research communications
κ2O,O′)[bis(pyridin-2-yl-κN)amine]nickel(II)
and Hirshfeld surface analysis of bis(benzoato-aDepartment of Chemistry, Faculty of Science and Technology, Thammasat, University, Klong Luang, Pathum Thani 12121, Thailand, and bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th
A new mononuclear NiII complex with bis(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic P21/c. The NiII ion adopts a cis-distorted octahedral geometry with an [NiN2O4] chromophore. In the crystal, the complex molecules are linked together into a one-dimensional chain by symmetry-related π–π stacking interactions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π interactions, which were investigated by Hirshfeld surface analysis.
Keywords: nickel(II) complex; benzoate; bis(pyridin-2-yl)amine; crystal structure; Hirshfeld surface analysis.
CCDC reference: 1945125
1. Chemical context
Nickel(II) complexes have been of wide interest in many fields such as coordination chemistry (Devereux et al., 2007; Lee et al., 2012) and bioinorganic chemistry (Morgant et al., 2006; Luo et al., 2007; Zianna et al., 2016), to name just a few. Generally, an NiII ion is stable in its [Ar]3d8 Among the various types of NiII complexes, mononuclear NiII complexes containing mixed carboxylate and N-donor ligands have received considerable attention because of their interesting properties such as their behaviour catalysis in transesterification (Lee et al., 2012) and their occasional bioactivity (Zianna et al., 2016). One of the aims of our research group is to explore and study the coordination chemistry and bioactivities of new mononuclear complexes containing first row transition metal(II) ions and mixed ligands such as benzoate and N-donor bipyridine derivatives. Moreover we are interested in understanding the crystal structures and stability of the self-assembly between mononuclear units through non-covalent interactions, and the resulting properties of the material. Generally, a carboxylate group of e.g. a benzoate can give rise to various types of coordination modes, leading to a variety of coordination geometries and coordination frameworks, while a phenyl ring is able to provide π–π stacking interactions that can support crystal stability. For N-donor ligands, bipyridine derivatives can act as chelating agents to form mononuclear units as building blocks for constructing 1D, 2D and 3D supramolecular frameworks through weak interactions such as hydrogen bonding, π–π stacking among others, depending on the exact nature of the ligand. As part of our ongoing research into the coordination chemistry and bioactivities of new discrete NiII complexes containing benzoate and chelating N-donor ligands, we have synthesized a new mononuclear NiII complex containing benzoate (benz) and bis(pyridin-2-yl)amine (dpyam) mixed ligands, [Ni(dpyam)(benz)2]. Herein, the determination and Hirshfeld surface analysis of the title complex is reported.
2. Structural commentary
The title complex crystallizes in the monoclinic P21/c The consists of one NiII ion, one dpyam, and two benzoate ligands. The NiII ion is six-coordinated by two nitrogen atoms from the dpyam chelating ligand and four oxygen atoms from two benzoate chelating ligands, adopting a cis-distorted octahedral geometry as shown in Fig. 1. The Ni—N and Ni—O bond lengths range from 2.032 (2) to 2.045 (2) Å and 2.041 (2) to 2.221 (2) Å, respectively, whereas the bond angles around the central Ni atom are 61.53 (7)–159.84 (8)° (see Table 1). These values in the title complex are comparable to those of related NiII complexes such as [Ni(bpy)(benz)2] (bpy = 2,2′-bipyridine; Baruah et al., 2007), and are shorter than those of other isostructural metal(II) complexes with the same ligand set, such as [M(dpyam)(benz)2], where M = Zn (Lee et al., 2007), Cd (Park et al., 2010) and Hg (Lee et al., 2012), because of the different sizes of the central metal ions.
