (4), 16.679 (1), 17.6971 (11)
β (°) 100.778 (2)
V3) 2151.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.32 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.655, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 41528, 4407, 3569
Rint 0.059
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.10
No. of reflections 4407
No. of parameters 293
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(benzoato-κ2O,O')[bis(pyridin-2-yl-κN)amine]nickel(II) top
Crystal data top
[Ni(C7H5O2)2(C10H9N3)]F(000) = 976
Mr = 472.13Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4199 (4) ÅCell parameters from 9934 reflections
b = 16.679 (1) Åθ = 3.1–26.4°
c = 17.6971 (11) ŵ = 0.94 mm1
β = 100.778 (2)°T = 296 K
V = 2151.5 (2) Å3Block, light green
Z = 40.32 × 0.20 × 0.20 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
4407 independent reflections
Radiation source: sealed x-ray tube, Mo3569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 7.39 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.655, Tmax = 0.745l = 2122
41528 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0327P)2 + 2.1013P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4407 reflectionsΔρmax = 0.45 e Å3
293 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.16089 (4)0.89490 (2)0.37031 (2)0.03029 (11)
O10.3922 (2)0.89019 (11)0.32357 (10)0.0365 (4)
O20.1306 (2)0.87442 (12)0.24456 (11)0.0413 (5)
O30.0955 (2)0.85283 (10)0.38795 (11)0.0361 (4)
O40.1251 (2)0.76753 (11)0.38110 (11)0.0399 (5)
N10.0989 (3)1.01439 (13)0.36105 (12)0.0342 (5)
N20.1916 (3)1.04290 (13)0.49359 (14)0.0370 (5)
H50.192 (4)1.0771 (18)0.5276 (17)0.038 (8)*
N30.2849 (3)0.90878 (12)0.48206 (12)0.0311 (5)
C10.0251 (4)1.04335 (18)0.29092 (17)0.0476 (7)
H10.0113331.0083300.2493480.057*
C20.0307 (5)1.1207 (2)0.2771 (2)0.0568 (9)
H20.0814251.1374990.2276020.068*
C30.0107 (5)1.17345 (19)0.3377 (2)0.0526 (8)
H30.0471991.2266090.3298180.063*
C40.0635 (4)1.14671 (17)0.40961 (19)0.0451 (7)
H40.0778191.1814500.4514140.054*
C50.1180 (3)1.06633 (15)0.41994 (16)0.0331 (6)
C60.2787 (3)0.97412 (15)0.52449 (15)0.0308 (6)
C70.3584 (4)0.97654 (17)0.60236 (16)0.0401 (6)
H70.3488121.0224170.6312210.048*
C80.4500 (4)0.91137 (19)0.63562 (17)0.0476 (7)
H80.5045790.9125220.6873840.057*
C90.4619 (4)0.84332 (18)0.59242 (18)0.0464 (7)
H90.5242970.7980890.6141680.056*
C100.3787 (4)0.84458 (17)0.51625 (16)0.0398 (6)
H100.3870620.7991410.4866520.048*
C110.3028 (4)0.87810 (14)0.25627 (15)0.0312 (6)
C120.4056 (4)0.87111 (15)0.19153 (15)0.0324 (6)
C130.5960 (4)0.87371 (17)0.20625 (16)0.0387 (6)
H130.6593950.8775980.2566820.046*
C140.6917 (4)0.87057 (19)0.14667 (18)0.0462 (7)
H140.8193010.8718630.1569730.055*
C150.5983 (4)0.8655 (2)0.07180 (18)0.0501 (8)
H150.6628340.8642200.0315310.060*
C160.4094 (4)0.86233 (19)0.05656 (16)0.0472 (7)
H160.3466450.8588200.0060080.057*
C170.3128 (4)0.86435 (16)0.11630 (15)0.0368 (6)
H170.1854390.8611600.1058900.044*