in the
|
3. Supramolecular features
In the crystal, adjacent complex molecules are linked into dimeric species, Fig. 2a, through aromatic π–π stacking interactions involving the pyridyl rings of the dpyam ligands with a centroid-to-centroid distance of 3.7257 (17) Å [Cg1⋯Cg2viii, symmetry code: (viii) −x, 2 − y, 1 − z; Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C6–C10 rings, respectively] and an interplanar spacing between dpyam ligands of 3.448 (2) Å. The π-stacking interaction is augmented by a pair of inversion-symmetry-equivalent N—H⋯O hydrogen bonds (Table 2) between the NH and carboxylate groups. The dimers are linked into a chain along the a axis via C—H⋯O hydrogen-bonding interactions, C—H(dpyam)⋯O1(benzoate) and C—H(benzoate)⋯O(benzoate), as shown in Fig. 2b. C—H⋯O interactions are augmented by a second set of weaker π–π interactions that alternate with the first along the chain direction, Fig. 2b. The latter set of weak π-stacking interactions presents a centroid-to-centroid distance of 4.3565 (17) Å [Cg1⋯Cg2ix, symmetry code: (ix) 1 − x, 2 − y,1 − z] and an interplanar spacing between dpyam ligands of 3.492 (3) Å. The chains are further connected by C—H⋯π interactions in the bc plane, Fig. 3, giving rise to a three-dimensional supramolecular network, Fig. 4.
4. Hirshfeld surface analysis
The interactions stabilizing the supramolecular framework of the title complex have been further studied by the analysis of the Hirshfeld surfaces and their two-dimensional fingerprint plots. These results were visualized using the program CrystalExplorer (Turner et al., 2017). The three-dimensional Hirshfeld surface of the title complex is shown in Fig. 5a. Interactions are represented using different colours, red indicating distances closer than the sum of the van der Waals radii, white indicating distances near the van der Waals radii separation, and blue indicating distances longer than the van der Waals radii (McKinnon et al., 2007; Venkatesan et al., 2016). The strong intermolecular N—H⋯O and C—H⋯O hydrogen bonding and C—H⋯π interactions in the crystal of the title complex are represented as red spots on dnorm. Selected two-dimensional fingerprint plots are shown in Fig. 5b for all contacts as well as individual H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts, whose percentage contribution is also given. H⋯H intermolecular contacts make the highest percentage contribution (44.0%), a result of the prevalence of hydrogen from the organic ligand. The C⋯H/H⋯C and O⋯H/H⋯O intermolecular contacts are due to the attractive C—H⋯π and hydrogen-bonding interactions with percentage contributions of 30.7 and 15.7%, respectively, indicating these to be the dominant stabilizing interactions in this crystal. The C⋯C contacts, with a percentage contribution of only 4.8%, indicate that the π–π interactions in the crystal of the title complex are weak compared to the other types of interactions, despite their prominent apparent role when visually inspecting the crystal structure.
5. Characterization
The IR spectrum (see Fig. S1 in the supporting information) of the title complex presents characteristic peaks at 3323, 3219 and 3148 cm−1 for N—H stretching and 1642 cm−1 for N—H bending, 1595 cm−1 for C=N aromatic stretching and 1421 cm−1 for C—N stretching in the coordinated dpyam ligand. Asymmetric and symmetric COO− peaks of the chelating benzoate ligand are present at 1528 and 1489 cm−1, respectively. The peaks at 865, 772 and 687 cm−1 are assigned to C—H bending of aromatic rings. The peaks at 526 and 443 cm−1 have been assigned to Ni—O and Ni—N stretching, respectively (Zianna et al., 2016).
The solid-state diffuse reflectance spectrum (Fig. S2) of the title complex presents three peaks at 391, 669 and 1044 nm that can be attributed to the allowed transitions 3A2g → 3T1g(P), 3A2g → 3T1g(F) and 3A2g → 3T2g, respectively. In addition, the spectrum also shows a shoulder peak at 793 nm which can be attributed to a forbidden transition, 3A2g → 1Eg. This spectroscopic feature agrees with the typical d–d transitions of the NiII ion in a distorted octahedral geometry (Al-Riyahee et al., 2018).
A PXRD pattern of the title complex was collected at room temperature (Fig. S3). The result shows that the pattern of the as-synthesized bulk material matches its simulated pattern, confirming the phase purity of the title complex.
6. Database survey
Previously reported complexes related to the title complex are [M(dpyam)(benz)2], M = Zn [CSD (Groom et al., 2016) refcode GIJMAO; Lee et al., 2007], Cd (WUVGOK; Park et al., 2010) and Hg (QATXUG; Lee et al., 2012). These complexes are isostructural. However, the size of the metal center in these complexes affects the metal-to-ligand distances (Alvarez, 2015) with the M—O/N bond lengths following the order NiII < ZnII < CdII < HgII in the corresponding complexes, leading to a different degree of distortion in their coordination spheres.