C180.0389 (4)0.78057 (15)0.38557 (14)0.0319 (6)
C190.1686 (4)0.71259 (16)0.38617 (15)0.0336 (6)
C200.1020 (4)0.63507 (17)0.39881 (19)0.0477 (7)
H200.0237450.6260210.4108180.057*
C210.2220 (5)0.5716 (2)0.3936 (2)0.0617 (10)
H210.1768710.5198150.4027970.074*
C220.4075 (5)0.5841 (2)0.3750 (2)0.0601 (9)
H220.4878720.5408370.3699420.072*
C230.4746 (4)0.6610 (2)0.36369 (19)0.0533 (8)
H230.6005330.6696290.3520040.064*
C240.3556 (4)0.72552 (18)0.36964 (16)0.0410 (6)
H240.4014310.7774260.3625370.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03251 (18)0.02790 (18)0.03103 (18)0.00190 (14)0.00746 (13)0.00557 (14)
O10.0347 (9)0.0410 (10)0.0339 (10)0.0049 (8)0.0068 (8)0.0094 (8)
O20.0337 (10)0.0496 (12)0.0410 (11)0.0025 (9)0.0077 (8)0.0100 (9)
O30.0393 (10)0.0282 (10)0.0421 (11)0.0021 (8)0.0110 (8)0.0048 (8)
O40.0363 (11)0.0343 (10)0.0508 (12)0.0029 (8)0.0123 (9)0.0086 (9)
N10.0378 (12)0.0321 (12)0.0342 (12)0.0002 (9)0.0105 (10)0.0002 (9)
N20.0498 (14)0.0246 (11)0.0371 (13)0.0012 (10)0.0094 (11)0.0071 (10)
N30.0348 (11)0.0265 (11)0.0326 (11)0.0013 (9)0.0081 (9)0.0023 (9)
C10.0588 (19)0.0454 (17)0.0389 (16)0.0107 (15)0.0104 (14)0.0017 (13)
C20.067 (2)0.055 (2)0.0496 (19)0.0178 (17)0.0143 (16)0.0191 (16)
C30.058 (2)0.0359 (16)0.067 (2)0.0091 (14)0.0201 (17)0.0133 (15)
C40.0511 (17)0.0294 (15)0.0569 (19)0.0016 (13)0.0159 (15)0.0019 (13)
C50.0308 (13)0.0308 (13)0.0406 (15)0.0032 (11)0.0144 (12)0.0003 (11)
C60.0289 (13)0.0295 (13)0.0358 (14)0.0071 (10)0.0107 (11)0.0047 (11)
C70.0455 (16)0.0397 (16)0.0344 (14)0.0082 (13)0.0054 (12)0.0094 (12)
C80.0427 (17)0.059 (2)0.0371 (16)0.0103 (14)0.0035 (13)0.0024 (14)
C90.0418 (16)0.0445 (17)0.0497 (18)0.0020 (13)0.0001 (14)0.0087 (14)
C100.0434 (16)0.0343 (15)0.0411 (16)0.0037 (12)0.0068 (13)0.0015 (12)
C110.0349 (14)0.0243 (13)0.0340 (14)0.0024 (10)0.0050 (11)0.0030 (10)
C120.0373 (14)0.0260 (13)0.0340 (14)0.0014 (11)0.0068 (11)0.0023 (10)
C130.0390 (15)0.0419 (16)0.0347 (14)0.0002 (12)0.0052 (12)0.0025 (12)
C140.0369 (15)0.0532 (18)0.0503 (18)0.0014 (13)0.0125 (14)0.0025 (14)
C150.059 (2)0.0552 (19)0.0414 (17)0.0046 (15)0.0220 (15)0.0014 (14)
C160.059 (2)0.0511 (18)0.0290 (14)0.0066 (15)0.0026 (13)0.0004 (13)
C170.0384 (15)0.0356 (14)0.0344 (15)0.0026 (12)0.0021 (12)0.0036 (11)
C180.0390 (15)0.0291 (13)0.0277 (13)0.0017 (11)0.0066 (11)0.0056 (10)
C190.0406 (15)0.0308 (14)0.0309 (13)0.0033 (11)0.0108 (11)0.0054 (11)
C200.0503 (18)0.0350 (15)0.061 (2)0.0004 (13)0.0180 (15)0.0017 (14)
C210.078 (3)0.0318 (16)0.082 (3)0.0071 (16)0.033 (2)0.0078 (16)
C220.072 (2)0.048 (2)0.066 (2)0.0305 (17)0.0260 (18)0.0172 (16)
C230.0443 (17)0.063 (2)0.0533 (19)0.0164 (16)0.0112 (15)0.0032 (16)
C240.0412 (16)0.0417 (16)0.0406 (16)0.0027 (13)0.0086 (13)0.0007 (13)
Geometric parameters (Å, º) top
Ni1—O12.0414 (18)C8—C91.381 (4)
Ni1—O22.2208 (19)C9—H90.9300
Ni1—O32.1050 (18)C9—C101.374 (4)
Ni1—O42.1540 (19)C10—H100.9300
Ni1—N12.045 (2)C11—C121.495 (4)
Ni1—N32.032 (2)C12—C131.388 (4)
O1—C111.266 (3)C12—C171.384 (4)
O2—C111.257 (3)C13—H130.9300
O3—C181.280 (3)C13—C141.378 (4)
O4—C181.253 (3)C14—H140.9300
N1—C11.349 (4)C14—C151.378 (4)
N1—C51.342 (3)C15—H150.9300
N2—H50.83 (3)C15—C161.378 (4)
N2—C51.372 (4)C16—H160.9300
N2—C61.379 (3)C16—C171.384 (4)
N3—C61.329 (3)C17—H170.9300
N3—C101.356 (3)C18—C191.489 (4)
C1—H10.9300C19—C201.387 (4)
C1—C21.363 (4)C19—C241.380 (4)
C2—H20.9300C20—H200.9300
C2—C31.373 (5)C20—C211.375 (4)
C3—H30.9300C21—H210.9300
C3—C41.363 (4)C21—C221.370 (5)
C4—H40.9300C22—H220.9300
C4—C51.402 (4)C22—C231.376 (5)
C6—C71.395 (4)C23—H230.9300
C7—H70.9300C23—C241.383 (4)
C7—C81.357 (4)C24—H240.9300
C8—H80.9300
O1—Ni1—O261.53 (7)C7—C8—C9119.8 (3)
O1—Ni1—O3154.01 (7)C9—C8—H8120.1
O1—Ni1—O497.18 (7)C8—C9—H9121.1
O1—Ni1—N1101.45 (8)C10—C9—C8117.8 (3)
O3—Ni1—O299.93 (7)C10—C9—H9121.1
O3—Ni1—O461.85 (7)N3—C10—C9123.3 (3)
O4—Ni1—O286.91 (7)N3—C10—H10118.4
N1—Ni1—O295.19 (8)C9—C10—H10118.4
N1—Ni1—O398.10 (8)O1—C11—C12118.7 (2)
N1—Ni1—O4159.84 (8)O2—C11—O1120.0 (2)
N3—Ni1—O197.87 (8)O2—C11—C12121.2 (2)
N3—Ni1—O2159.25 (8)C13—C12—C11120.1 (2)
N3—Ni1—O398.67 (8)C17—C12—C11120.7 (2)
N3—Ni1—O493.84 (8)C17—C12—C13119.3 (2)
N3—Ni1—N191.21 (8)C12—C13—H13119.8
C11—O1—Ni193.15 (15)C14—C13—C12120.5 (3)
C11—O2—Ni185.30 (15)C14—C13—H13119.8
C18—O3—Ni189.87 (15)C13—C14—H14120.0
C18—O4—Ni188.37 (15)C13—C14—C15120.0 (3)
C1—N1—Ni1117.99 (19)C15—C14—H14120.0
C5—N1—Ni1125.26 (18)C14—C15—H15120.0
C5—N1—C1116.7 (2)C16—C15—C14120.0 (3)
C5—N2—H5116 (2)C16—C15—H15120.0
C5—N2—C6133.4 (2)C15—C16—H16119.9
C6—N2—H5110 (2)C15—C16—C17120.2 (3)
C6—N3—Ni1125.88 (18)C17—C16—H16119.9
C6—N3—C10117.7 (2)C12—C17—H17120.0
C10—N3—Ni1116.45 (17)C16—C17—C12120.1 (3)
N1—C1—H1117.9C16—C17—H17120.0
N1—C1—C2124.1 (3)O3—C18—C19120.0 (2)
C2—C1—H1117.9O4—C18—O3119.6 (2)
C1—C2—H2120.6O4—C18—C19120.3 (2)
C1—C2—C3118.8 (3)C20—C19—C18120.0 (3)
C3—C2—H2120.6C24—C19—C18120.3 (2)
C2—C3—H3120.5C24—C19—C20119.6 (3)
C4—C3—C2119.0 (3)C19—C20—H20120.0
C4—C3—H3120.5C21—C20—C19120.0 (3)
C3—C4—H4120.3C21—C20—H20120.0
C3—C4—C5119.4 (3)C20—C21—H21119.7
C5—C4—H4120.3C22—C21—C20120.5 (3)
N1—C5—N2121.3 (2)C22—C21—H21119.7
N1—C5—C4122.0 (3)C21—C22—H22120.1
N2—C5—C4116.7 (3)C21—C22—C23119.8 (3)
N2—C6—C7116.6 (2)C23—C22—H22120.1
N3—C6—N2121.4 (2)C22—C23—H23119.8
N3—C6—C7121.9 (2)C22—C23—C24120.4 (3)
C6—C7—H7120.3C24—C23—H23119.8
C8—C7—C6119.4 (3)C19—C24—C23119.8 (3)
C8—C7—H7120.3C19—C24—H24120.1
C7—C8—H8120.1C23—C24—H24120.1
Ni1—O1—C11—O20.3 (2)C3—C4—C5—N10.2 (4)
Ni1—O1—C11—C12178.36 (19)C3—C4—C5—N2180.0 (3)
Ni1—O2—C11—O10.3 (2)C5—N1—C1—C20.3 (4)
Ni1—O2—C11—C12178.3 (2)C5—N2—C6—N39.2 (4)
Ni1—O3—C18—O45.3 (2)C5—N2—C6—C7171.3 (3)
Ni1—O3—C18—C19173.2 (2)C6—N2—C5—N19.4 (4)
Ni1—O4—C18—O35.2 (2)C6—N2—C5—C4170.8 (3)
Ni1—O4—C18—C19173.3 (2)C6—N3—C10—C92.0 (4)
Ni1—N1—C1—C2176.8 (3)C6—C7—C8—C90.6 (4)
Ni1—N1—C5—N23.2 (3)C7—C8—C9—C100.1 (5)
Ni1—N1—C5—C4176.6 (2)C8—C9—C10—N30.6 (4)
Ni1—N3—C6—N23.7 (3)C10—N3—C6—N2177.8 (2)