7. Synthesis and crystallization
A methanolic solution (15 mL) of dpyam (0.1712 g, 1 mmol) was slowly added into a warmed solution of Ni(NO3)2·6H2O (0.2908 g, 1 mmol) in distilled water (5 mL), under constant stirring for about 15 min; the resulting solution was kept at 333 K. Subsequently, solid sodium benzoate (0.2882 g, 2 mmol) was added slowly, resulting in a green precipitate. Then DMF (15 mL) was added dropwise and the solution was stirred until it became clear and green in colour. The solution mixture was filtered and left to stand at room temperature in air for slow evaporation. After a day, light-green rod-shaped crystals were obtained, collected by filtration, and air-dried [30.3% yield based on nickel(II) salt]. Elemental analysis calculated for C24H19NiN3O4: C, 60.80; H, 4.46; N, 8.86. Found: C, 60.56; H, 5.01; N, 8.26. IR (KBr, ν/cm−1): 3323w, 3219w, 3148w, 1642m, 1595m, 1541s, 1528s, 1489s, 1421s, 1242w, 1158w, 2021w, 865w, 772m, 729m, 687w, 526w, 443w.
8. Refinement
Crystal data, data collection and structure . All hydrogen atoms were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to the N atom of dpyam was located in a difference-Fourier map and was freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1945125
https://doi.org/10.1107/S2056989019010880/zl2759sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010880/zl2759Isup2.hkl
Supplementary figures. DOI: https://doi.org/10.1107/S2056989019010880/zl2759sup3.docx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ni(C7H5O2)2(C10H9N3)] | F(000) = 976 |
Mr = 472.13 | Dx = 1.458 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4199 (4) Å | Cell parameters from 9934 reflections |
b = 16.679 (1) Å | θ = 3.1–26.4° |
c = 17.6971 (11) Å | µ = 0.94 mm−1 |
β = 100.778 (2)° | T = 296 K |
V = 2151.5 (2) Å3 | Block, light green |
Z = 4 | 0.32 × 0.20 × 0.20 mm |
Bruker D8 QUEST CMOS diffractometer | 4407 independent reflections |
Radiation source: sealed x-ray tube, Mo | 3569 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
Detector resolution: 7.39 pixels mm-1 | θmax = 26.4°, θmin = 3.1° |
ω and φ scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −20→20 |
Tmin = 0.655, Tmax = 0.745 | l = −21→22 |
41528 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0327P)2 + 2.1013P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
4407 reflections | Δρmax = 0.45 e Å−3 |
293 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.16089 (4) | 0.89490 (2) | 0.37031 (2) | 0.03029 (11) | |
O1 | 0.3922 (2) | 0.89019 (11) | 0.32357 (10) | 0.0365 (4) | |
O2 | 0.1306 (2) | 0.87442 (12) | 0.24456 (11) | 0.0413 (5) | |
O3 | −0.0955 (2) | 0.85283 (10) | 0.38795 (11) | 0.0361 (4) | |
O4 | 0.1251 (2) | 0.76753 (11) | 0.38110 (11) | 0.0399 (5) | |
N1 | 0.0989 (3) | 1.01439 (13) | 0.36105 (12) | 0.0342 (5) | |
N2 | 0.1916 (3) | 1.04290 (13) | 0.49359 (14) | 0.0370 (5) | |
H5 | 0.192 (4) | 1.0771 (18) | 0.5276 (17) | 0.038 (8)* | |
N3 | 0.2849 (3) | 0.90878 (12) | 0.48206 (12) | 0.0311 (5) | |
C1 | 0.0251 (4) | 1.04335 (18) | 0.29092 (17) | 0.0476 (7) | |
H1 | 0.011333 | 1.008330 | 0.249348 | 0.057* | |
C2 | −0.0307 (5) | 1.1207 (2) | 0.2771 (2) | 0.0568 (9) | |
H2 | −0.081425 | 1.137499 | 0.227602 | 0.068* | |
C3 | −0.0107 (5) | 1.17345 (19) | 0.3377 (2) | 0.0526 (8) | |
H3 | −0.047199 | 1.226609 | 0.329818 | 0.063* | |
C4 | 0.0635 (4) | 1.14671 (17) | 0.40961 (19) | 0.0451 (7) | |
H4 | 0.077819 | 1.181450 | 0.451414 | 0.054* | |
C5 | 0.1180 (3) | 1.06633 (15) | 0.41994 (16) | 0.0331 (6) | |
C6 | 0.2787 (3) | 0.97412 (15) | 0.52449 (15) | 0.0308 (6) | |
C7 | 0.3584 (4) | 0.97654 (17) | 0.60236 (16) | 0.0401 (6) | |
H7 | 0.348812 | 1.022417 | 0.631221 | 0.048* | |
C8 | 0.4500 (4) | 0.91137 (19) | 0.63562 (17) | 0.0476 (7) | |
H8 | 0.504579 | 0.912522 | 0.687384 | 0.057* | |
C9 | 0.4619 (4) | 0.84332 (18) | 0.59242 (18) | 0.0464 (7) | |
H9 | 0.524297 | 0.798089 | 0.614168 | 0.056* | |
C10 | 0.3787 (4) | 0.84458 (17) | 0.51625 (16) | 0.0398 (6) | |
H10 | 0.387062 | 0.799141 | 0.486652 | 0.048* | |
C11 | 0.3028 (4) | 0.87810 (14) | 0.25627 (15) | 0.0312 (6) | |
C12 | 0.4056 (4) | 0.87111 (15) | 0.19153 (15) | 0.0324 (6) | |
C13 | 0.5960 (4) | 0.87371 (17) | 0.20625 (16) | 0.0387 (6) | |
H13 | 0.659395 | 0.877598 | 0.256682 | 0.046* | |
C14 | 0.6917 (4) | 0.87057 (19) | 0.14667 (18) | 0.0462 (7) | |
H14 | 0.819301 | 0.871863 | 0.156973 | 0.055* | |
C15 | 0.5983 (4) | 0.8655 (2) | 0.07180 (18) | 0.0501 (8) | |
H15 | 0.662834 | 0.864220 | 0.031531 | 0.060* | |
C16 | 0.4094 (4) | 0.86233 (19) | 0.05656 (16) | 0.0472 (7) | |
H16 | 0.346645 | 0.858820 | 0.006008 | 0.057* | |
C17 | 0.3128 (4) | 0.86435 (16) | 0.11630 (15) | 0.0368 (6) | |
H17 | 0.185439 | 0.861160 | 0.105890 | 0.044* | |
C18 | −0.0389 (4) | 0.78057 (15) | 0.38557 (14) | 0.0319 (6) | |
C19 | −0.1686 (4) | 0.71259 (16) | 0.38617 (15) | 0.0336 (6) | |
C20 | −0.1020 (4) | 0.63507 (17) | 0.39881 (19) | 0.0477 (7) | |
H20 | 0.023745 | 0.626021 | 0.410818 | 0.057* | |
C21 | −0.2220 (5) | 0.5716 (2) | 0.3936 (2) | 0.0617 (10) | |
H21 | −0.176871 | 0.519815 | 0.402797 | 0.074* | |
C22 | −0.4075 (5) | 0.5841 (2) | 0.3750 (2) | 0.0601 (9) | |
H22 | −0.487872 | 0.540837 | 0.369942 | 0.072* | |
C23 | −0.4746 (4) | 0.6610 (2) | 0.36369 (19) | 0.0533 (8) | |
H23 | −0.600533 | 0.669629 | 0.352004 | 0.064* | |
C24 | −0.3556 (4) | 0.72552 (18) | 0.36964 (16) | 0.0410 (6) | |
H24 | −0.401431 | 0.777426 | 0.362537 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.03251 (18) | 0.02790 (18) | 0.03103 (18) | −0.00190 (14) | 0.00746 (13) | −0.00557 (14) |
O1 | 0.0347 (9) | 0.0410 (10) | 0.0339 (10) | −0.0049 (8) | 0.0068 (8) | −0.0094 (8) |
O2 | 0.0337 (10) | 0.0496 (12) | 0.0410 (11) | −0.0025 (9) | 0.0077 (8) | −0.0100 (9) |
O3 | 0.0393 (10) | 0.0282 (10) | 0.0421 (11) | −0.0021 (8) | 0.0110 (8) | −0.0048 (8) |
O4 | 0.0363 (11) | 0.0343 (10) | 0.0508 (12) | −0.0029 (8) | 0.0123 (9) | −0.0086 (9) |
N1 | 0.0378 (12) | 0.0321 (12) | 0.0342 (12) | 0.0002 (9) | 0.0105 (10) | −0.0002 (9) |
N2 | 0.0498 (14) | 0.0246 (11) | 0.0371 (13) | −0.0012 (10) | 0.0094 (11) | −0.0071 (10) |
N3 | 0.0348 (11) | 0.0265 (11) | 0.0326 (11) | −0.0013 (9) | 0.0081 (9) | −0.0023 (9) |
C1 | 0.0588 (19) | 0.0454 (17) | 0.0389 (16) | 0.0107 (15) | 0.0104 (14) | 0.0017 (13) |
C2 | 0.067 (2) | 0.055 (2) | 0.0496 (19) | 0.0178 (17) | 0.0143 (16) | 0.0191 (16) |
C3 | 0.058 (2) | 0.0359 (16) | 0.067 (2) | 0.0091 (14) | 0.0201 (17) | 0.0133 (15) |
C4 | 0.0511 (17) | 0.0294 (15) | 0.0569 (19) | 0.0016 (13) | 0.0159 (15) | −0.0019 (13) |
C5 | 0.0308 (13) | 0.0308 (13) | 0.0406 (15) | −0.0032 (11) | 0.0144 (12) | −0.0003 (11) |
C6 | 0.0289 (13) | 0.0295 (13) | 0.0358 (14) | −0.0071 (10) | 0.0107 (11) | −0.0047 (11) |
C7 | 0.0455 (16) | 0.0397 (16) | 0.0344 (14) | −0.0082 (13) | 0.0054 (12) | −0.0094 (12) |
C8 | 0.0427 (17) | 0.059 (2) | 0.0371 (16) | −0.0103 (14) | −0.0035 (13) | −0.0024 (14) |
C9 | 0.0418 (16) | 0.0445 (17) | 0.0497 (18) | 0.0020 (13) | 0.0001 (14) | 0.0087 (14) |
C10 | 0.0434 (16) | 0.0343 (15) | 0.0411 (16) | 0.0037 (12) | 0.0068 (13) | −0.0015 (12) |
C11 | 0.0349 (14) | 0.0243 (13) | 0.0340 (14) | −0.0024 (10) | 0.0050 (11) | −0.0030 (10) |
C12 | 0.0373 (14) | 0.0260 (13) | 0.0340 (14) | 0.0014 (11) | 0.0068 (11) | −0.0023 (10) |
C13 | 0.0390 (15) | 0.0419 (16) | 0.0347 (14) | −0.0002 (12) | 0.0052 (12) | −0.0025 (12) |
C14 | 0.0369 (15) | 0.0532 (18) | 0.0503 (18) | 0.0014 (13) | 0.0125 (14) | −0.0025 (14) |
C15 | 0.059 (2) | 0.0552 (19) | 0.0414 (17) | 0.0046 (15) | 0.0220 (15) | 0.0014 (14) |
C16 | 0.059 (2) | 0.0511 (18) | 0.0290 (14) | 0.0066 (15) | 0.0026 (13) | −0.0004 (13) |
C17 | 0.0384 (15) | 0.0356 (14) | 0.0344 (15) | 0.0026 (12) | 0.0021 (12) | −0.0036 (11) |
C18 | 0.0390 (15) | 0.0291 (13) | 0.0277 (13) | −0.0017 (11) | 0.0066 (11) | −0.0056 (10) |
C19 | 0.0406 (15) | 0.0308 (14) | 0.0309 (13) | −0.0033 (11) | 0.0108 (11) | −0.0054 (11) |
C20 | 0.0503 (18) | 0.0350 (15) | 0.061 (2) | −0.0004 (13) | 0.0180 (15) | −0.0017 (14) |
C21 | 0.078 (3) | 0.0318 (16) | 0.082 (3) | −0.0071 (16) | 0.033 (2) | −0.0078 (16) |
C22 | 0.072 (2) | 0.048 (2) | 0.066 (2) | −0.0305 (17) | 0.0260 (18) | −0.0172 (16) |
C23 | 0.0443 (17) | 0.063 (2) | 0.0533 (19) | −0.0164 (16) | 0.0112 (15) | −0.0032 (16) |
C24 | 0.0412 (16) | 0.0417 (16) | 0.0406 (16) | −0.0027 (13) | 0.0086 (13) | −0.0007 (13) |
Ni1—O1 | 2.0414 (18) | C8—C9 | 1.381 (4) |
Ni1—O2 | 2.2208 (19) | C9—H9 | 0.9300 |
Ni1—O3 | 2.1050 (18) | C9—C10 | 1.374 (4) |
Ni1—O4 | 2.1540 (19) | C10—H10 | 0.9300 |
Ni1—N1 | 2.045 (2) | C11—C12 | 1.495 (4) |
Ni1—N3 | 2.032 (2) | C12—C13 | 1.388 (4) |
O1—C11 | 1.266 (3) | C12—C17 | 1.384 (4) |
O2—C11 | 1.257 (3) | C13—H13 | 0.9300 |
O3—C18 | 1.280 (3) | C13—C14 | 1.378 (4) |
O4—C18 | 1.253 (3) | C14—H14 | 0.9300 |
N1—C1 | 1.349 (4) | C14—C15 | 1.378 (4) |
N1—C5 | 1.342 (3) | C15—H15 | 0.9300 |
N2—H5 | 0.83 (3) | C15—C16 | 1.378 (4) |
N2—C5 | 1.372 (4) | C16—H16 | 0.9300 |
N2—C6 | 1.379 (3) | C16—C17 | 1.384 (4) |
N3—C6 | 1.329 (3) | C17—H17 | 0.9300 |
N3—C10 | 1.356 (3) | C18—C19 | 1.489 (4) |
C1—H1 | 0.9300 | C19—C20 | 1.387 (4) |
C1—C2 | 1.363 (4) | C19—C24 | 1.380 (4) |
C2—H2 | 0.9300 | C20—H20 | 0.9300 |
C2—C3 | 1.373 (5) | C20—C21 | 1.375 (4) |
C3—H3 | 0.9300 | C21—H21 | 0.9300 |
C3—C4 | 1.363 (4) | C21—C22 | 1.370 (5) |
C4—H4 | 0.9300 | C22—H22 | 0.9300 |
C4—C5 | 1.402 (4) | C22—C23 | 1.376 (5) |
C6—C7 | 1.395 (4) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C23—C24 | 1.383 (4) |
C7—C8 | 1.357 (4) | C24—H24 | 0.9300 |
C8—H8 | 0.9300 | ||
O1—Ni1—O2 | 61.53 (7) | C7—C8—C9 | 119.8 (3) |
O1—Ni1—O3 | 154.01 (7) | C9—C8—H8 | 120.1 |
O1—Ni1—O4 | 97.18 (7) | C8—C9—H9 | 121.1 |
O1—Ni1—N1 | 101.45 (8) | C10—C9—C8 | 117.8 (3) |
O3—Ni1—O2 | 99.93 (7) | C10—C9—H9 | 121.1 |
O3—Ni1—O4 | 61.85 (7) | N3—C10—C9 | 123.3 (3) |
O4—Ni1—O2 | 86.91 (7) | N3—C10—H10 | 118.4 |
N1—Ni1—O2 | 95.19 (8) | C9—C10—H10 | 118.4 |
N1—Ni1—O3 | 98.10 (8) | O1—C11—C12 | 118.7 (2) |
N1—Ni1—O4 | 159.84 (8) | O2—C11—O1 | 120.0 (2) |
N3—Ni1—O1 | 97.87 (8) | O2—C11—C12 | 121.2 (2) |
N3—Ni1—O2 | 159.25 (8) | C13—C12—C11 | 120.1 (2) |
N3—Ni1—O3 | 98.67 (8) | C17—C12—C11 | 120.7 (2) |
N3—Ni1—O4 | 93.84 (8) | C17—C12—C13 | 119.3 (2) |
N3—Ni1—N1 | 91.21 (8) | C12—C13—H13 | 119.8 |
C11—O1—Ni1 | 93.15 (15) | C14—C13—C12 | 120.5 (3) |
C11—O2—Ni1 | 85.30 (15) | C14—C13—H13 | 119.8 |
C18—O3—Ni1 | 89.87 (15) | C13—C14—H14 | 120.0 |
C18—O4—Ni1 | 88.37 (15) | C13—C14—C15 | 120.0 (3) |
C1—N1—Ni1 | 117.99 (19) | C15—C14—H14 | 120.0 |
C5—N1—Ni1 | 125.26 (18) | C14—C15—H15 | 120.0 |
C5—N1—C1 | 116.7 (2) | C16—C15—C14 | 120.0 (3) |
C5—N2—H5 | 116 (2) | C16—C15—H15 | 120.0 |
C5—N2—C6 | 133.4 (2) | C15—C16—H16 | 119.9 |
C6—N2—H5 | 110 (2) | C15—C16—C17 | 120.2 (3) |
C6—N3—Ni1 | 125.88 (18) | C17—C16—H16 | 119.9 |
C6—N3—C10 | 117.7 (2) | C12—C17—H17 | 120.0 |
C10—N3—Ni1 | 116.45 (17) | C16—C17—C12 | 120.1 (3) |
N1—C1—H1 | 117.9 | C16—C17—H17 | 120.0 |
N1—C1—C2 | 124.1 (3) | O3—C18—C19 | 120.0 (2) |
C2—C1—H1 | 117.9 | O4—C18—O3 | 119.6 (2) |
C1—C2—H2 | 120.6 | O4—C18—C19 | 120.3 (2) |
C1—C2—C3 | 118.8 (3) | C20—C19—C18 | 120.0 (3) |
C3—C2—H2 | 120.6 | C24—C19—C18 | 120.3 (2) |
C2—C3—H3 | 120.5 | C24—C19—C20 | 119.6 (3) |
C4—C3—C2 | 119.0 (3) | C19—C20—H20 | 120.0 |
C4—C3—H3 | 120.5 | C21—C20—C19 | 120.0 (3) |
C3—C4—H4 | 120.3 | C21—C20—H20 | 120.0 |
C3—C4—C5 | 119.4 (3) | C20—C21—H21 | 119.7 |
C5—C4—H4 | 120.3 | C22—C21—C20 | 120.5 (3) |
N1—C5—N2 | 121.3 (2) | C22—C21—H21 | 119.7 |
N1—C5—C4 | 122.0 (3) | C21—C22—H22 | 120.1 |
N2—C5—C4 | 116.7 (3) | C21—C22—C23 | 119.8 (3) |
N2—C6—C7 | 116.6 (2) | C23—C22—H22 | 120.1 |
N3—C6—N2 | 121.4 (2) | C22—C23—H23 | 119.8 |
N3—C6—C7 | 121.9 (2) | C22—C23—C24 | 120.4 (3) |
C6—C7—H7 | 120.3 | C24—C23—H23 | 119.8 |
C8—C7—C6 | 119.4 (3) | C19—C24—C23 | 119.8 (3) |
C8—C7—H7 | 120.3 | C19—C24—H24 | 120.1 |
C7—C8—H8 | 120.1 | C23—C24—H24 | 120.1 |
Ni1—O1—C11—O2 | 0.3 (2) | C3—C4—C5—N1 | −0.2 (4) |
Ni1—O1—C11—C12 | 178.36 (19) | C3—C4—C5—N2 | −180.0 (3) |
Ni1—O2—C11—O1 | −0.3 (2) | C5—N1—C1—C2 | −0.3 (4) |
Ni1—O2—C11—C12 | −178.3 (2) | C5—N2—C6—N3 | −9.2 (4) |
Ni1—O3—C18—O4 | 5.3 (2) | C5—N2—C6—C7 | 171.3 (3) |
Ni1—O3—C18—C19 | −173.2 (2) | C6—N2—C5—N1 | 9.4 (4) |
Ni1—O4—C18—O3 | −5.2 (2) | C6—N2—C5—C4 | −170.8 (3) |
Ni1—O4—C18—C19 | 173.3 (2) | C6—N3—C10—C9 | 2.0 (4) |
Ni1—N1—C1—C2 | 176.8 (3) | C6—C7—C8—C9 | −0.6 (4) |
Ni1—N1—C5—N2 | 3.2 (3) | C7—C8—C9—C10 | −0.1 (5) |
Ni1—N1—C5—C4 | −176.6 (2) | C8—C9—C10—N3 | −0.6 (4) |
Ni1—N3—C6—N2 | −3.7 (3) | C10—N3—C6—N2 | 177.8 (2) |
Ni1—N3—C6—C7 | 175.80 (19) | C10—N3—C6—C7 | −2.7 (4) |
Ni1—N3—C10—C9 | −176.7 (2) | C11—C12—C13—C14 | −177.4 (3) |
O1—C11—C12—C13 | 3.3 (4) | C11—C12—C17—C16 | 176.5 (3) |
O1—C11—C12—C17 | −174.8 (2) | C12—C13—C14—C15 | 0.6 (5) |
O2—C11—C12—C13 | −178.7 (2) | C13—C12—C17—C16 | −1.7 (4) |
O2—C11—C12—C17 | 3.2 (4) | C13—C14—C15—C16 | −1.0 (5) |
O3—C18—C19—C20 | −167.3 (3) | C14—C15—C16—C17 | 0.1 (5) |
O3—C18—C19—C24 | 16.6 (4) | C15—C16—C17—C12 | 1.2 (4) |
O4—C18—C19—C20 | 14.2 (4) | C17—C12—C13—C14 | 0.8 (4) |
O4—C18—C19—C24 | −161.9 (3) | C18—C19—C20—C21 | −175.1 (3) |
N1—C1—C2—C3 | 0.3 (5) | C18—C19—C24—C23 | 174.3 (3) |
N2—C6—C7—C8 | −178.4 (3) | C19—C20—C21—C22 | 0.9 (5) |
N3—C6—C7—C8 | 2.1 (4) | C20—C19—C24—C23 | −1.8 (4) |
C1—N1—C5—N2 | 180.0 (2) | C20—C21—C22—C23 | −2.0 (6) |
C1—N1—C5—C4 | 0.2 (4) | C21—C22—C23—C24 | 1.2 (5) |
C1—C2—C3—C4 | −0.3 (5) | C22—C23—C24—C19 | 0.7 (5) |
C2—C3—C4—C5 | 0.2 (5) | C24—C19—C20—C21 | 1.1 (5) |
Cg3 and Cg4 are the centroids of the C12–C17 and C19-C24 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2 | 0.93 | 2.41 | 3.077 (4) | 129 |
C10—H10···O4 | 0.93 | 2.49 | 3.038 (3) | 118 |
N2—H5···O3i | 0.83 (3) | 2.12 (3) | 2.913 (3) | 159 (3) |
C7—H7···O1ii | 0.93 | 2.43 | 3.029 (3) | 123 |
C24—H24···O1iii | 0.93 | 2.44 | 3.338 (3) | 162 |
C14—H14···O2iv | 0.93 | 2.53 | 3.391 (3) | 154 |
C9—H9···Cg3v | 0.93 | 2.79 | 3.593 (3) | 145 |
C22—H22···Cg3vi | 0.93 | 2.89 | 3.671 (4) | 143 |
C15—H15···Cg4vii | 0.93 | 2.76 | 3.634 (3) | 157 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x−1, y, z; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) −x, y−1/2, −z+1/2; (vii) x+1, −y+3/2, z−1/2. |
Funding information
NW acknowledges Thammasat University Research Fund (Contract No. 34/2560) for financial support. The authors thank the Central Scientific Instrument Center (CSIC), Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer and acknowledge the Center of Scientific Equipment for Advanced Research (CSEAR), Thammasat University, for facilities to conduct this research.
References
Al-Riyahee, A. A. A., Hadadd, H. H. & Jaaz, B. H. (2018). Orient. J. Chem. 34, 2927–2941. CAS Google Scholar
Alvarez, S. (2015). Chem. Rev. 115, 13447–13483. Web of Science CrossRef CAS PubMed Google Scholar
Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kędziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, J. H., Park, H. M., Jang, S. P., Eom, G. H., Bae, J. M., Kim, C., Kim, Y. & Kim, S.-J. (2012). Inorg. Chem. Commun. 15, 212–215. Web of Science CSD CrossRef CAS Google Scholar
Lee, Y. M., Hong, S. J., Kim, H. J., Lee, S. H., Kwak, H., Kim, C., Kim, S.-J. & Kim, Y. (2007). Inorg. Chem. Commun. 10, 287–291. Web of Science CSD CrossRef CAS Google Scholar
Luo, W., Meng, X., Sun, X., Xiao, F., Shen, J., Zhou, Y., Cheng, G. & Ji, Z. (2007). Inorg. Chem. Commun. 10, 1351–1354. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Morgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229–2235. Web of Science CSD CrossRef CAS Google Scholar
Park, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S.-J. & Kim, Y. (2010). Polyhedron, 29, 773–786. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Zianna, A., Psomas, G., Hatzidimitriou, A. & Lalia-Kantouri, M. (2016). J. Inorg. Biochem. 163, 131–142. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.