Ni1—N3—C6—C7175.80 (19)C10—N3—C6—C72.7 (4)
Ni1—N3—C10—C9176.7 (2)C11—C12—C13—C14177.4 (3)
O1—C11—C12—C133.3 (4)C11—C12—C17—C16176.5 (3)
O1—C11—C12—C17174.8 (2)C12—C13—C14—C150.6 (5)
O2—C11—C12—C13178.7 (2)C13—C12—C17—C161.7 (4)
O2—C11—C12—C173.2 (4)C13—C14—C15—C161.0 (5)
O3—C18—C19—C20167.3 (3)C14—C15—C16—C170.1 (5)
O3—C18—C19—C2416.6 (4)C15—C16—C17—C121.2 (4)
O4—C18—C19—C2014.2 (4)C17—C12—C13—C140.8 (4)
O4—C18—C19—C24161.9 (3)C18—C19—C20—C21175.1 (3)
N1—C1—C2—C30.3 (5)C18—C19—C24—C23174.3 (3)
N2—C6—C7—C8178.4 (3)C19—C20—C21—C220.9 (5)
N3—C6—C7—C82.1 (4)C20—C19—C24—C231.8 (4)
C1—N1—C5—N2180.0 (2)C20—C21—C22—C232.0 (6)
C1—N1—C5—C40.2 (4)C21—C22—C23—C241.2 (5)
C1—C2—C3—C40.3 (5)C22—C23—C24—C190.7 (5)
C2—C3—C4—C50.2 (5)C24—C19—C20—C211.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C12–C17 and C19-C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.413.077 (4)129
C10—H10···O40.932.493.038 (3)118
N2—H5···O3i0.83 (3)2.12 (3)2.913 (3)159 (3)
C7—H7···O1ii0.932.433.029 (3)123
C24—H24···O1iii0.932.443.338 (3)162
C14—H14···O2iv0.932.533.391 (3)154
C9—H9···Cg3v0.932.793.593 (3)145
C22—H22···Cg3vi0.932.893.671 (4)143
C15—H15···Cg4vii0.932.763.634 (3)157
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y+1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x+1, y+3/2, z1/2.
 

Funding information

NW acknowledges Thammasat University Research Fund (Contract No. 34/2560) for financial support. The authors thank the Central Scientific Instrument Center (CSIC), Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer and acknowledge the Center of Scientific Equipment for Advanced Research (CSEAR), Thammasat University, for facilities to conduct this research.

References

First citationAl-Riyahee, A. A. A., Hadadd, H. H. & Jaaz, B. H. (2018). Orient. J. Chem. 34, 2927–2941.  CAS Google Scholar
First citationAlvarez, S. (2015). Chem. Rev. 115, 13447–13483.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kędziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, J. H., Park, H. M., Jang, S. P., Eom, G. H., Bae, J. M., Kim, C., Kim, Y. & Kim, S.-J. (2012). Inorg. Chem. Commun. 15, 212–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, Y. M., Hong, S. J., Kim, H. J., Lee, S. H., Kwak, H., Kim, C., Kim, S.-J. & Kim, Y. (2007). Inorg. Chem. Commun. 10, 287–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, W., Meng, X., Sun, X., Xiao, F., Shen, J., Zhou, Y., Cheng, G. & Ji, Z. (2007). Inorg. Chem. Commun. 10, 1351–1354.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMorgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229–2235.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S.-J. & Kim, Y. (2010). Polyhedron, 29, 773–786.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationZianna, A., Psomas, G., Hatzidimitriou, A. & Lalia-Kantouri, M. (2016). J. Inorg. Biochem. 163, 131–142.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds