research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Twelve 4-(4-meth­­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 5 August 2019; accepted 11 September 2019; online 20 September 2019)

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2·H2O (I), C11H17N2O+·C7H4FO2·H2O (II), C11H17N2O+·C7H4ClO2·H2O (III), and C11H17N2O+·C7H4BrO2·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3 (V), C11H17N2O+·C6H4NO2 (VI) and C11H17N2O+·C7H3N2O7 (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4 (VIII) and C11H17N2O+·C4H3O3 (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3 (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2 (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.

1. Chemical context

In recent years, N-(4-meth­oxy­phen­yl)piperazine (MeOPP) has emerged as a new addition to the range of designer recreational drugs, and considerable effort has been invested in the development of methods for the detection both of MeOPP itself and of its metabolites N-(4-hy­droxy­phen­yl)piperazine and 4-hy­droxy­aniline (Arbo et al., 2012[Arbo, M. D., Bastos, M. L. & Carmo, H. F. (2012). Drug Alcohol Depend. 122, 174-185.]) in human fluids (Staack & Maurer, 2003[Staack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333-342.]; Staack et al., 2004[Staack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). Xenobiotica, 34, 179-192.]). MeOPP has euphoric stimulant properties and its action on human physiology is similar to that of amphetamines (Staack & Maurer, 2005[Staack, R. F. & Maurer, H. H. (2005). Curr. Drug Metab. 6, 259-274.]; Wohlfarth et al., 2010[Wohlfarth, A., Weinmann, W. & Dresen, S. (2010). Anal. Bioanal. Chem. 396, 2403-2414.]), but it has a significantly lower potential for abuse (Nagai et al., 2007[Nagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132-137.]). However, no therapeutic applications of MeOPP have been reported to date. In view of the reported properties of MeOPP, coupled with the broad range of biological activities exhibited by piperazine derivatives (Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 5-11.]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]), we have recently initiated a programme of study centred on N-(4-meth­oxy­phen­yl)piperazine derivatives, and we have recently reported the synthesis and structures of a series of 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]). In a continuation of that work, we have now prepared a series of 4-meth­oxy­phen­yl)piperazin-1-ium salts of simple organic acids, (I)–(XII), in order to study the various patterns of hydrogen-bonding inter­actions present in these salts, which may eventually be of value in pharmacological and pharmaceutical applications (Kavitha et al., 2014[Kavitha, C. N., Yathirajan, H. S., Kaur, M., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 805-811.]; Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]; Shaibah, Yathirajan et al., 2017[Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488-1492.]; Shaibah, Sagar et al., 2017[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513-1516.]; Shaibah et al., 2019[Shaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292-298.]). Salts of this type are readily prepared by co-crystallizations of the piperazine and the acids in methanol solution and, in total, 28 different acids representing a wide range of chemical types were investigated (see Section 5): however, only twelve of these provided crystals suitable for single-crystal X-ray diffraction, and thus we report here the mol­ecular and supra­molecular structures of (I)–(XII) (Figs. 1[link]–12[link][link][link][link][link][link][link][link][link][link][link]).

[Scheme 1]
[Figure 1]
Figure 1
The independent components of compound (I)[link], showing the atom-labelling scheme, the disorder of the 4-meth­oxy­phenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.
[Figure 2]
Figure 2
The independent components of compound (II)[link], showing the atom-labelling scheme, the disorder of the 4-meth­oxy­phenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.
[Figure 3]
Figure 3
The independent components of compound (III)[link], showing the atom-labelling scheme, the disorder of the 4-meth­oxy­phenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.
[Figure 4]
Figure 4
The independent components of compound (IV)[link], showing the atom-labelling scheme, the disorder of the 4-meth­oxy­phenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn dashed broken lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.
[Figure 5]
Figure 5
The independent components of compound (V)[link], showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The independent components of compound (VI)[link], showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7]
Figure 7
The independent components of compound (VII)[link], showing the atom-labelling scheme and the hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 8]
Figure 8
The independent components of compound (VIII)[link], showing the atom-labelling scheme, the disorder of anion, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 9]
Figure 9
The independent components of compound (IX)[link], showing the atom-labelling scheme, the disorder of anion, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 10]
Figure 10
The independent components of compound (X)[link], showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 11]
Figure 11
The independent components of compound (XI)[link], showing the atom-labelling scheme and the hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 12]
Figure 12
The independent components of compound (XII)[link], showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with the suffix `a′ are at the symmetry position (1 − x, 1 − y, −z)

2. Structural commentary

Compounds (I)–(XI) are all 1:1 salts, but in (XII)[link], where the dianion lies across a centre of inversion while the cation lies in a general position, the cation:anion ratio is 2:1. Compounds (I)–(IV) and (XII)[link] all crystallize as hydrates, but compounds (V)–(XI) all crystallize in solvent-free form. Compounds (I)–(IV) are isomorphous (Table 2[link]), in each of which the 4-meth­oxy­phenyl groups is disordered over two sets of atomic sites (Figs. 1[link]–4[link][link][link]), having occupancies 0.66 (2) and 0.34 (2) in (I)[link], 0.81 (3) and 0.19 (3) in (II)[link], 0.73 (2) and 0.27 (2) in (III)[link] and 0.80 (2) and 0.20 (2) in (IV)[link]. Similarly, compounds (VIII)[link] and (IX)[link] are isomorphous, and in both of them the anion exhibits disorder, with occupancies of 0.660 (15) and 0.340 (15) in (VIII)[link], and 0.906 (9) and 0.094 (9) in (IX)[link] (Figs. 8[link] and 9[link]). While compounds (I)–(IV) are isostructural, compounds (VIII)[link] and (IX)[link] are not, because of both the different configurations of their anions and the different degrees of disorder. Examples have been previously reported of compounds that are isomorphous but not strictly isostructural in terms of their inter­molecular inter­actions (Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]).

Table 2
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H17N2O+·C7H5O2·H2O C11H17N2O+·C7H4FO2·H2O C11H17N2O+·C7H4ClO2·H2O C11H17N2O+·C7H4BrO2·H2O
Mr 332.39 350.38 366.83 411.28
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 296 293 293 293
a, b, c (Å) 6.215 (1), 7.547 (1), 18.716 (4) 6.256 (1), 7.489 (1), 19.097 (2) 6.211 (1), 7.481 (1), 20.144 (4) 6.2004 (8), 7.4957 (9), 20.440 (2)
α, β, γ (°) 84.34 (2), 87.14 (2), 84.69 (2) 84.19 (1), 86.98 (2), 84.62 (2) 84.90 (2), 87.48 (2), 85.19 (2) 85.08 (1), 87.37 (1), 85.00 (1)
V3) 869.1 (3) 885.4 (2) 928.4 (3) 942.17 (19)
Z 2 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.10 0.23 2.21
Crystal size (mm) 0.40 × 0.24 × 0.04 0.40 × 0.24 × 0.04 0.20 × 0.16 × 0.02 0.48 × 0.44 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.834, 0.996 0.973, 0.996 0.951, 0.995 0.536, 0.719
No. of measured, independent and observed [I > 2σ(I)] reflections 5751, 3442, 1839 5760, 3477, 1355 5883, 3454, 1343 6176, 3818, 2063
Rint 0.029 0.046 0.041 0.018
(sin θ/λ)max−1) 0.618 0.618 0.607 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.134, 1.02 0.066, 0.128, 1.01 0.065, 0.135, 0.94 0.068, 0.197, 1.06
No. of reflections 3442 3477 3454 3818
No. of parameters 256 265 265 265
No. of restraints 17 17 17 17
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.19 0.13, −0.14 0.24, −0.23 0.94, −0.64
  (V) (VI) (VII) (VIII)
Crystal data
Chemical formula C11H17N2O+·C7H5O3 C11H17N2O+·C6H4NO2 C7H3N2O7+·C11H17N2O C11H17N2O+·C4H5O4
Mr 330.38 315.37 420.38 310.35
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pbca Monoclinic, P21/c Orthorhombic, Pna21
Temperature (K) 296 296 296 296
a, b, c (Å) 6.5009 (8), 7.9735 (9), 32.155 (4) 9.2817 (7), 11.2905 (7), 30.309 (2) 7.5500 (9), 7.6489 (9), 32.719 (6) 9.3225 (9), 28.261 (3), 5.8228 (8)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 91.30 (1), 90 90, 90, 90
V3) 1666.8 (3) 3176.2 (4) 1889.0 (5) 1534.1 (3)
Z 4 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 0.12 0.10
Crystal size (mm) 0.42 × 0.42 × 0.34 0.46 × 0.42 × 0.36 0.18 × 0.12 × 0.06 0.44 × 0.42 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.899, 0.969 0.879, 0.968 0.916, 0.993 0.816, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 6249, 3564, 2875 22154, 3593, 2616 8215, 4074, 2003 5828, 2419, 2053
Rint 0.014 0.028 0.038 0.018
(sin θ/λ)max−1) 0.656 0.658 0.660 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.05 0.048, 0.119, 1.04 0.066, 0.128, 1.03 0.043, 0.104, 1.14
No. of reflections 3564 3593 4074 2419
No. of parameters 228 215 281 233
No. of restraints 0 0 0 16
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.13 0.19, −0.16 0.22, −0.23 0.16, −0.24
Absolute structure Flack x determined using 1011 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 460 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter
  (IX) (X) (XI) (XII)
Crystal data
Chemical formula C11H17N2O+·C4H3O4 C11H17N2O+·C4H3O4 C11H17N2O+·C2Cl3O2 C11H17N2O+·0.5C6Cl2O42−·H2O
Mr 308.33 308.33 355.64 314.76
Crystal system, space group Orthorhombic, Pna21 Monoclinic, P21/c Orthorhombic, Pca21 Monoclinic, P21/n
Temperature (K) 296 296 296 296
a, b, c (Å) 9.069 (1), 28.528 (3), 5.8375 (9) 9.063 (1), 6.4956 (9), 26.093 (3) 10.6117 (11), 13.808 (1), 10.9137 (8) 9.1597 (5), 15.1434 (8), 10.8742 (6)
α, β, γ (°) 90, 90, 90 90, 93.18 (1), 90 90, 90, 90 90, 102.067 (5), 90
V3) 1510.3 (3) 1533.7 (3) 1599.1 (2) 1475.02 (14)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.10 0.58 0.28
Crystal size (mm) 0.48 × 0.48 × 0.08 0.48 × 0.44 × 0.32 0.48 × 0.48 × 0.20 0.44 × 0.24 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.888, 0.992 0.871, 0.968 0.476, 0.892 0.892, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 5834, 2827, 2316 6112, 3311, 2459 6173, 2428, 2278 9650, 9650, 7444
Rint 0.015 0.014 0.027 ?
(sin θ/λ)max−1) 0.650 0.651 0.654 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.05 0.040, 0.111, 1.05 0.032, 0.086, 1.08 0.039, 0.105, 1.02
No. of reflections 2827 3311 2428 9650
No. of parameters 221 210 198 204
No. of restraints 11 0 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.14 0.21, −0.13 0.25, −0.31 0.23, −0.32
Absolute structure Flack x determined using 769 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.11 (7)
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In the anion of compound (VII)[link], the carboxyl group is unionized, with C—O distances of 1.220 (3) and 1.309 (3) Å and it is the phenolic H atom which has been lost (Fig. 7[link]). The C32—O33 distance, 1.280 (3) Å, is closer to that normally found in ketones than to that typical of phenols or phenolates (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]): in addition, the C31—C32 and C32—C33 distances, 1.437 (4) and 1.430 (4) Å, respectively, are significantly larger than the other C—C distances in this ring, which lie in the rather narrow range 1.370 (3)–1.385 (4) Å, but the C—N and N—O distances are all typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). These observations indicate that the negative charge in this anion is delocalized over the five atoms C31, C33, C34, C35 and C36, but without any significant delocalization onto the nitro groups, as has been observed in tri­nitro­phenolate (picrate) anions (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]; Sagar et al., 2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]; Shaibah et al., 2017a[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513-1516.],b[Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488-1492.]).

The anion of compound (X)[link] contains an almost linear and very short (Emsley, 1980[Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.]; Herschlag & Pinney, 2018[Herschlag, D. & Pinney, M. M. (2018). Biochemistry, 57, 3338-3352.]) O⋯H⋯O hydrogen bond, in which the H atom is almost, but not exactly, centred between the two O atoms (Table 1[link]). In the centrosymmetric anion of compound (XII)[link] (Fig. 12[link]), the two independent C—O distances are identical within experimental uncertainty, 1.244 (2) and 1.246 (2) Å, as are the distances C31—C32 and C32—C33, 1.398 (3) and 1.392 (2) Å. However, the remaining C—C distance in this ring, 1.539 (3) Å is typical of a single C—C bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). These observations indicates the delocalization of a negative charge across each of the O–C–C–C–O units, and that these two units are effectively isolated from each other electronically. Despite the apparent simplicity of this dianion, with its high intrinsic symmetry, it is not possible adequately to describe its electronic structure in a single diagrammatic form, and four forms (A)–(D) (Fig. 13[link]) are required.

Table 1
Hydrogen-bond parameters and short inter­molecular contacts (Å, °)

Cg1 andCg2 are the centroids of the C31–C36 and C21–C26 rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N1—H11⋯O31 0.90 (2) 1.88 (2) 2.777 (3) 174.1 (19)
  N1—H12⋯O41 0.97 (2) 1.85 (2) 2.808 (3) 169.7 (18)
  O41—H41⋯O32i 0.88 (3) 1.75 (3) 2.631 (3) 177 (3)
  O41—H42⋯O31ii 0.91 (3) 1.87 (3) 2.763 (3) 169 (3)
  C2—H2B⋯O31iii 0.97 2.54 3.485 (3) 165
  C22—H22⋯Cg1ii 0.93 2.85 3.603 (3) 139
  C26—H26⋯Cg1iv 0.93 2.90 3.62 (2) 135
  C56—H56⋯Cg1iv 0.93 2.64 3.41 (5) 141
           
(II) N1—H11⋯O31 1.09 (3) 1.67 (3) 2.758 (4) 174.1 (19)
  N1—H12⋯O41 0.86 (3) 1.96 (3) 2.818 (4) 170 (3)
  O41—H41⋯O32i 0.86 (4) 1.75 (4) 2.627 (4) 174 (4)
  O41—H42⋯O31ii 0.91 (4) 1.88 (4) 2.768 (3) 163 (3)
  C2—H2B⋯O31iii 0.97 2.58 3.529 (4) 166
  C6—H6B⋯O41i 0.97 2.57 3.386 (4) 142
  C26—H26⋯Cg1iv 0.93 2.81 3.56 (2) 138
  C56—H56⋯Cg1iv 0.93 2.96 3.55 (9) 123
           
(III) N1—H11⋯O31 1.09 (3) 1.71 (3) 2.790 (4) 176 (3)
  N1—H12⋯O41 0.83 (3) 1.98 (3) 2.811 (4) 174 (3)
  O41—H41⋯O32i 0.91 (4) 1.73 (4) 2.624 (4) 172 (4)
  O41—H42⋯O31ii 0.94 (4) 1.84 (4) 2.775 (4) 170 (4)
  C2—H2B⋯O31iii 0.97 2.52 3.467 (4) 165
  C6—H6B⋯O41i 0.97 2.60 3.408 (4) 141
  C22—H22⋯Cg1iv 0.93 2.89 3.631 (13) 137
  C26—H26⋯Cg1iv 0.93 2.81 3.58 (2) 141
           
(IV) N1—H11⋯O31 0.78 (4) 2.03 (4) 2.805 (5) 174 (5)
  N1—H12⋯O41 0.95 (5) 1.86 (5) 2.802 (5) 172 (4)
  O41—H41⋯O32i 0.79 (6) 1.84 (6) 2.623 (6) 170 (6)
  O41—H42⋯O31ii 0.79 (7) 2.00 (7) 2.772 (5) 169 (6)
  C2—H2B⋯O31iii 0.97 2.52 3.471 (5) 166
  C22—H22⋯Cg1ii 0.93 2.52 3.471 (5) 166
  C26—H26⋯Cg1iv 0.93 2.84 3.58 (2) 137
           
(V) N1—H11⋯O31 0.96 (3) 1.85 (3) 2.759 (3) 156 (3)
  N1—H11⋯O32 0.96 (3) 2.47 (3) 3.283 (3) 142 (2)
  N1—H12⋯O32v 0.95 (3) 1.87 (3) 2.806 (3) 166 (2)
  O33—H33A⋯O31 0.97 (3) 1.60 (3) 2.516 (3) 156 (3)
  C6—H6A⋯O33vi 0.97 2.58 3.444 (3) 148
  C2—H2ACg1vii 0.97 2.88 3.711 (3) 144
  C26—H26⋯Cg1viii 0.93 2.87 3.642 (3) 141
           
(VI) N1—H11⋯O31 0.976 (19) 1.714 (19) 2.677 (2) 168.2 (18)
  N1—H12⋯O32ix 0.94 (2) 1.82 (2) 2.749 (2) 168.3 (17)
  C2—H2B⋯N31iv 0.97 2.56 3.518 (2) 169
  C36—H36⋯O24x 0.93 2.51 3.432 (2) 172
  C3—H3ACg1xi 0.97 2.97 3.775 (2) 156
           
(VII) O32—H32⋯O33 1.04 (4) 1.47 (4) 2.472 (3) 158 (3)
  N1—H11⋯O33 0.93 (3) 1.98 (3) 2.020 (3) 150 (3)
  N1—H11⋯O34 0.93 (3) 2.27 (3) 2.910 (3) 126 (2)
  N1—H12⋯O31i 0.93 (3) 2.04 (3) 2.931 (3) 160 (3)
  N1—H12⋯O32i 0.93 (3) 2.58 (3) 3.250 (3) 129 (2)
  C34—H34⋯O36xii 0.93 2.53 3.449 (3) 171
  C5—H5BCg2xiii 0.97 2.84 3.639 (3) 140
           
(VIII) N1—H11⋯O31 0.86 (3) 1.90 (3) 2.750 (15) 167 (4)
  N1—H12⋯O32xiv 0.98 (3) 1.77 (4) 2.741 (19) 171 (3)
  O34—H34⋯O31xv 0.82 1.79 2.60 (2) 168
  N1—H11⋯O41 0.86 (3) 2.18 (4) 3.03 (3) 165 (4)
  N1—H12⋯O42xiv 0.98 (3) 1.82 (5) 2.77 (4) 163 (3)
  O44—H44⋯O41xv 0.82 1.56 2.35 (2) 161
  C3—H3ACg2xvi 0.97 2.76 3.652 (3) 154
           
(IX) N1—H11⋯O31 0.81 (4) 2.18 (3) 2.940 (4) 155 (3)
  N1—H12⋯O32xiv 0.96 (4) 1.77 (4) 2.714 (4) 169 (3)
  O34—H34⋯O31xv 0.82 1.71 2.522 (5) 170
  O43—H34⋯O31xv 0.82 1.62 2.44 (2) 175
  C3—H3ACg2xvi 0.97 2.76 3.650 (3) 153
           
(X) O33—H33A⋯O32 1.167 (18) 1.247 (18) 2.4121 (16) 175 (2)
  N1—H11⋯O31 0.915 (17) 2.126 (16) 2.9309 (19) 146.2 (15)
  N1—H11⋯O32 0.915 (17) 2.296 (17) 3.0798 (18) 143.5 (14)
  N1—H12⋯O34xvii 0.919 (18) 1.881 (18) 2.7563 (17) 158.5 (17)
  C2—H2A⋯O34ii 0.97 2.56 3.363 (2) 140
           
(XI) N1—H11⋯O31 0.92 (4) 1.86 (4) 2.775 (4) 172 (3)
  N1—H11⋯O32xviii 0.97 (3) 1.80 (3) 2.724 (3) 158 (3)
           
(XII) N1—H11⋯O31 0.89 (3) 1.96 (3) 2.802 (3) 157 (2)
  N1—H11⋯O33 0.89 (3) 2.29 (2) 2.838 (3) 119 (2)
  N1—H12⋯O41 0.90 (2) 1.92 (2) 2.798 (3) 168 (3)
  O41—H41⋯O33i 0.84 (4) 1.92 (4) 2.738 (3) 166 (3)
  O41—H42⋯O24xix 0.82 (3) 2.49 (3) 3.269 (3) 160 (3)
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) 2 − x, 2 − y, 1 − z; (iv) 1 − x, 2 − y, 1 − z; (v) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (vi) 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (vii) 2 − x, [{1\over 2}] + y, [{1\over 2}] − z; (viii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (ix) [{3\over 2}] − x, −[{1\over 2}] + y, z; (x) x, [{3\over 2}] − y, [{1\over 2}] + z; (xi) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (xii) 3 − x, 2 − y, 1 − z; (xiii) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (xiv) −[{1\over 2}] + x, [{3\over 2}] − y, z; (xv) −[{1\over 2}] + x, [{3\over 2}] − y, 1 + z; (xvi) 1 − x, 1 − y, [{1\over 2}] + z; (xvii) −1 + x, y, z; (xviii) −[{1\over 2}] + x, 1 − y, z; (xix) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z.
[Figure 13]
Figure 13
The canonical forms of the anion in compound (XII)[link].

3. Supra­molecular features

In each of the four isomorphous salts (I)–(IV), the ions are linked by a combination of N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]) to form a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, in which R64(12) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at (n, [{1\over 2}], [{1\over 2}]) alternate with R66(16) rings centred at (n + [{1\over 2}], [{1\over 2}], [{1\over 2}]) , where n represents an integer in each case (Fig. 14[link]). In each of these four salts, a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the [100] chain into complex sheets lying parallel to (001).

[Figure 14]
Figure 14
Part of the crystal structure of compound (I)[link] showing the formation of a chain of rings parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to C atoms have been omitted.

There is an inter­molecular O—H⋯O hydrogen bond in the anion of the unsolvated salt (V)[link]. The two anions in the selected asymmetric unit (Fig. 5[link]) are linked by an asymmetric three-centre N—H⋯(O)2 hydrogen bond, and the resulting ion pairs, which are related by 21 screw axis along ([{1\over 2}], y, [{1\over 4}]), are linked by a two-centre N—H⋯O hydrogen bond to form chain of rings running parallel to the [010] direction (Fig. 15[link]). Chains of this type are weakly linked into sheets lying parallel to (001) by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds.

[Figure 15]
Figure 15
Part of the crystal structure of compound (V)[link] showing the formation of a chain of rings parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

The component ions in compound (VI)[link] (Fig. 6[link]) are linked by a two-centre N—H⋯O hydrogen bond and the resulting ion pairs are further linked by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds to form a three-dimensional framework structure, whose formation can readily be analysed in terms of three simple sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). Ion pairs which are related by the b-glide plane at x = [{3\over 4}] are linked by a second N—H⋯O hydrogen bond to form a C22(6) chain running parallel to the [010] direction, and in the second sub-structure, ion pairs which are related by the c-glide plane at y = [{3\over 4}] are linked by a C—H⋯O hydrogen bond (Table 1[link]) to form a C22(17) chain running parallel to the [001] direction. The combination of these two simple chain motifs generates a sheet of R66(40) rings lying parallel to (100) in the domain [{1\over 2}] < x < 1.0 (Fig. 16[link]). A second sheet of this type, related to the first by inversion lies in the domain 0 < x < [{1\over 2}], and adjacent sheets are linked by the third sub-structure in which inversion-related ion pairs are linked by C—H⋯N hydrogen bonds into a centrosymmetric R44(18) ring (Fig. 17[link]): the action of this inter­action is to link all of the (100) sheets into a continuous three-dimensional array.

[Figure 16]
Figure 16
Part of the crystal structure of compound (VI)[link] showing the formation of a sheet of R66(40) rings lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 17]
Figure 17
Part of the crystal structure of compound (VI)[link] showing the formation of the R44(18) ring which links the (100) sheets. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline and the H atoms which are bonded to the C atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 2 − y, 1 − z).

There is an inter­molecular O—H⋯O hydrogen bond in the anion of compound (VII)[link] (Fig. 7[link]), but the carboxyl H atom plays no part in the supra­molecular assembly. The ions are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds to form a chain of centrosymmetric rings running parallel to the [210] direction, in which R22(10) rings centred at (2n[{1\over 2}], n, [{1\over 2}]) alternate with R64(16) rings centred at (2n + [{1\over 2}], n + [{1\over 2}], [{1\over 2}]), where n represents an integer in each case (Fig. 18[link]). Two chains of this type, related to one another by the translational symmetry operations, pass through each unit cell, and a weak C—H⋯π(arene) hydrogen bond links the chains into a three-dimensional framework structure.

[Figure 18]
Figure 18
Part of the crystal structure of compound (VII)[link] showing the formation of a chain of R22(10) and R64(16) rings parallel to the [210] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are bonded to the C atoms not involved in the motif shown have been omitted.

For the disordered structure of compound (VIII)[link], the hydrogen bonds formed by the major and minor disorder components are very similar (Table 1[link]) so that only the major disorder form need be considered in detail. Within the selected asymmetric unit (Fig. 8[link]), the component ions are linked by a two-centre N—H⋯O hydrogen bond: the ion pairs are linked by a combination of N—H⋯O and O—H⋯O hydrogen bonds to form sheets, whose formation can readily be analysed in terms of two simple sub-structures. In the simpler of these, anions which are related by the a-glide plane at y = [{3\over 4}] are linked by O—H⋯O hydrogen bonds into C(7) chains running parallel to the [10[\overline{2}]] direction (Fig. 19[link]); in the second sub-structure, ion pairs which are related by the same glide plane are linked by N—H⋯O hydrogen bonds to form a C22(6) chain running parallel to the [100] direction (Fig. 20[link]). The combination of these two chain motifs generates a sheet lying parallel to (010), and a single C—H⋯π(arene) hydrogen bond links these sheets into a three-dimensional framework structure. The supra­molecular aggregation in the isomorphous compound (IX)[link] is similar to that in (VIII)[link]. As noted in Section 2 above, the anion in compound (X)[link] contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond. Within the selected asymmetric unit, the component ions are linked by the three-centre N—H⋯(O)2 hydrogen bond and ion pairs which are related by translation are linked by a two-centre N—H⋯O hydrogen bond to form a C(9)C(9)[R12(4)] chain of rings running parallel to the [100] direction (Fig. 21[link]). The C—H⋯O contact is at the margin of significance (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), but it involves chains related by inversion.

[Figure 19]
Figure 19
Part of the crystal structure of compound (VIII)[link] showing the formation of a C(7) chain of anions, parallel to [10[\overline{2}]]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{3\over 2}] − y, −1 + z) and (−[{1\over 2}] + x, [{3\over 2}] − y, 1 + z), respectively.
[Figure 20]
Figure 20
Part of the crystal structure of compound (VIII)[link] showing the formation of a C22(6) chain parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 21]
Figure 21
Part of the crystal structure of compound (X)[link] showing the formation of a chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

The supra­molecular assembly of compound (XI)[link] is extremely simple: two N—H⋯O hydrogen bonds link the ions into a C22(6) chain running parallel to the [100] direction (Fig. 22[link]). In compound (XII)[link], a combination of N—H⋯O and O—H⋯O hydrogen bonds links all three components into a chain of R66(18) rings running parallel to the [001] direction (Fig. 23[link]), while a second O—H⋯O hydrogen bond links a combination of cations and water mol­ecules into a simple C22(12) chain running parallel to the [101] direction (Fig. 24[link]) and the combination of these two chain motifs generates a complex sheet lying parallel to (010).

[Figure 22]
Figure 22
Part of the crystal structure of compound (XI)[link] showing the formation of a C22(6) chain parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 23]
Figure 23
Part of the crystal structure of compound (XII)[link] showing the formation of an R66(18) chain of rings parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 24]
Figure 24
Part of the crystal structure of compound (XII)[link] showing the formation of a C22(12) chain of cations and water mol­ecules parallel to [101]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Overall, therefore, the hydrogen-bonded assembly is one-dimensional in each of compounds (X)[link] and (XI)[link], two-dimensional in compounds (I)–(V) and (XII)[link], and three-dimensional in compounds (VI)–(IX). Sub-structures in the form of chains of rings can be identified in compounds (I)–(IV) and in (VII)[link], although (I)–(IV) are all monohydrates, while (VII)[link] is solvent free: within the chain of rings formed by (I)–(IV) it is possible to identify a C22(6) motif formed by water mol­ecules and anions only (Fig. 14[link]), and a C22(6) motif built from alternating cations and anions can, in fact, be identified in each of compounds (V)[link], (VI)[link], (VIII)[link], (IX)[link] and (XI)[link] (Figs. 15[link], 16[link], 20[link], 22[link]). By contrast, a C22(12) motif, built from water mol­ecules and cations can be identified in the structure of compound (XII)[link] (Fig. 24[link]), but sub-structural motifs in the form of simple chains are uncommon in this series (Fig. 19[link]).

4. Database survey

Compounds (I)–(IV), reported here, are isomorphous across the series of anions 4-XC6H4COO, where X = H, F, Cl or Br, despite the rather disparate sizes of the substituents X. A similar, but more extreme, series of isomorphous salts was found in the substituted anilinium 5-nitro­(hydrogenphthalate) salts (4-XC6H4NH3)+·(C8H4NO6), which are isomorphous for X = H, Cl, Br and I (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276-o280.]). The structures of a number of salts containing the chloranilate dianion have been reported (Ishida, 2004a[Ishida, H. (2004a). Acta Cryst. E60, o974-o976.],b[Ishida, H. (2004b). Acta Cryst. E60, o1900-o1901.],c[Ishida, H. (2004c). Acta Cryst. E60, o2005-o2006.],d[Ishida, H. (2004d). Acta Cryst. E60, o2506-o2508.]; Sovago et al., 2016[Sovago, I., Thomas, L. H., Adam, M. S., Capelli, S. C., Wilson, C. C. & Farrugia, L. J. (2016). CrystEngComm, 18, 5697-5709.]), and the geometric features previously observed in this anion are fully consistent with the geometry found here in (XII)[link]: the nature of the electronic delocalization has been confirmed in several such salts using a combination of deformation density plots and net atomic charge calculations (Sovago et al., 2016[Sovago, I., Thomas, L. H., Adam, M. S., Capelli, S. C., Wilson, C. C. & Farrugia, L. J. (2016). CrystEngComm, 18, 5697-5709.]).

The structures of very few salts containing the 4-(meth­oxy­phen­yl)piperazin-1-ium cations have been reported. In 4-(4-meth­oxy­phen­yl)piperazin-1-ium chloride, two N—H⋯Cl hydrogen bonds link the ions into C21(4) chains (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.]), and in the closely related 4-(4-nitro­phen­yl)piperazin-1-ium chloride monohydrate, a combination of N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds links the components into complex ribbons in which each anion accepts three hydrogen bonds (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). The structure of 4-(3-meth­oxy­phen­yl)piperazin-1-ium maleate has been reported (Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]), as have those of the picrate (Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]) and 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide (Al-Omary et al., 2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245-o246.]) salts of the 4-(2-meth­oxy­phen­yl)piperazin-1-ium cation. Finally we note, in addition to the 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines referred to in Section 1 above (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]), the structure of 1-acetyl-(4-hy­droxy­phen­yl)piperazine (Kavitha et al., 2013[Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671.]), which is an N-acetyl­ated derivative of 4-(4-hy­droxy­phen­yl)piperazines, a metabolite of 4-(4-meth­oxy­phen­yl)piperazine.

5. Synthesis and crystallization

All reagents were obtained commercially and were used as received. For the synthesis of each of compounds (I)–(XII), equimolar qu­anti­ties (0.52 mmol of each component) of N-(4-meth­oxy­phen­yl)piperazine and the appropriate acid were separately dissolved in methanol (10 ml) and the two solutions were then mixed, stirred briefly, and then set aside to crystallize, giving the solid products (I)–(XII) after a few days. The products were all collected by filtration and then dried in air. Yields (I)[link] 81%, (II)[link] 83%, (III)[link] 83%, (IV)[link] 81%, (V)[link] 83%, (VI)[link] 78%, (VII)[link] 80%, (VIII)[link] 82%, (IX)[link] 82%, (X)[link] 84%, (XI)[link] 79%, (XII)[link] 82%: melting ranges (I)[link] 513–515 K, (II)[link] 405–407 K, (III)[link] 449–451 K, (IV)[link] 447–449 K, (V)[link] 471–473 K, (VI)[link] 441–443 K, (VII)[link] 475–477 K, (VIII)[link] 439–441 K, (IX)[link] 483–485 K, (X)[link] 429–431 K, (XI)[link] 393–395 K, (XII)[link] 575–577 K. Spectroscopic data (IR and 1H NMR) are provided in the supporting information. Crystals of compounds (I)[link], (II)[link], and (VIII)–(XII) suitable for single-crystal X-ray diffraction analysis were selected directly from the prepared samples. Crystals of compounds (III)–(VII) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol–ethyl acetate (initial composition 1:1, v/v). A number of other acids were used in similar co-crystallization experiments but they did not provide crystal suitable for single-crystal X-ray diffraction, thus: 2- and 3-fluoro­benzoic acids [cf. compound (II)], 2- and 3-chloro­benzoic acids [cf. compound (III)], 2- and 3-bromo­benzoic acids [cf. compound (IV)], 2- and 3-iodo­benzoic acids, phthalic acid, 3-methyl­benzoic acid [cf. compound (I)], 2,4-di­chloro­benzoic acid, crotonic and adipic acids [cf. compounds (VIII)–(X)], and ascorbic, aspartic and glutamic acids.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In each of the isomorphous compounds (I)–(IV), the 4-meth­oxy­phenyl group exhibits disorder over two sets of atomic sites, and in each of (VIII)[link] and (IX)[link], the anion exhibits disorder involving two sets of atomic sites having unequal occupancies. In each case, the bonded distances and the 1,3 non-bonded distances in the minor disorder component were restrained to be the same as the equivalent distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively, and the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal: in addition, it was found necessary to constrain the minor component of the carboxyl group in (IX)[link] to be planar. The ratio of observed-to-unique data was only 39% for compounds (II)[link] and (III)[link]: this is probably a consequence of the ambient temperature data collection allied to the disorder: in both (VII)[link] and (IX)[link], the average U3/U1 ratio was > 4.0: this may be consequence of the disorder. Apart from those in the minor disorder components of (I)–(IV), (VIII)[link] and (IX)[link], all H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl and aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms: the H atoms bonded to C atoms in the minor disorder components were included on the same basis. The H atoms bonded to O atoms in the disordered components of (VIII)[link] and (IX)[link] were treated as riding atoms with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), For the H atoms bonded to N atoms, and for the H atoms bonded to O atoms in (I)–(V), (VII)[link], (X)[link] and (XII)[link], the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), leading to the N—H and O—H distances shown in Table 1[link]. The refined occupancies for the disorder components were 0.66 (2) and 0.34 (2) in (I)[link], 0.81 (3) and 0.19 (3) in (II)[link], 0.73 (2) and 0.27 (2) in (III)[link], 0.80 (2) and 0.20 (2) in (IV)[link], 0.660 (15) and 0.340 (15) in (VIII)[link], and 0.906 (9) and 0.094 (9) in (IX)[link]. For compound (XI)[link], the correct orientation of the structure relative to the polar axis direction was established using the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), x = 0.11 (7). However, for compounds (V)[link], (VIII)[link] and (IX)[link], where there is very little resonant scattering the values of the Flack x parameter were indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), with values −0.3 (5), −0.6 (7) and −0.3 (4), respectively: hence in these three cases, the correct orientation of the structure with respect to the polar axis direction cannot be established, although this has no chemical significance. The refinement of (XII)[link] was treated as a non-merohedral twin, with twin matrix (−1, 0, 0/0, −1, 0/0.496, 0, 1) and with refined twin fractions 0.2467 (9) and 0.7533 (9).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

4-(4-Methoxyphenyl)piperazin-1-ium benzoate monohydrate (I) top
Crystal data top
C11H17N2O+·C7H5O2·H2OZ = 2
Mr = 332.39F(000) = 356
Triclinic, P1Dx = 1.270 Mg m3
a = 6.215 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.547 (1) ÅCell parameters from 3742 reflections
c = 18.716 (4) Åθ = 2.8–28.0°
α = 84.34 (2)°µ = 0.09 mm1
β = 87.14 (2)°T = 296 K
γ = 84.69 (2)°Plate, colourless
V = 869.1 (3) Å30.40 × 0.24 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3442 independent reflections
Radiation source: Enhance (Mo) X-ray Source1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.1°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 77
Tmin = 0.834, Tmax = 0.996k = 99
5751 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3442 reflectionsΔρmax = 0.17 e Å3
256 parametersΔρmin = 0.19 e Å3
17 restraints
Special details top

Experimental. Compound (I). IR (KBr , cm-1) 3328 (OH), 3002 (H2) 2841 (OCH3), 1591 (COO). NMR (CDCl3) δ(1H) 3.22 (m, 4H, piperazine), 3.29 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.86 (m, 4H, methoxyphenyl), 7.39 (m, 2H, phenyl), 7.46 (m, 1H, phenyl), 8.05 (m, 2H, phenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7874 (3)0.7435 (3)0.44989 (10)0.0482 (5)
H110.834 (3)0.766 (3)0.4926 (13)0.058*
H120.748 (3)0.621 (3)0.4555 (11)0.058*
C20.9747 (3)0.7530 (3)0.39809 (12)0.0519 (6)
H2A1.09400.67090.41570.062*
H2B1.02150.87290.39340.062*
C30.9144 (3)0.7056 (3)0.32596 (12)0.0497 (6)
H3A1.03630.71910.29210.060*
H3B0.88370.58120.33010.060*
N40.7262 (2)0.8168 (2)0.29814 (9)0.0394 (4)
C50.5425 (3)0.8133 (3)0.35024 (11)0.0463 (5)
H5A0.49320.69430.35610.056*
H5B0.42440.89570.33200.056*
C60.6019 (3)0.8640 (3)0.42214 (12)0.0513 (6)
H6A0.63970.98660.41730.062*
H6B0.47890.85570.45590.062*
C210.677 (2)0.782 (2)0.2275 (6)0.034 (2)0.66 (2)
C220.8134 (13)0.6810 (17)0.1831 (5)0.0450 (18)0.66 (2)
H220.94140.62350.20070.054*0.66 (2)
C230.7627 (13)0.6649 (18)0.1132 (5)0.053 (2)0.66 (2)
H230.86020.60050.08410.064*0.66 (2)
C240.5725 (14)0.7413 (16)0.0858 (5)0.0438 (17)0.66 (2)
C250.438 (2)0.846 (3)0.1278 (8)0.0599 (10)0.66 (2)
H250.31450.90970.10880.072*0.66 (2)
C260.486 (3)0.858 (3)0.1984 (8)0.054 (2)0.66 (2)
H260.38570.91910.22760.064*0.66 (2)
O240.541 (3)0.720 (3)0.0149 (7)0.078 (3)0.66 (2)
C270.335 (3)0.773 (4)0.0122 (11)0.090 (2)0.66 (2)
H27A0.22970.70170.01280.135*0.66 (2)
H27B0.33730.75800.06260.135*0.66 (2)
H27C0.29620.89700.00530.135*0.66 (2)
C510.669 (5)0.815 (5)0.2258 (12)0.034 (2)0.34 (2)
C520.817 (3)0.735 (2)0.1784 (11)0.0450 (18)0.34 (2)
H520.95350.69170.19370.054*0.34 (2)
C530.764 (3)0.718 (3)0.1087 (10)0.053 (2)0.34 (2)
H530.86150.65550.07900.064*0.34 (2)
C540.571 (3)0.792 (2)0.0828 (10)0.0438 (17)0.34 (2)
C550.414 (4)0.854 (7)0.1309 (15)0.0599 (10)0.34 (2)
H550.27020.87380.11840.072*0.34 (2)
C560.474 (5)0.886 (7)0.1983 (15)0.054 (2)0.34 (2)
H560.38030.95700.22600.064*0.34 (2)
O540.528 (6)0.756 (7)0.0142 (14)0.078 (3)0.34 (2)
C570.310 (6)0.780 (9)0.006 (2)0.090 (2)0.34 (2)
H57A0.29190.71030.04510.135*0.34 (2)
H57B0.27180.90420.02070.135*0.34 (2)
H57C0.21710.74220.03420.135*0.34 (2)
C310.8112 (3)0.7289 (3)0.70824 (12)0.0441 (5)
C320.6694 (4)0.6501 (3)0.75905 (17)0.0642 (7)
H320.55180.59770.74410.077*
C330.7024 (5)0.6491 (3)0.83138 (17)0.0777 (9)
H330.60700.59560.86490.093*
C340.8735 (5)0.7259 (3)0.85422 (15)0.0741 (8)
H340.89350.72640.90310.089*
C351.0147 (4)0.8017 (3)0.80535 (14)0.0631 (7)
H351.13220.85300.82090.076*
C360.9850 (3)0.8032 (3)0.73275 (13)0.0483 (6)
H361.08350.85500.69990.058*
C370.7750 (4)0.7325 (3)0.62925 (15)0.0563 (6)
O310.9017 (3)0.8122 (2)0.58536 (9)0.0664 (5)
O320.6242 (3)0.6520 (3)0.61161 (12)0.1072 (8)
O410.7231 (3)0.3783 (2)0.45956 (10)0.0657 (5)
H410.607 (5)0.372 (4)0.4354 (16)0.099*
H420.839 (5)0.318 (4)0.4391 (16)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0614 (13)0.0460 (11)0.0394 (12)0.0089 (9)0.0119 (10)0.0069 (9)
C20.0452 (14)0.0584 (14)0.0529 (16)0.0018 (11)0.0116 (11)0.0075 (12)
C30.0424 (13)0.0583 (14)0.0483 (15)0.0016 (10)0.0047 (10)0.0084 (11)
N40.0391 (10)0.0403 (10)0.0386 (11)0.0002 (7)0.0018 (8)0.0064 (8)
C50.0414 (12)0.0553 (13)0.0413 (14)0.0022 (10)0.0001 (10)0.0072 (10)
C60.0561 (14)0.0529 (14)0.0438 (15)0.0044 (11)0.0012 (11)0.0083 (11)
C210.0428 (15)0.022 (6)0.0377 (14)0.001 (3)0.0009 (10)0.002 (2)
C220.0449 (14)0.041 (5)0.048 (2)0.005 (3)0.0021 (13)0.007 (3)
C230.0575 (16)0.053 (6)0.048 (2)0.008 (3)0.0060 (13)0.015 (3)
C240.0628 (16)0.031 (5)0.0378 (17)0.004 (3)0.0012 (13)0.002 (3)
C250.057 (3)0.072 (2)0.047 (2)0.020 (3)0.013 (2)0.0097 (16)
C260.057 (2)0.054 (7)0.0477 (16)0.022 (2)0.0054 (14)0.014 (3)
O240.083 (2)0.110 (10)0.0410 (12)0.009 (3)0.0107 (11)0.023 (3)
C270.081 (5)0.140 (3)0.052 (3)0.008 (4)0.018 (4)0.020 (4)
C510.0428 (15)0.022 (6)0.0377 (14)0.001 (3)0.0009 (10)0.002 (2)
C520.0449 (14)0.041 (5)0.048 (2)0.005 (3)0.0021 (13)0.007 (3)
C530.0575 (16)0.053 (6)0.048 (2)0.008 (3)0.0060 (13)0.015 (3)
C540.0628 (16)0.031 (5)0.0378 (17)0.004 (3)0.0012 (13)0.002 (3)
C550.057 (3)0.072 (2)0.047 (2)0.020 (3)0.013 (2)0.0097 (16)
C560.057 (2)0.054 (7)0.0477 (16)0.022 (2)0.0054 (14)0.014 (3)
O540.083 (2)0.110 (10)0.0410 (12)0.009 (3)0.0107 (11)0.023 (3)
C570.081 (5)0.140 (3)0.052 (3)0.008 (4)0.018 (4)0.020 (4)
C310.0428 (12)0.0353 (11)0.0550 (15)0.0023 (10)0.0041 (11)0.0117 (10)
C320.0510 (15)0.0506 (15)0.092 (2)0.0061 (11)0.0098 (14)0.0174 (14)
C330.091 (2)0.0614 (17)0.073 (2)0.0018 (15)0.0343 (17)0.0038 (15)
C340.099 (2)0.0639 (17)0.0554 (19)0.0101 (16)0.0013 (17)0.0025 (14)
C350.0746 (18)0.0624 (16)0.0530 (18)0.0031 (13)0.0179 (14)0.0044 (13)
C360.0509 (13)0.0454 (13)0.0492 (16)0.0057 (10)0.0079 (11)0.0023 (10)
C370.0540 (15)0.0504 (15)0.0680 (19)0.0062 (12)0.0207 (13)0.0233 (13)
O310.0856 (13)0.0687 (11)0.0468 (11)0.0072 (10)0.0138 (9)0.0092 (9)
O320.0869 (14)0.1422 (19)0.1065 (18)0.0380 (13)0.0368 (12)0.0380 (15)
O410.0653 (12)0.0631 (11)0.0715 (14)0.0142 (9)0.0198 (9)0.0044 (9)
Geometric parameters (Å, º) top
N1—C21.480 (3)C27—H27C0.9600
N1—C61.483 (3)C51—C561.381 (7)
N1—H110.90 (2)C51—C521.385 (7)
N1—H120.97 (2)C52—C531.380 (7)
C2—C31.504 (3)C52—H520.9300
C2—H2A0.9700C53—C541.368 (7)
C2—H2B0.9700C53—H530.9300
C3—N41.461 (2)C54—C551.374 (9)
C3—H3A0.9700C54—O541.380 (7)
C3—H3B0.9700C55—C561.383 (9)
N4—C511.42 (2)C55—H550.9300
N4—C211.428 (10)C56—H560.9300
N4—C51.464 (2)O54—C571.415 (9)
C5—C61.507 (3)C57—H57A0.9600
C5—H5A0.9700C57—H57B0.9600
C5—H5B0.9700C57—H57C0.9600
C6—H6A0.9700C31—C361.380 (3)
C6—H6B0.9700C31—C321.391 (3)
C21—C261.382 (4)C31—C371.504 (3)
C21—C221.386 (4)C32—C331.378 (4)
C22—C231.380 (4)C32—H320.9300
C22—H220.9300C33—C341.363 (4)
C23—C241.367 (4)C33—H330.9300
C23—H230.9300C34—C351.358 (3)
C24—C251.372 (7)C34—H340.9300
C24—O241.378 (4)C35—C361.379 (3)
C25—C261.382 (5)C35—H350.9300
C25—H250.9300C36—H360.9300
C26—H260.9300C37—O321.238 (3)
O24—C271.413 (6)C37—O311.258 (3)
C27—H27A0.9600O41—H410.88 (3)
C27—H27B0.9600O41—H420.91 (3)
C2—N1—C6109.95 (18)O24—C27—H27A109.5
C2—N1—H11106.8 (14)O24—C27—H27B109.5
C6—N1—H11115.6 (14)H27A—C27—H27B109.5
C2—N1—H12108.2 (12)O24—C27—H27C109.5
C6—N1—H12109.2 (12)H27A—C27—H27C109.5
H11—N1—H12106.8 (18)H27B—C27—H27C109.5
N1—C2—C3110.23 (17)C56—C51—C52116.4 (9)
N1—C2—H2A109.6C56—C51—N4125.0 (16)
C3—C2—H2A109.6C52—C51—N4118.6 (16)
N1—C2—H2B109.6C53—C52—C51121.0 (9)
C3—C2—H2B109.6C53—C52—H52119.5
H2A—C2—H2B108.1C51—C52—H52119.5
N4—C3—C2112.64 (17)C54—C53—C52121.0 (9)
N4—C3—H3A109.1C54—C53—H53119.5
C2—C3—H3A109.1C52—C53—H53119.5
N4—C3—H3B109.1C53—C54—C55118.1 (9)
C2—C3—H3B109.1C53—C54—O54116.3 (10)
H3A—C3—H3B107.8C55—C54—O54123.3 (12)
C51—N4—C3120.7 (9)C54—C55—C56118.8 (13)
C21—N4—C3113.1 (5)C54—C55—H55120.6
C51—N4—C5114.2 (13)C56—C55—H55120.6
C21—N4—C5114.4 (6)C51—C56—C55122.1 (10)
C3—N4—C5111.20 (16)C51—C56—H56119.0
N4—C5—C6111.63 (17)C55—C56—H56119.0
N4—C5—H5A109.3C54—O54—C57117.7 (12)
C6—C5—H5A109.3O54—C57—H57A109.5
N4—C5—H5B109.3O54—C57—H57B109.5
C6—C5—H5B109.3H57A—C57—H57B109.5
H5A—C5—H5B108.0O54—C57—H57C109.5
N1—C6—C5110.23 (17)H57A—C57—H57C109.5
N1—C6—H6A109.6H57B—C57—H57C109.5
C5—C6—H6A109.6C36—C31—C32117.9 (2)
N1—C6—H6B109.6C36—C31—C37121.4 (2)
C5—C6—H6B109.6C32—C31—C37120.8 (2)
H6A—C6—H6B108.1C33—C32—C31120.4 (2)
C26—C21—C22116.0 (4)C33—C32—H32119.8
C26—C21—N4119.5 (8)C31—C32—H32119.8
C22—C21—N4124.4 (8)C34—C33—C32120.6 (3)
C23—C22—C21121.2 (4)C34—C33—H33119.7
C23—C22—H22119.4C32—C33—H33119.7
C21—C22—H22119.4C35—C34—C33119.8 (3)
C24—C23—C22121.5 (4)C35—C34—H34120.1
C24—C23—H23119.3C33—C34—H34120.1
C22—C23—H23119.3C34—C35—C36120.5 (2)
C23—C24—C25118.5 (4)C34—C35—H35119.7
C23—C24—O24116.6 (5)C36—C35—H35119.7
C25—C24—O24124.6 (6)C35—C36—C31120.9 (2)
C24—C25—C26119.5 (7)C35—C36—H36119.6
C24—C25—H25120.3C31—C36—H36119.6
C26—C25—H25120.3O32—C37—O31124.1 (3)
C21—C26—C25122.9 (5)O32—C37—C31117.3 (3)
C21—C26—H26118.5O31—C37—C31118.6 (2)
C25—C26—H26118.5H41—O41—H42111 (3)
C24—O24—C27118.1 (6)
C6—N1—C2—C357.3 (2)C3—N4—C51—C56166 (4)
N1—C2—C3—N455.6 (2)C5—N4—C51—C5630 (5)
C2—C3—N4—C51168.3 (19)C21—N4—C51—C5256 (9)
C2—C3—N4—C21175.8 (8)C3—N4—C51—C5213 (4)
C2—C3—N4—C553.8 (2)C5—N4—C51—C52149 (2)
C51—N4—C5—C6164.9 (15)C56—C51—C52—C534 (5)
C21—N4—C5—C6176.0 (7)N4—C51—C52—C53175 (2)
C3—N4—C5—C654.3 (2)C51—C52—C53—C545 (3)
C2—N1—C6—C558.3 (2)C52—C53—C54—C5512 (4)
N4—C5—C6—N157.0 (2)C52—C53—C54—O54176 (3)
C51—N4—C21—C2649 (10)C53—C54—C55—C5618 (6)
C3—N4—C21—C26170.7 (16)O54—C54—C55—C56180 (5)
C5—N4—C21—C2642 (2)C52—C51—C56—C5510 (7)
C51—N4—C21—C22128 (12)N4—C51—C56—C55169 (4)
C3—N4—C21—C2212.5 (17)C54—C55—C56—C5117 (8)
C5—N4—C21—C22141.2 (12)C53—C54—O54—C57161 (4)
C26—C21—C22—C232 (2)C55—C54—O54—C572 (7)
N4—C21—C22—C23174.5 (11)C36—C31—C32—C330.7 (3)
C21—C22—C23—C242.6 (14)C37—C31—C32—C33179.3 (2)
C22—C23—C24—C254.6 (17)C31—C32—C33—C340.3 (4)
C22—C23—C24—O24178.6 (15)C32—C33—C34—C351.0 (4)
C23—C24—C25—C266 (3)C33—C34—C35—C360.7 (4)
O24—C24—C25—C26180 (2)C34—C35—C36—C310.4 (3)
C22—C21—C26—C254 (3)C32—C31—C36—C351.0 (3)
N4—C21—C26—C25173 (2)C37—C31—C36—C35178.9 (2)
C24—C25—C26—C217 (4)C36—C31—C37—O32175.1 (2)
C23—C24—O24—C27171 (2)C32—C31—C37—O325.0 (3)
C25—C24—O24—C2716 (3)C36—C31—C37—O313.1 (3)
C21—N4—C51—C56123 (14)C32—C31—C37—O31176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.90 (2)1.88 (2)2.777 (3)174.1 (19)
N1—H12···O410.97 (2)1.85 (2)2.808 (3)169.7 (18)
O41—H41···O32i0.88 (3)1.75 (3)2.631 (3)177 (3)
O41—H42···O31ii0.91 (3)1.87 (3)2.763 (3)169 (3)
C2—H2B···O31iii0.972.543.485 (3)165
C22—H22···Cg1ii0.932.853.603 (3)139
C26—H26···Cg1iv0.932.903.62 (2)135
C56—H56···Cg1iv0.932.643.41 (5)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium 4-fluorobenzoate monohydrate (II) top
Crystal data top
C11H17N2O+·C7H4FO2·H2OZ = 2
Mr = 350.38F(000) = 372
Triclinic, P1Dx = 1.314 Mg m3
a = 6.256 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.489 (1) ÅCell parameters from 3771 reflections
c = 19.097 (2) Åθ = 2.9–27.9°
α = 84.19 (1)°µ = 0.10 mm1
β = 86.98 (2)°T = 293 K
γ = 84.62 (2)°Plate, colourless
V = 885.4 (2) Å30.40 × 0.24 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3477 independent reflections
Radiation source: Enhance (Mo) X-ray Source1355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 76
Tmin = 0.973, Tmax = 0.996k = 99
5760 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0404P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3477 reflectionsΔρmax = 0.13 e Å3
265 parametersΔρmin = 0.14 e Å3
17 restraints
Special details top

Experimental. Compound (II). IR (KBr , cm-1) 3317 (OH), 3011 (NH2), 2838 (OCH3), 1588 (COO), 1365 (CF) NMR (CDCl3) δ(1H) 3.23 (m, 4H, piperazine), 3.29 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.86 (m, 4H, methoxyphenyl), 7.05 (m, 2H, fluorophenyl), 8.05 (m, 2H, fluorophenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7813 (5)0.7442 (3)0.45140 (15)0.0536 (8)
H110.823 (4)0.778 (3)0.5031 (15)0.064*
H120.749 (4)0.634 (4)0.4565 (14)0.064*
C20.9661 (5)0.7540 (4)0.39966 (16)0.0599 (9)
H2A1.08480.67060.41640.072*
H2B1.01310.87460.39520.072*
C30.9056 (5)0.7083 (4)0.32889 (15)0.0574 (9)
H3A1.02640.72290.29550.069*
H3B0.87550.58290.33260.069*
N40.7185 (4)0.8206 (3)0.30227 (12)0.0444 (6)
C50.5377 (5)0.8151 (4)0.35391 (14)0.0527 (8)
H5A0.49000.69470.35960.063*
H5B0.41920.89770.33650.063*
C60.5960 (5)0.8649 (4)0.42410 (14)0.0567 (9)
H6A0.63240.98870.41940.068*
H6B0.47360.85560.45720.068*
C210.670 (3)0.795 (6)0.2319 (6)0.0442 (18)0.81 (3)
C220.8062 (12)0.6932 (18)0.1883 (4)0.064 (2)0.81 (3)
H220.93510.63780.20530.077*0.81 (3)
C230.7544 (9)0.673 (2)0.1207 (3)0.069 (3)0.81 (3)
H230.85200.60830.09230.083*0.81 (3)
C240.5644 (10)0.7455 (18)0.0942 (3)0.058 (2)0.81 (3)
C250.4255 (15)0.846 (3)0.1357 (5)0.0680 (18)0.81 (3)
H250.29670.90020.11820.082*0.81 (3)
C260.4782 (18)0.866 (3)0.2037 (5)0.062 (2)0.81 (3)
H260.37980.93130.23170.074*0.81 (3)
O240.5299 (13)0.7159 (19)0.0261 (3)0.095 (2)0.81 (3)
C270.3282 (18)0.772 (3)0.0015 (6)0.107 (4)0.81 (3)
H27A0.21810.71780.02790.160*0.81 (3)
H27B0.32490.73660.04830.160*0.81 (3)
H27C0.30350.90110.00290.160*0.81 (3)
C510.655 (11)0.79 (3)0.236 (2)0.0442 (18)0.19 (3)
C520.810 (6)0.754 (6)0.1833 (17)0.064 (2)0.19 (3)
H520.95310.72900.19490.077*0.19 (3)
C530.756 (4)0.752 (6)0.1146 (15)0.069 (3)0.19 (3)
H530.85930.71060.08180.083*0.19 (3)
C540.554 (4)0.808 (5)0.0936 (13)0.058 (2)0.19 (3)
C550.396 (6)0.842 (13)0.144 (2)0.0680 (18)0.19 (3)
H550.25240.85810.13270.082*0.19 (3)
C560.453 (7)0.851 (13)0.213 (2)0.062 (2)0.19 (3)
H560.35090.89870.24440.074*0.19 (3)
O540.512 (5)0.786 (6)0.0251 (14)0.095 (2)0.19 (3)
C570.300 (7)0.827 (12)0.004 (3)0.107 (4)0.19 (3)
H57A0.24720.94440.01660.160*0.19 (3)
H57B0.21010.73910.02660.160*0.19 (3)
H57C0.29650.82560.04630.160*0.19 (3)
C310.8132 (5)0.7284 (4)0.70495 (17)0.0485 (8)
C320.6742 (5)0.6533 (4)0.7564 (2)0.0676 (10)
H320.55420.60280.74310.081*
C330.7114 (6)0.6527 (5)0.8267 (2)0.0798 (11)
H330.61810.60220.86110.096*
C340.8883 (7)0.7278 (5)0.8448 (2)0.0752 (11)
F340.9236 (3)0.7291 (3)0.91437 (11)0.1208 (9)
C351.0294 (5)0.8010 (4)0.7961 (2)0.0658 (10)
H351.14950.85050.81000.079*
C360.9911 (5)0.8003 (4)0.72606 (17)0.0542 (9)
H361.08700.84940.69220.065*
C370.7690 (6)0.7297 (5)0.6289 (2)0.0614 (10)
O310.8943 (4)0.8069 (3)0.58380 (12)0.0715 (7)
O320.6112 (4)0.6566 (4)0.61332 (13)0.1091 (10)
O410.7239 (4)0.3737 (3)0.46049 (12)0.0700 (8)
H410.615 (6)0.356 (5)0.4356 (17)0.105*
H420.835 (6)0.312 (5)0.4379 (18)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.065 (2)0.0429 (18)0.0550 (18)0.0089 (16)0.0145 (16)0.0061 (15)
C20.050 (2)0.060 (3)0.070 (2)0.0047 (18)0.0107 (19)0.0069 (18)
C30.049 (2)0.065 (2)0.059 (2)0.0019 (18)0.0035 (17)0.0091 (18)
N40.0405 (16)0.0437 (17)0.0483 (16)0.0016 (13)0.0044 (13)0.0054 (12)
C50.049 (2)0.057 (2)0.052 (2)0.0005 (16)0.0015 (17)0.0083 (16)
C60.059 (2)0.057 (2)0.053 (2)0.0029 (18)0.0011 (17)0.0049 (17)
C210.044 (3)0.042 (3)0.047 (2)0.004 (4)0.001 (2)0.008 (3)
C220.055 (2)0.070 (7)0.068 (3)0.009 (3)0.005 (2)0.020 (3)
C230.063 (3)0.080 (8)0.067 (3)0.009 (3)0.004 (2)0.030 (4)
C240.066 (3)0.058 (6)0.053 (3)0.007 (3)0.003 (2)0.017 (3)
C250.061 (3)0.087 (3)0.054 (4)0.012 (4)0.009 (3)0.009 (4)
C260.056 (3)0.070 (5)0.056 (3)0.016 (4)0.001 (2)0.013 (4)
O240.094 (3)0.129 (7)0.0660 (19)0.008 (4)0.0132 (16)0.039 (3)
C270.102 (5)0.156 (14)0.067 (4)0.004 (5)0.027 (4)0.023 (4)
C510.044 (3)0.042 (3)0.047 (2)0.004 (4)0.001 (2)0.008 (3)
C520.055 (2)0.070 (7)0.068 (3)0.009 (3)0.005 (2)0.020 (3)
C530.063 (3)0.080 (8)0.067 (3)0.009 (3)0.004 (2)0.030 (4)
C540.066 (3)0.058 (6)0.053 (3)0.007 (3)0.003 (2)0.017 (3)
C550.061 (3)0.087 (3)0.054 (4)0.012 (4)0.009 (3)0.009 (4)
C560.056 (3)0.070 (5)0.056 (3)0.016 (4)0.001 (2)0.013 (4)
O540.094 (3)0.129 (7)0.0660 (19)0.008 (4)0.0132 (16)0.039 (3)
C570.102 (5)0.156 (14)0.067 (4)0.004 (5)0.027 (4)0.023 (4)
C310.045 (2)0.039 (2)0.063 (2)0.0008 (16)0.0084 (18)0.0119 (16)
C320.051 (2)0.055 (3)0.099 (3)0.0062 (18)0.002 (2)0.017 (2)
C330.072 (3)0.073 (3)0.089 (3)0.004 (2)0.020 (2)0.001 (2)
C340.083 (3)0.084 (3)0.057 (3)0.003 (2)0.009 (2)0.004 (2)
F340.131 (2)0.164 (2)0.0633 (15)0.0008 (17)0.0068 (13)0.0036 (14)
C350.059 (2)0.068 (3)0.072 (3)0.0106 (19)0.011 (2)0.006 (2)
C360.056 (2)0.052 (2)0.056 (2)0.0059 (18)0.0122 (17)0.0070 (16)
C370.057 (3)0.042 (2)0.087 (3)0.0070 (19)0.022 (2)0.019 (2)
O310.0848 (18)0.0686 (18)0.0638 (17)0.0057 (15)0.0208 (14)0.0123 (13)
O320.0871 (19)0.129 (3)0.124 (2)0.0362 (18)0.0427 (16)0.0343 (17)
O410.0693 (17)0.0628 (18)0.0816 (18)0.0137 (14)0.0227 (13)0.0073 (13)
Geometric parameters (Å, º) top
N1—C21.483 (4)C27—H27C0.9600
N1—C61.485 (4)C51—C561.380 (9)
N1—H111.09 (3)C51—C521.390 (19)
N1—H120.87 (3)C52—C531.374 (9)
C2—C31.503 (3)C52—H520.9300
C2—H2A0.9700C53—C541.362 (9)
C2—H2B0.9700C53—H530.9300
C3—N41.458 (3)C54—C551.370 (13)
C3—H3A0.9700C54—O541.377 (9)
C3—H3B0.9700C55—C561.383 (9)
N4—C511.39 (5)C55—H550.9300
N4—C211.429 (10)C56—H560.9300
N4—C51.462 (3)O54—C571.408 (10)
C5—C61.499 (3)C57—H57A0.9600
C5—H5A0.9700C57—H57B0.9600
C5—H5B0.9700C57—H57C0.9600
C6—H6A0.9700C31—C361.377 (3)
C6—H6B0.9700C31—C321.388 (4)
C21—C261.379 (6)C31—C371.491 (4)
C21—C221.389 (15)C32—C331.374 (4)
C22—C231.374 (4)C32—H320.9300
C22—H220.9300C33—C341.363 (4)
C23—C241.361 (5)C33—H330.9300
C23—H230.9300C34—C351.358 (4)
C24—C251.369 (9)C34—F341.360 (4)
C24—O241.373 (4)C35—C361.373 (4)
C25—C261.383 (5)C35—H350.9300
C25—H250.9300C36—H360.9300
C26—H260.9300C37—O321.236 (3)
O24—C271.405 (4)C37—O311.266 (4)
C27—H27A0.9600O41—H410.88 (3)
C27—H27B0.9600O41—H420.91 (4)
C2—N1—C6109.5 (2)O24—C27—H27A109.5
C2—N1—H11111.6 (13)O24—C27—H27B109.5
C6—N1—H11111.1 (13)H27A—C27—H27B109.5
C2—N1—H12107 (2)O24—C27—H27C109.5
C6—N1—H12110.0 (19)H27A—C27—H27C109.5
H11—N1—H12107 (2)H27B—C27—H27C109.5
N1—C2—C3110.9 (2)C56—C51—C52115.3 (18)
N1—C2—H2A109.5C56—C51—N4122 (4)
C3—C2—H2A109.5C52—C51—N4120 (5)
N1—C2—H2B109.5C53—C52—C51121.2 (14)
C3—C2—H2B109.5C53—C52—H52119.4
H2A—C2—H2B108.1C51—C52—H52119.4
N4—C3—C2112.7 (2)C54—C53—C52121.5 (11)
N4—C3—H3A109.0C54—C53—H53119.3
C2—C3—H3A109.0C52—C53—H53119.3
N4—C3—H3B109.0C53—C54—C55118.3 (12)
C2—C3—H3B109.0C53—C54—O54116.6 (13)
H3A—C3—H3B107.8C55—C54—O54123.2 (15)
C51—N4—C3117 (4)C54—C55—C56119.0 (16)
C21—N4—C3114.4 (9)C54—C55—H55120.5
C51—N4—C5111 (4)C56—C55—H55120.5
C21—N4—C5115.5 (10)C51—C56—C55122.8 (13)
C3—N4—C5110.9 (2)C51—C56—H56118.6
N4—C5—C6112.1 (2)C55—C56—H56118.6
N4—C5—H5A109.2C54—O54—C57117.8 (15)
C6—C5—H5A109.2O54—C57—H57A109.5
N4—C5—H5B109.2O54—C57—H57B109.5
C6—C5—H5B109.2H57A—C57—H57B109.5
H5A—C5—H5B107.9O54—C57—H57C109.5
N1—C6—C5110.6 (2)H57A—C57—H57C109.5
N1—C6—H6A109.5H57B—C57—H57C109.5
C5—C6—H6A109.5C36—C31—C32118.3 (3)
N1—C6—H6B109.5C36—C31—C37121.4 (3)
C5—C6—H6B109.5C32—C31—C37120.2 (3)
H6A—C6—H6B108.1C33—C32—C31121.0 (3)
C26—C21—C22115.6 (7)C33—C32—H32119.5
C26—C21—N4121.3 (11)C31—C32—H32119.5
C22—C21—N4123.1 (9)C34—C33—C32118.3 (4)
C23—C22—C21121.3 (4)C34—C33—H33120.8
C23—C22—H22119.4C32—C33—H33120.8
C21—C22—H22119.4C35—C34—F34119.1 (4)
C24—C23—C22121.8 (4)C35—C34—C33122.6 (4)
C24—C23—H23119.1F34—C34—C33118.3 (4)
C22—C23—H23119.1C34—C35—C36118.6 (3)
C23—C24—C25118.5 (4)C34—C35—H35120.7
C23—C24—O24116.6 (4)C36—C35—H35120.7
C25—C24—O24124.8 (4)C35—C36—C31121.2 (3)
C24—C25—C26119.5 (6)C35—C36—H36119.4
C24—C25—H25120.2C31—C36—H36119.4
C26—C25—H25120.2O32—C37—O31123.5 (4)
C21—C26—C25123.2 (6)O32—C37—C31118.3 (4)
C21—C26—H26118.4O31—C37—C31118.2 (3)
C25—C26—H26118.4H41—O41—H42101 (3)
C24—O24—C27118.8 (4)
C6—N1—C2—C356.3 (3)C3—N4—C51—C5238 (19)
N1—C2—C3—N455.3 (3)C5—N4—C51—C52166 (12)
C2—C3—N4—C51178 (9)C56—C51—C52—C539 (19)
C2—C3—N4—C21174 (2)N4—C51—C52—C53170 (10)
C2—C3—N4—C553.7 (3)C51—C52—C53—C548 (11)
C51—N4—C5—C6174 (8)C52—C53—C54—C5510 (7)
C21—N4—C5—C6173 (2)C52—C53—C54—O54175 (4)
C3—N4—C5—C654.6 (3)C53—C54—C55—C5612 (11)
C2—N1—C6—C557.4 (3)O54—C54—C55—C56176 (7)
N4—C5—C6—N157.2 (3)N4—C51—C56—C55172 (13)
C3—N4—C21—C26169 (3)C54—C55—C56—C5114 (15)
C5—N4—C21—C2638 (4)C53—C54—O54—C57174 (5)
C3—N4—C21—C2210 (5)C55—C54—O54—C5710 (8)
C5—N4—C21—C22140 (3)C36—C31—C32—C330.8 (4)
C26—C21—C22—C232 (4)C37—C31—C32—C33179.3 (3)
N4—C21—C22—C23179 (2)C31—C32—C33—C340.1 (5)
C21—C22—C23—C243 (2)C32—C33—C34—C350.7 (5)
C22—C23—C24—C252.3 (13)C32—C33—C34—F34179.2 (3)
C22—C23—C24—O24179.7 (6)F34—C34—C35—C36179.4 (3)
C23—C24—C25—C262 (2)C33—C34—C35—C360.5 (5)
O24—C24—C25—C26179.9 (14)C34—C35—C36—C310.4 (5)
C22—C21—C26—C252 (4)C32—C31—C36—C351.0 (4)
N4—C21—C26—C25179 (3)C37—C31—C36—C35179.1 (3)
C24—C25—C26—C212 (3)C36—C31—C37—O32177.2 (3)
C23—C24—O24—C27173.8 (10)C32—C31—C37—O322.7 (4)
C25—C24—O24—C278.4 (16)C36—C31—C37—O313.3 (4)
C3—N4—C51—C56162 (12)C32—C31—C37—O31176.8 (3)
C5—N4—C51—C5634 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O311.09 (3)1.67 (3)2.758 (4)174.1 (19)
N1—H12···O410.86 (3)1.96 (3)2.818 (4)170 (3)
O41—H41···O32i0.86 (4)1.75 (4)2.627 (4)174 (4)
O41—H42···O31ii0.91 (4)1.88 (4)2.768 (3)163 (3)
C2—H2B···O31iii0.972.583.529 (4)166
C6—H6B···O41i0.972.573.386 (4)142
C22—H22···Cg1ii0.932.933.664 (12)137
C26—H26···Cg1iv0.932.813.56 (2)138
C56—H56···Cg1iv0.932.963.55 (9)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium 4-chlorobenzoate monohydrate (III) top
Crystal data top
C11H17N2O+·C7H4ClO2·H2OZ = 2
Mr = 366.83F(000) = 388
Triclinic, P1Dx = 1.312 Mg m3
a = 6.211 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.481 (1) ÅCell parameters from 3962 reflections
c = 20.144 (4) Åθ = 2.8–28.8°
α = 84.90 (2)°µ = 0.23 mm1
β = 87.48 (2)°T = 293 K
γ = 85.19 (2)°Plate, colourless
V = 928.4 (3) Å30.20 × 0.16 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3454 independent reflections
Radiation source: Enhance (Mo) X-ray Source1343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 77
Tmin = 0.951, Tmax = 0.995k = 98
5883 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3454 reflectionsΔρmax = 0.24 e Å3
265 parametersΔρmin = 0.23 e Å3
17 restraints
Special details top

Experimental. Compound (III). IR (KBr , cm-1) 3320 (OH), 3003 (NH2), 2837 (OCH3), 1582 (COO), 772(CCl). NMR (CDCl3) δ(1H) 3.23 (m, 4H, piperazine), 3.28 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.86 (m, 4H, methoxyphenyl), 7.36 (d, J = 8.4 Hz, 2H, chlorophenyl), 7.98 (d, J = 8.4 Hz,2H, chlorophenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7833 (5)0.7442 (4)0.45388 (15)0.0536 (9)
H110.827 (5)0.777 (4)0.5028 (16)0.064*
H120.760 (5)0.636 (4)0.4593 (16)0.064*
C20.9718 (6)0.7498 (5)0.40636 (16)0.0570 (10)
H2A1.08880.66670.42340.068*
H2B1.02160.86990.40200.068*
C30.9136 (6)0.6998 (4)0.33895 (16)0.0545 (10)
H3A1.03710.71160.30820.065*
H3B0.88030.57490.34270.065*
N40.7287 (4)0.8126 (3)0.31215 (12)0.0433 (7)
C50.5425 (5)0.8110 (4)0.35968 (15)0.0516 (9)
H5A0.49180.69120.36500.062*
H5B0.42600.89350.34200.062*
C60.5992 (6)0.8644 (4)0.42667 (15)0.0551 (10)
H6A0.63770.98800.42220.066*
H6B0.47470.85690.45730.066*
C210.685 (4)0.783 (9)0.2449 (9)0.0446 (14)0.73 (2)
C220.8261 (13)0.6777 (19)0.2052 (4)0.060 (3)0.73 (2)
H220.95230.62110.22300.072*0.73 (2)
C230.7808 (13)0.657 (2)0.1401 (4)0.074 (3)0.73 (2)
H230.88070.59160.11410.088*0.73 (2)
C240.5923 (18)0.730 (3)0.1130 (5)0.065 (4)0.73 (2)
C250.450 (2)0.828 (5)0.1516 (8)0.075 (3)0.73 (2)
H250.31960.87810.13410.089*0.73 (2)
C260.496 (2)0.854 (3)0.2162 (6)0.060 (3)0.73 (2)
H260.39580.92210.24130.072*0.73 (2)
O240.564 (2)0.697 (2)0.0482 (6)0.104 (4)0.73 (2)
C270.362 (3)0.743 (2)0.0203 (7)0.101 (4)0.73 (2)
H27A0.25170.68920.04850.152*0.73 (2)
H27B0.36230.69890.02310.152*0.73 (2)
H27C0.33310.87130.01640.152*0.73 (2)
C510.668 (10)0.79 (3)0.247 (2)0.0446 (14)0.27 (2)
C520.833 (4)0.755 (4)0.1991 (13)0.060 (3)0.27 (2)
H520.97610.74130.21120.072*0.27 (2)
C530.783 (4)0.739 (4)0.1340 (12)0.074 (3)0.27 (2)
H530.89240.70210.10390.088*0.27 (2)
C540.577 (5)0.775 (9)0.1126 (15)0.065 (4)0.27 (2)
C550.418 (6)0.825 (15)0.158 (2)0.075 (3)0.27 (2)
H550.27750.85340.14370.089*0.27 (2)
C560.464 (5)0.834 (8)0.2235 (18)0.060 (3)0.27 (2)
H560.35320.87010.25310.072*0.27 (2)
O540.548 (7)0.751 (7)0.0468 (16)0.104 (4)0.27 (2)
C570.351 (8)0.814 (6)0.018 (2)0.101 (4)0.27 (2)
H57A0.23460.76220.04380.152*0.27 (2)
H57B0.35180.78140.02670.152*0.27 (2)
H57C0.33260.94320.01820.152*0.27 (2)
C310.8074 (6)0.7372 (4)0.69495 (18)0.0470 (9)
C320.6605 (7)0.6665 (5)0.7412 (2)0.0704 (11)
H320.54070.61640.72670.084*
C330.6886 (8)0.6688 (5)0.8091 (2)0.0834 (13)
H330.58830.62120.84000.100*
C340.8662 (9)0.7424 (6)0.8301 (2)0.0770 (13)
Cl340.8970 (3)0.74735 (19)0.91487 (5)0.1383 (7)
C351.0144 (7)0.8114 (5)0.7851 (2)0.0695 (11)
H351.13500.86010.79970.083*
C360.9845 (6)0.8084 (4)0.71778 (17)0.0543 (10)
H361.08610.85550.68720.065*
C370.7721 (7)0.7351 (5)0.6222 (2)0.0581 (11)
O310.9006 (5)0.8125 (3)0.58079 (12)0.0697 (8)
O320.6183 (5)0.6568 (4)0.60573 (15)0.1085 (11)
O410.7230 (5)0.3744 (3)0.46334 (13)0.0683 (8)
H410.614 (7)0.363 (5)0.4360 (19)0.102*
H420.846 (7)0.315 (5)0.4434 (19)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.065 (2)0.0467 (18)0.0505 (19)0.0043 (19)0.0122 (18)0.0079 (17)
C20.044 (2)0.069 (3)0.057 (2)0.003 (2)0.008 (2)0.0023 (19)
C30.043 (2)0.065 (2)0.053 (2)0.007 (2)0.0072 (19)0.0050 (18)
N40.0390 (19)0.0473 (17)0.0432 (17)0.0009 (15)0.0023 (15)0.0044 (13)
C50.049 (2)0.055 (2)0.049 (2)0.0054 (19)0.0007 (19)0.0041 (18)
C60.057 (3)0.056 (2)0.051 (2)0.006 (2)0.0009 (19)0.0052 (18)
C210.038 (4)0.046 (7)0.049 (3)0.001 (5)0.001 (3)0.005 (2)
C220.054 (3)0.064 (8)0.059 (3)0.021 (4)0.007 (2)0.011 (4)
C230.073 (4)0.084 (9)0.059 (3)0.035 (5)0.002 (3)0.020 (5)
C240.074 (4)0.077 (12)0.043 (2)0.008 (3)0.004 (2)0.016 (4)
C250.064 (5)0.104 (4)0.053 (4)0.021 (7)0.013 (4)0.013 (5)
C260.048 (4)0.081 (6)0.049 (4)0.012 (5)0.003 (3)0.012 (4)
O240.104 (3)0.148 (12)0.059 (2)0.039 (5)0.0194 (19)0.038 (4)
C270.109 (5)0.125 (13)0.070 (3)0.022 (7)0.034 (3)0.025 (7)
C510.038 (4)0.046 (7)0.049 (3)0.001 (5)0.001 (3)0.005 (2)
C520.054 (3)0.064 (8)0.059 (3)0.021 (4)0.007 (2)0.011 (4)
C530.073 (4)0.084 (9)0.059 (3)0.035 (5)0.002 (3)0.020 (5)
C540.074 (4)0.077 (12)0.043 (2)0.008 (3)0.004 (2)0.016 (4)
C550.064 (5)0.104 (4)0.053 (4)0.021 (7)0.013 (4)0.013 (5)
C560.048 (4)0.081 (6)0.049 (4)0.012 (5)0.003 (3)0.012 (4)
O540.104 (3)0.148 (12)0.059 (2)0.039 (5)0.0194 (19)0.038 (4)
C570.109 (5)0.125 (13)0.070 (3)0.022 (7)0.034 (3)0.025 (7)
C310.042 (2)0.040 (2)0.059 (2)0.0033 (19)0.006 (2)0.0082 (18)
C320.061 (3)0.061 (3)0.090 (3)0.008 (2)0.005 (3)0.012 (2)
C330.080 (4)0.085 (3)0.080 (4)0.001 (3)0.029 (3)0.002 (3)
C340.089 (4)0.078 (3)0.060 (3)0.017 (3)0.007 (3)0.005 (2)
Cl340.1856 (16)0.1630 (13)0.0572 (8)0.0402 (11)0.0065 (8)0.0083 (8)
C350.070 (3)0.077 (3)0.062 (3)0.002 (2)0.015 (3)0.010 (2)
C360.054 (3)0.054 (2)0.055 (3)0.007 (2)0.007 (2)0.0026 (18)
C370.056 (3)0.044 (2)0.075 (3)0.007 (2)0.017 (3)0.017 (2)
O310.087 (2)0.0683 (18)0.0553 (17)0.0048 (16)0.0119 (16)0.0086 (14)
O320.095 (2)0.132 (3)0.110 (2)0.033 (2)0.040 (2)0.0309 (19)
O410.068 (2)0.0661 (17)0.0737 (19)0.0116 (16)0.0191 (15)0.0057 (14)
Geometric parameters (Å, º) top
N1—C21.481 (4)C27—H27C0.9600
N1—C61.487 (4)C51—C561.376 (12)
N1—H111.09 (3)C51—C521.40 (2)
N1—H120.83 (3)C52—C531.378 (9)
C2—C31.507 (4)C52—H520.9300
C2—H2A0.9700C53—C541.366 (9)
C2—H2B0.9700C53—H530.9300
C3—N41.461 (4)C54—C551.363 (14)
C3—H3A0.9700C54—O541.373 (8)
C3—H3B0.9700C55—C561.380 (9)
N4—C511.40 (3)C55—H550.9300
N4—C211.434 (12)C56—H560.9300
N4—C51.468 (4)O54—C571.401 (9)
C5—C61.505 (4)C57—H57A0.9600
C5—H5A0.9700C57—H57B0.9600
C5—H5B0.9700C57—H57C0.9600
C6—H6A0.9700C31—C361.376 (4)
C6—H6B0.9700C31—C321.378 (5)
C21—C261.376 (12)C31—C371.494 (5)
C21—C221.40 (2)C32—C331.389 (5)
C22—C231.378 (5)C32—H320.9300
C22—H220.9300C33—C341.372 (5)
C23—C241.366 (6)C33—H330.9300
C23—H230.9300C34—C351.363 (5)
C24—C251.363 (12)C34—Cl341.731 (4)
C24—O241.373 (5)C35—C361.379 (4)
C25—C261.380 (6)C35—H350.9300
C25—H250.9300C36—H360.9300
C26—H260.9300C37—O321.233 (4)
O24—C271.400 (6)C37—O311.265 (4)
C27—H27A0.9600O41—H410.91 (4)
C27—H27B0.9600O41—H420.94 (4)
C2—N1—C6110.0 (3)O24—C27—H27A109.5
C2—N1—H11110.7 (16)O24—C27—H27B109.5
C6—N1—H11112.6 (15)H27A—C27—H27B109.5
C2—N1—H12105 (2)O24—C27—H27C109.5
C6—N1—H12114 (2)H27A—C27—H27C109.5
H11—N1—H12105 (3)H27B—C27—H27C109.5
N1—C2—C3110.9 (3)C56—C51—C52116.1 (16)
N1—C2—H2A109.5C56—C51—N4125 (2)
C3—C2—H2A109.5C52—C51—N4118 (4)
N1—C2—H2B109.5C53—C52—C51120.5 (14)
C3—C2—H2B109.5C53—C52—H52119.7
H2A—C2—H2B108.1C51—C52—H52119.7
N4—C3—C2112.4 (3)C54—C53—C52121.5 (11)
N4—C3—H3A109.1C54—C53—H53119.2
C2—C3—H3A109.1C52—C53—H53119.2
N4—C3—H3B109.1C55—C54—C53118.5 (10)
C2—C3—H3B109.1C55—C54—O54125.5 (13)
H3A—C3—H3B107.9C53—C54—O54116.0 (12)
C51—N4—C3118 (4)C54—C55—C56120.5 (12)
C21—N4—C3113.7 (13)C54—C55—H55119.8
C51—N4—C5112 (4)C56—C55—H55119.8
C21—N4—C5115.8 (14)C51—C56—C55122.4 (12)
C3—N4—C5111.1 (2)C51—C56—H56118.8
N4—C5—C6111.8 (3)C55—C56—H56118.8
N4—C5—H5A109.3C54—O54—C57119.2 (14)
C6—C5—H5A109.3O54—C57—H57A109.5
N4—C5—H5B109.3O54—C57—H57B109.5
C6—C5—H5B109.3H57A—C57—H57B109.5
H5A—C5—H5B107.9O54—C57—H57C109.5
N1—C6—C5110.5 (3)H57A—C57—H57C109.5
N1—C6—H6A109.6H57B—C57—H57C109.5
C5—C6—H6A109.6C36—C31—C32118.3 (3)
N1—C6—H6B109.6C36—C31—C37121.7 (4)
C5—C6—H6B109.6C32—C31—C37120.0 (4)
H6A—C6—H6B108.1C31—C32—C33121.0 (4)
C26—C21—C22116.2 (8)C31—C32—H32119.5
C26—C21—N4121.0 (15)C33—C32—H32119.5
C22—C21—N4122.8 (12)C34—C33—C32119.1 (4)
C23—C22—C21120.9 (6)C34—C33—H33120.4
C23—C22—H22119.5C32—C33—H33120.4
C21—C22—H22119.5C35—C34—C33120.7 (4)
C24—C23—C22121.4 (5)C35—C34—Cl34120.7 (4)
C24—C23—H23119.3C33—C34—Cl34118.6 (4)
C22—C23—H23119.3C34—C35—C36119.6 (4)
C25—C24—C23118.5 (5)C34—C35—H35120.2
C25—C24—O24125.6 (6)C36—C35—H35120.2
C23—C24—O24115.9 (6)C31—C36—C35121.3 (4)
C24—C25—C26120.7 (8)C31—C36—H36119.4
C24—C25—H25119.7C35—C36—H36119.4
C26—C25—H25119.7O32—C37—O31123.5 (4)
C21—C26—C25122.3 (10)O32—C37—C31117.7 (4)
C21—C26—H26118.8O31—C37—C31118.7 (4)
C25—C26—H26118.8H41—O41—H42105 (3)
C24—O24—C27119.3 (6)
C6—N1—C2—C356.4 (3)C3—N4—C51—C5237 (18)
N1—C2—C3—N455.4 (4)C5—N4—C51—C52168 (11)
C2—C3—N4—C51175 (9)C56—C51—C52—C539 (19)
C2—C3—N4—C21173 (3)N4—C51—C52—C53178 (9)
C2—C3—N4—C554.1 (3)C51—C52—C53—C547 (11)
C51—N4—C5—C6171 (8)C52—C53—C54—C551 (10)
C21—N4—C5—C6173 (3)C52—C53—C54—O54179 (5)
C3—N4—C5—C654.8 (3)C53—C54—C55—C562 (14)
C2—N1—C6—C557.2 (3)O54—C54—C55—C56176 (8)
N4—C5—C6—N156.8 (4)C52—C51—C56—C556 (20)
C3—N4—C21—C26169 (4)N4—C51—C56—C55174 (13)
C5—N4—C21—C2638 (7)C54—C55—C56—C511 (17)
C3—N4—C21—C2210 (7)C55—C54—O54—C5713 (13)
C5—N4—C21—C22140 (4)C53—C54—O54—C57169 (5)
C26—C21—C22—C233 (7)C36—C31—C32—C330.8 (5)
N4—C21—C22—C23178 (4)C37—C31—C32—C33179.2 (3)
C21—C22—C23—C243 (4)C31—C32—C33—C340.3 (6)
C22—C23—C24—C251 (3)C32—C33—C34—C350.4 (6)
C22—C23—C24—O24178.6 (14)C32—C33—C34—Cl34179.1 (3)
C23—C24—C25—C261 (5)C33—C34—C35—C360.5 (6)
O24—C24—C25—C26180 (3)Cl34—C34—C35—C36179.0 (3)
C22—C21—C26—C252 (7)C32—C31—C36—C350.7 (5)
N4—C21—C26—C25180 (4)C37—C31—C36—C35179.3 (3)
C24—C25—C26—C210 (6)C34—C35—C36—C310.1 (5)
C25—C24—O24—C2710 (4)C36—C31—C37—O32174.6 (3)
C23—C24—O24—C27169.9 (15)C32—C31—C37—O325.3 (5)
C3—N4—C51—C56155 (12)C36—C31—C37—O315.1 (5)
C5—N4—C51—C5624 (19)C32—C31—C37—O31174.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O311.09 (3)1.71 (3)2.790 (4)176 (3)
N1—H12···O410.83 (3)1.98 (3)2.811 (4)174 (3)
O41—H41···O32i0.91 (4)1.73 (4)2.624 (4)172 (4)
O41—H42···O31ii0.94 (4)1.84 (4)2.775 (4)170 (4)
C2—H2B···O31iii0.972.523.467 (4)165
C6—H6B···O41i0.972.603.408 (4)141
C22—H22···Cg1iv0.932.893.631 (13)137
C26—H26···Cg1iv0.932.813.58 (2)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium 4-bromobenzoate monohydrate (IV) top
Crystal data top
C11H17N2O+·C7H4BrO2·H2OZ = 2
Mr = 411.28F(000) = 424
Triclinic, P1Dx = 1.450 Mg m3
a = 6.2004 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4957 (9) ÅCell parameters from 3927 reflections
c = 20.440 (2) Åθ = 2.8–27.9°
α = 85.08 (1)°µ = 2.21 mm1
β = 87.37 (1)°T = 293 K
γ = 85.00 (1)°Plate, colourless
V = 942.17 (19) Å30.48 × 0.44 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3818 independent reflections
Radiation source: Enhance (Mo) X-ray Source2063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.6°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 77
Tmin = 0.536, Tmax = 0.719k = 89
6176 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0819P)2 + 0.9249P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3818 reflectionsΔρmax = 0.94 e Å3
265 parametersΔρmin = 0.64 e Å3
17 restraints
Special details top

Experimental. Compound (IV). IR (KBr , cm-1) 3319 (OH), 3001 (NH2), 2836 (OCH3), 1580 (COO), 600(CBr). . NMR (CDCl3) δ(1H) ) 3.23 (m, 4H, piperazine), 3.30 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.85 (m, 4H, methoxyphenyl), 7.51 (d, J = 8.4 Hz, 2H, bromophenyl), 7.90 (d, J = 8.4 Hz,2H, bromophenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7803 (6)0.7425 (5)0.45428 (17)0.0475 (9)
H110.813 (7)0.770 (6)0.488 (2)0.057*
H120.753 (7)0.620 (7)0.461 (2)0.057*
C20.9709 (7)0.7508 (6)0.4079 (2)0.0530 (11)
H2A1.08990.67020.42500.064*
H2B1.01690.87180.40340.064*
C30.9143 (6)0.6978 (6)0.3414 (2)0.0502 (10)
H3A1.03820.70860.31100.060*
H3B0.88080.57320.34540.060*
N40.7286 (5)0.8112 (4)0.31535 (14)0.0389 (7)
C50.5420 (6)0.8089 (6)0.36137 (18)0.0454 (10)
H5A0.49240.68910.36650.055*
H5B0.42490.89090.34380.055*
C60.5976 (7)0.8631 (6)0.42775 (19)0.0485 (10)
H6A0.63680.98620.42340.058*
H6B0.47230.85650.45780.058*
C210.6845 (19)0.784 (6)0.2485 (4)0.0421 (11)0.80 (2)
C220.8313 (11)0.6853 (18)0.2086 (3)0.066 (3)0.80 (2)
H220.96040.63250.22560.079*0.80 (2)
C230.7862 (12)0.666 (2)0.1442 (3)0.084 (4)0.80 (2)
H230.88950.60400.11830.101*0.80 (2)
C240.5980 (13)0.7331 (16)0.1174 (4)0.062 (3)0.80 (2)
C250.4512 (15)0.826 (5)0.1561 (6)0.080 (4)0.80 (2)
H250.32010.87330.13900.096*0.80 (2)
C260.4941 (16)0.850 (3)0.2209 (4)0.064 (4)0.80 (2)
H260.38990.91270.24620.077*0.80 (2)
O240.5730 (16)0.7011 (17)0.0530 (3)0.101 (3)0.80 (2)
C270.373 (2)0.743 (3)0.0258 (6)0.114 (6)0.80 (2)
H27A0.26230.69660.05510.171*0.80 (2)
H27B0.37170.69050.01540.171*0.80 (2)
H27C0.34640.87120.01860.171*0.80 (2)
C510.672 (7)0.79 (2)0.2512 (15)0.0421 (11)0.20 (2)
C520.838 (5)0.786 (6)0.2026 (13)0.066 (3)0.20 (2)
H520.97850.80270.21340.079*0.20 (2)
C530.795 (5)0.760 (7)0.1384 (13)0.084 (4)0.20 (2)
H530.90780.72420.10960.101*0.20 (2)
C540.590 (5)0.787 (9)0.1169 (14)0.062 (3)0.20 (2)
C550.426 (6)0.81 (2)0.163 (2)0.080 (4)0.20 (2)
H550.28330.82340.14920.096*0.20 (2)
C560.466 (6)0.818 (13)0.2286 (19)0.064 (4)0.20 (2)
H560.35150.84410.25810.077*0.20 (2)
O540.565 (7)0.773 (7)0.0512 (15)0.101 (3)0.20 (2)
C570.364 (9)0.817 (13)0.025 (3)0.114 (6)0.20 (2)
H57A0.25410.77400.05540.171*0.20 (2)
H57B0.35820.76350.01570.171*0.20 (2)
H57C0.34040.94570.01730.171*0.20 (2)
C310.8064 (6)0.7392 (5)0.6932 (2)0.0436 (9)
C320.6590 (8)0.6690 (7)0.7386 (3)0.0661 (13)
H320.53880.61920.72450.079*
C330.6890 (10)0.6724 (8)0.8053 (3)0.0832 (17)
H330.58880.62590.83600.100*
C340.8682 (10)0.7450 (8)0.8256 (2)0.0802 (16)
Br340.90280 (17)0.75220 (15)0.91705 (3)0.1491 (5)
C351.0170 (9)0.8124 (7)0.7814 (2)0.0683 (14)
H351.13830.85990.79590.082*
C360.9870 (7)0.8100 (6)0.7146 (2)0.0500 (10)
H361.08840.85610.68430.060*
C370.7721 (7)0.7357 (6)0.6201 (2)0.0528 (11)
O310.8989 (6)0.8126 (4)0.57976 (15)0.0631 (9)
O320.6180 (7)0.6578 (6)0.6044 (2)0.0999 (14)
O410.7233 (6)0.3743 (5)0.46351 (17)0.0633 (9)
H410.620 (10)0.353 (8)0.445 (3)0.095*
H420.820 (11)0.313 (9)0.449 (3)0.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (2)0.048 (2)0.0349 (17)0.0089 (18)0.0128 (16)0.0048 (16)
C20.044 (2)0.067 (3)0.049 (2)0.004 (2)0.0092 (19)0.004 (2)
C30.037 (2)0.067 (3)0.046 (2)0.002 (2)0.0018 (18)0.003 (2)
N40.0365 (17)0.047 (2)0.0333 (15)0.0045 (14)0.0000 (13)0.0017 (14)
C50.039 (2)0.059 (3)0.038 (2)0.0005 (19)0.0004 (17)0.0020 (19)
C60.055 (3)0.052 (3)0.037 (2)0.003 (2)0.0016 (18)0.0034 (18)
C210.044 (3)0.048 (3)0.034 (2)0.006 (3)0.0000 (19)0.002 (3)
C220.053 (3)0.093 (9)0.048 (3)0.025 (4)0.009 (2)0.017 (4)
C230.076 (4)0.122 (10)0.049 (3)0.036 (5)0.001 (3)0.031 (5)
C240.072 (3)0.079 (9)0.036 (2)0.009 (4)0.007 (2)0.018 (3)
C250.058 (4)0.133 (10)0.046 (4)0.015 (7)0.015 (3)0.008 (6)
C260.055 (4)0.099 (10)0.036 (3)0.015 (5)0.001 (2)0.015 (5)
O240.108 (3)0.148 (10)0.046 (2)0.033 (5)0.019 (2)0.037 (4)
C270.108 (5)0.181 (19)0.058 (4)0.008 (7)0.030 (4)0.038 (7)
C510.044 (3)0.048 (3)0.034 (2)0.006 (3)0.0000 (19)0.002 (3)
C520.053 (3)0.093 (9)0.048 (3)0.025 (4)0.009 (2)0.017 (4)
C530.076 (4)0.122 (10)0.049 (3)0.036 (5)0.001 (3)0.031 (5)
C540.072 (3)0.079 (9)0.036 (2)0.009 (4)0.007 (2)0.018 (3)
C550.058 (4)0.133 (10)0.046 (4)0.015 (7)0.015 (3)0.008 (6)
C560.055 (4)0.099 (10)0.036 (3)0.015 (5)0.001 (2)0.015 (5)
O540.108 (3)0.148 (10)0.046 (2)0.033 (5)0.019 (2)0.037 (4)
C570.108 (5)0.181 (19)0.058 (4)0.008 (7)0.030 (4)0.038 (7)
C310.041 (2)0.040 (2)0.049 (2)0.0019 (18)0.0051 (18)0.0056 (18)
C320.052 (3)0.070 (3)0.076 (3)0.009 (2)0.001 (2)0.005 (3)
C330.082 (4)0.098 (4)0.063 (3)0.002 (3)0.023 (3)0.011 (3)
C340.089 (4)0.100 (4)0.048 (3)0.001 (3)0.006 (3)0.004 (3)
Br340.1950 (10)0.2001 (11)0.0444 (4)0.0349 (8)0.0150 (4)0.0114 (4)
C350.073 (3)0.082 (4)0.053 (3)0.006 (3)0.021 (3)0.010 (3)
C360.049 (2)0.056 (3)0.046 (2)0.010 (2)0.0083 (19)0.000 (2)
C370.051 (3)0.045 (3)0.063 (3)0.006 (2)0.020 (2)0.012 (2)
O310.083 (2)0.063 (2)0.0446 (17)0.0054 (18)0.0124 (17)0.0053 (15)
O320.087 (3)0.130 (4)0.094 (3)0.037 (3)0.038 (2)0.024 (3)
O410.064 (2)0.065 (2)0.064 (2)0.0133 (17)0.0210 (17)0.0029 (17)
Geometric parameters (Å, º) top
N1—C61.479 (5)C27—H27C0.9600
N1—C21.483 (6)C51—C561.369 (11)
N1—H110.78 (5)C51—C521.40 (2)
N1—H120.95 (5)C52—C531.383 (11)
C2—C31.513 (6)C52—H520.9300
C2—H2A0.9700C53—C541.353 (11)
C2—H2B0.9700C53—H530.9300
C3—N41.463 (5)C54—C551.362 (19)
C3—H3A0.9700C54—O541.374 (10)
C3—H3B0.9700C55—C561.392 (11)
N4—C511.40 (4)C55—H550.9300
N4—C211.441 (10)C56—H560.9300
N4—C51.458 (5)O54—C571.383 (12)
C5—C61.512 (5)C57—H57A0.9600
C5—H5A0.9700C57—H57B0.9600
C5—H5B0.9700C57—H57C0.9600
C6—H6A0.9700C31—C321.377 (6)
C6—H6B0.9700C31—C361.385 (5)
C21—C261.367 (10)C31—C371.521 (6)
C21—C221.399 (19)C32—C331.387 (7)
C22—C231.380 (7)C32—H320.9300
C22—H220.9300C33—C341.375 (8)
C23—C241.351 (8)C33—H330.9300
C23—H230.9300C34—C351.360 (8)
C24—C251.362 (16)C34—Br341.897 (5)
C24—O241.374 (6)C35—C361.388 (6)
C25—C261.392 (8)C35—H350.9300
C25—H250.9300C36—H360.9300
C26—H260.9300C37—O321.231 (5)
O24—C271.383 (8)C37—O311.252 (6)
C27—H27A0.9600O41—H410.79 (6)
C27—H27B0.9600O41—H420.79 (7)
C6—N1—C2109.7 (3)O24—C27—H27A109.5
C6—N1—H11111 (3)O24—C27—H27B109.5
C2—N1—H11108 (3)H27A—C27—H27B109.5
C6—N1—H12115 (3)O24—C27—H27C109.5
C2—N1—H12106 (3)H27A—C27—H27C109.5
H11—N1—H12106 (4)H27B—C27—H27C109.5
N1—C2—C3110.1 (3)C56—C51—C52115 (2)
N1—C2—H2A109.6C56—C51—N4125 (3)
C3—C2—H2A109.6C52—C51—N4117 (4)
N1—C2—H2B109.6C53—C52—C51120.4 (19)
C3—C2—H2B109.6C53—C52—H52119.8
H2A—C2—H2B108.1C51—C52—H52119.8
N4—C3—C2111.3 (3)C54—C53—C52120.8 (13)
N4—C3—H3A109.4C54—C53—H53119.6
C2—C3—H3A109.4C52—C53—H53119.6
N4—C3—H3B109.4C53—C54—C55117.8 (11)
C2—C3—H3B109.4C53—C54—O54116.7 (13)
H3A—C3—H3B108.0C55—C54—O54125.2 (15)
C51—N4—C5112 (2)C54—C55—C56121.2 (16)
C21—N4—C5115.3 (7)C54—C55—H55119.4
C51—N4—C3117 (4)C56—C55—H55119.4
C21—N4—C3114.0 (11)C51—C56—C55121.4 (12)
C5—N4—C3111.5 (3)C51—C56—H56119.3
N4—C5—C6111.4 (3)C55—C56—H56119.3
N4—C5—H5A109.4C54—O54—C57119.3 (17)
C6—C5—H5A109.4O54—C57—H57A109.5
N4—C5—H5B109.4O54—C57—H57B109.5
C6—C5—H5B109.4H57A—C57—H57B109.5
H5A—C5—H5B108.0O54—C57—H57C109.5
N1—C6—C5110.0 (3)H57A—C57—H57C109.5
N1—C6—H6A109.7H57B—C57—H57C109.5
C5—C6—H6A109.7C32—C31—C36119.5 (4)
N1—C6—H6B109.7C32—C31—C37120.0 (4)
C5—C6—H6B109.7C36—C31—C37120.5 (4)
H6A—C6—H6B108.2C31—C32—C33120.3 (5)
C26—C21—C22116.1 (7)C31—C32—H32119.9
C26—C21—N4121.7 (13)C33—C32—H32119.9
C22—C21—N4122.2 (10)C34—C33—C32119.4 (5)
C23—C22—C21120.6 (6)C34—C33—H33120.3
C23—C22—H22119.7C32—C33—H33120.3
C21—C22—H22119.7C35—C34—C33121.1 (5)
C24—C23—C22122.6 (5)C35—C34—Br34120.3 (5)
C24—C23—H23118.7C33—C34—Br34118.6 (4)
C22—C23—H23118.7C34—C35—C36119.7 (5)
C23—C24—C25117.4 (5)C34—C35—H35120.2
C23—C24—O24116.5 (5)C36—C35—H35120.2
C25—C24—O24126.1 (6)C31—C36—C35120.1 (4)
C24—C25—C26121.1 (10)C31—C36—H36119.9
C24—C25—H25119.5C35—C36—H36119.9
C26—C25—H25119.5O32—C37—O31124.0 (5)
C21—C26—C25122.1 (10)O32—C37—C31117.1 (5)
C21—C26—H26119.0O31—C37—C31118.9 (4)
C25—C26—H26119.0H41—O41—H42105 (6)
C24—O24—C27119.2 (5)
C6—N1—C2—C358.3 (5)C5—N4—C51—C52180 (9)
N1—C2—C3—N456.7 (5)C3—N4—C51—C5249 (14)
C2—C3—N4—C51174 (7)C56—C51—C52—C5320 (15)
C2—C3—N4—C21172.1 (16)N4—C51—C52—C53179 (8)
C2—C3—N4—C555.2 (4)C51—C52—C53—C5419 (9)
C51—N4—C5—C6171 (8)C52—C53—C54—C5510 (12)
C21—N4—C5—C6172.5 (19)C52—C53—C54—O54175 (5)
C3—N4—C5—C655.6 (4)C53—C54—C55—C563 (19)
C2—N1—C6—C558.6 (4)O54—C54—C55—C56178 (10)
N4—C5—C6—N157.4 (4)C52—C51—C56—C5513 (18)
C5—N4—C21—C2636 (4)N4—C51—C56—C55173 (14)
C3—N4—C21—C26166 (2)C54—C55—C56—C515 (21)
C5—N4—C21—C22143 (2)C53—C54—O54—C57173 (6)
C3—N4—C21—C2212 (4)C55—C54—O54—C5712 (14)
C26—C21—C22—C233 (4)C36—C31—C32—C331.2 (7)
N4—C21—C22—C23178 (2)C37—C31—C32—C33179.8 (5)
C21—C22—C23—C243 (2)C31—C32—C33—C340.5 (8)
C22—C23—C24—C251 (2)C32—C33—C34—C350.4 (9)
C22—C23—C24—O24178.9 (9)C32—C33—C34—Br34178.8 (4)
C23—C24—C25—C260 (4)C33—C34—C35—C360.7 (9)
O24—C24—C25—C26180 (2)Br34—C34—C35—C36178.5 (4)
C22—C21—C26—C252 (4)C32—C31—C36—C350.9 (6)
N4—C21—C26—C25179 (3)C37—C31—C36—C35179.9 (4)
C24—C25—C26—C211 (4)C34—C35—C36—C310.0 (7)
C23—C24—O24—C27170.6 (12)C32—C31—C37—O324.8 (6)
C25—C24—O24—C279 (3)C36—C31—C37—O32174.2 (4)
C5—N4—C51—C5621 (16)C32—C31—C37—O31174.5 (4)
C3—N4—C51—C56151 (11)C36—C31—C37—O316.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.78 (4)2.03 (4)2.805 (5)174 (5)
N1—H12···O410.95 (5)1.86 (5)2.802 (5)172 (4)
O41—H41···O32i0.79 (6)1.84 (6)2.623 (6)170 (6)
O41—H42···O31ii0.79 (7)2.00 (7)2.772 (5)169 (6)
C2—H2B···O31iii0.972.523.471 (5)166
C22—H22···Cg1ii0.932.523.471 (5)166
C26—H26···Cg1iv0.932.843.58 (2)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium 2-hydroxybenzoate (V) top
Crystal data top
C11H17N2O+·C7H5O3Dx = 1.317 Mg m3
Mr = 330.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3564 reflections
a = 6.5009 (8) Åθ = 2.5–27.8°
b = 7.9735 (9) ŵ = 0.09 mm1
c = 32.155 (4) ÅT = 296 K
V = 1666.8 (3) Å3Block, colourless
Z = 40.42 × 0.42 × 0.34 mm
F(000) = 704
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3564 independent reflections
Radiation source: Enhance (Mo) X-ray Source2875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.8°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 68
Tmin = 0.899, Tmax = 0.969k = 106
6249 measured reflectionsl = 3841
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.14 e Å3
3564 reflectionsΔρmin = 0.13 e Å3
228 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0244 (17)
Primary atom site location: difference Fourier mapAbsolute structure: Flack x determined using 1011 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Special details top

Experimental. Compound (V). IR (KBr , cm-1) 3650 (OH), 3040 (NH2), 2835 (OCH3), 1571 (COO). NMR (CDCl3) δ(1H) 3.31 (m, 8H, piperazine), 3.77 (s, 3H, OCH3), 6.85 (m, 5H, hydroxyphenyl and methoxyphenyl), 6.92 (m, 1H, hydroxyphenyl), 7.35 (t, 1H, hydroxyphenyl), 7.87 (m, 1H, hydroxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5261 (3)0.3567 (3)0.21309 (7)0.0468 (5)
H110.616 (4)0.369 (4)0.2367 (9)0.056*
H120.452 (4)0.254 (4)0.2144 (8)0.056*
C20.6568 (4)0.3607 (4)0.17563 (8)0.0488 (6)
H2A0.75320.26800.17650.059*
H2B0.73530.46420.17530.059*
C30.5299 (4)0.3490 (3)0.13672 (8)0.0443 (6)
H3A0.61890.36430.11280.053*
H3B0.47050.23770.13490.053*
N40.3654 (3)0.4727 (3)0.13512 (6)0.0381 (5)
C50.2422 (4)0.4788 (3)0.17339 (7)0.0426 (6)
H5A0.16060.37730.17550.051*
H5B0.14850.57330.17200.051*
C60.3752 (4)0.4953 (3)0.21130 (8)0.0460 (6)
H6A0.44720.60180.21060.055*
H6B0.28980.49330.23600.055*
C210.2490 (4)0.4737 (3)0.09771 (7)0.0373 (5)
C220.3077 (4)0.3820 (4)0.06280 (8)0.0515 (7)
H220.42320.31340.06420.062*
C230.1976 (5)0.3911 (4)0.02617 (8)0.0544 (7)
H230.24120.32950.00330.065*
C240.0260 (4)0.4886 (3)0.02292 (8)0.0460 (6)
C250.0385 (4)0.5770 (4)0.05738 (8)0.0529 (7)
H250.15730.64180.05600.063*
C260.0728 (4)0.5697 (4)0.09394 (8)0.0503 (7)
H260.02770.63120.11680.060*
O240.0704 (3)0.4899 (3)0.01523 (5)0.0638 (6)
C270.2374 (6)0.6009 (5)0.02052 (10)0.0833 (11)
H27A0.28510.59530.04870.125*
H27B0.19380.71330.01440.125*
H27C0.34690.56970.00200.125*
C310.9904 (4)0.4542 (3)0.32938 (7)0.0370 (5)
C321.1705 (4)0.3584 (3)0.32627 (7)0.0394 (5)
C331.3127 (4)0.3600 (4)0.35834 (8)0.0501 (7)
H331.43240.29670.35610.060*
C341.2782 (5)0.4544 (4)0.39334 (8)0.0557 (7)
H341.37460.45460.41470.067*
C351.1023 (5)0.5484 (4)0.39698 (8)0.0584 (8)
H351.07900.61190.42080.070*
C360.9613 (4)0.5480 (3)0.36539 (8)0.0501 (7)
H360.84270.61230.36810.060*
O331.2074 (3)0.2609 (2)0.29254 (6)0.0548 (5)
H33A1.082 (5)0.275 (4)0.2766 (10)0.082*
C370.8348 (4)0.4561 (3)0.29516 (8)0.0453 (6)
O310.8614 (3)0.3519 (3)0.26569 (6)0.0601 (6)
O320.6867 (3)0.5531 (3)0.29674 (7)0.0682 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (13)0.0489 (12)0.0452 (12)0.0102 (11)0.0143 (11)0.0037 (11)
C20.0363 (13)0.0520 (15)0.0581 (15)0.0003 (12)0.0058 (13)0.0004 (14)
C30.0364 (13)0.0475 (14)0.0489 (14)0.0030 (12)0.0007 (11)0.0024 (12)
N40.0353 (10)0.0416 (11)0.0374 (10)0.0037 (9)0.0007 (8)0.0024 (9)
C50.0388 (12)0.0494 (14)0.0395 (12)0.0027 (12)0.0008 (11)0.0041 (11)
C60.0484 (14)0.0492 (15)0.0404 (13)0.0030 (13)0.0000 (12)0.0022 (12)
C210.0396 (12)0.0350 (12)0.0374 (12)0.0018 (11)0.0015 (10)0.0011 (10)
C220.0559 (16)0.0543 (16)0.0444 (14)0.0172 (14)0.0005 (13)0.0062 (13)
C230.0699 (19)0.0551 (17)0.0381 (13)0.0109 (15)0.0013 (14)0.0102 (12)
C240.0555 (15)0.0431 (14)0.0393 (13)0.0032 (13)0.0070 (12)0.0005 (11)
C250.0501 (15)0.0582 (17)0.0503 (16)0.0139 (14)0.0088 (13)0.0047 (13)
C260.0523 (15)0.0567 (17)0.0418 (14)0.0153 (14)0.0030 (12)0.0121 (12)
O240.0793 (14)0.0684 (14)0.0435 (10)0.0051 (12)0.0190 (10)0.0036 (9)
C270.080 (2)0.102 (3)0.068 (2)0.014 (2)0.0331 (19)0.000 (2)
C310.0382 (12)0.0331 (12)0.0396 (13)0.0030 (10)0.0004 (10)0.0076 (10)
C320.0416 (12)0.0353 (12)0.0413 (13)0.0017 (11)0.0006 (12)0.0047 (11)
C330.0398 (14)0.0552 (16)0.0554 (16)0.0006 (13)0.0092 (13)0.0093 (14)
C340.0586 (17)0.0642 (18)0.0442 (15)0.0139 (16)0.0139 (14)0.0084 (14)
C350.076 (2)0.0595 (18)0.0401 (15)0.0090 (17)0.0015 (14)0.0046 (13)
C360.0524 (15)0.0472 (15)0.0506 (15)0.0064 (14)0.0064 (13)0.0028 (12)
O330.0547 (12)0.0555 (12)0.0542 (11)0.0139 (10)0.0054 (10)0.0087 (9)
C370.0431 (14)0.0409 (14)0.0517 (15)0.0037 (13)0.0069 (12)0.0127 (12)
O310.0639 (13)0.0586 (12)0.0580 (12)0.0036 (11)0.0245 (10)0.0057 (10)
O320.0524 (11)0.0730 (14)0.0793 (14)0.0200 (11)0.0115 (11)0.0136 (11)
Geometric parameters (Å, º) top
N1—C21.474 (3)C24—C251.379 (4)
N1—C61.479 (3)C25—C261.382 (4)
N1—H110.96 (3)C25—H250.9300
N1—H120.95 (3)C26—H260.9300
C2—C31.502 (3)O24—C271.411 (4)
C2—H2A0.9700C27—H27A0.9600
C2—H2B0.9700C27—H27B0.9600
C3—N41.456 (3)C27—H27C0.9600
C3—H3A0.9700C31—C361.391 (3)
C3—H3B0.9700C31—C321.401 (3)
N4—C211.421 (3)C31—C371.495 (3)
N4—C51.469 (3)C32—O331.356 (3)
C5—C61.500 (3)C32—C331.385 (3)
C5—H5A0.9700C33—C341.372 (4)
C5—H5B0.9700C33—H330.9300
C6—H6A0.9700C34—C351.372 (4)
C6—H6B0.9700C34—H340.9300
C21—C261.383 (3)C35—C361.368 (4)
C21—C221.393 (3)C35—H350.9300
C22—C231.380 (4)C36—H360.9300
C22—H220.9300O33—H33A0.97 (3)
C23—C241.364 (4)C37—O321.236 (3)
C23—H230.9300C37—O311.272 (3)
C24—O241.378 (3)
C2—N1—C6109.5 (2)C24—C23—H23119.3
C2—N1—H11107.1 (16)C22—C23—H23119.3
C6—N1—H11110.9 (17)C23—C24—O24116.4 (2)
C2—N1—H12110.3 (16)C23—C24—C25118.6 (2)
C6—N1—H12108.2 (16)O24—C24—C25125.0 (2)
H11—N1—H12111 (2)C24—C25—C26120.2 (2)
N1—C2—C3111.3 (2)C24—C25—H25119.9
N1—C2—H2A109.4C26—C25—H25119.9
C3—C2—H2A109.4C25—C26—C21122.1 (2)
N1—C2—H2B109.4C25—C26—H26118.9
C3—C2—H2B109.4C21—C26—H26118.9
H2A—C2—H2B108.0C24—O24—C27117.5 (2)
N4—C3—C2113.0 (2)O24—C27—H27A109.5
N4—C3—H3A109.0O24—C27—H27B109.5
C2—C3—H3A109.0H27A—C27—H27B109.5
N4—C3—H3B109.0O24—C27—H27C109.5
C2—C3—H3B109.0H27A—C27—H27C109.5
H3A—C3—H3B107.8H27B—C27—H27C109.5
C21—N4—C3115.14 (18)C36—C31—C32117.8 (2)
C21—N4—C5114.77 (18)C36—C31—C37121.0 (2)
C3—N4—C5113.17 (19)C32—C31—C37121.2 (2)
N4—C5—C6111.69 (19)O33—C32—C33118.8 (2)
N4—C5—H5A109.3O33—C32—C31121.2 (2)
C6—C5—H5A109.3C33—C32—C31120.0 (2)
N4—C5—H5B109.3C34—C33—C32120.4 (3)
C6—C5—H5B109.3C34—C33—H33119.8
H5A—C5—H5B107.9C32—C33—H33119.8
N1—C6—C5110.4 (2)C35—C34—C33120.4 (3)
N1—C6—H6A109.6C35—C34—H34119.8
C5—C6—H6A109.6C33—C34—H34119.8
N1—C6—H6B109.6C36—C35—C34119.6 (3)
C5—C6—H6B109.6C36—C35—H35120.2
H6A—C6—H6B108.1C34—C35—H35120.2
C26—C21—C22116.5 (2)C35—C36—C31121.9 (3)
C26—C21—N4121.2 (2)C35—C36—H36119.1
C22—C21—N4122.2 (2)C31—C36—H36119.1
C23—C22—C21121.2 (3)C32—O33—H33A102 (2)
C23—C22—H22119.4O32—C37—O31123.0 (2)
C21—C22—H22119.4O32—C37—C31120.2 (3)
C24—C23—C22121.3 (2)O31—C37—C31116.7 (2)
C6—N1—C2—C357.5 (3)C22—C21—C26—C251.0 (4)
N1—C2—C3—N452.5 (3)N4—C21—C26—C25177.7 (3)
C2—C3—N4—C21176.2 (2)C23—C24—O24—C27174.6 (3)
C2—C3—N4—C549.1 (3)C25—C24—O24—C275.7 (4)
C21—N4—C5—C6174.1 (2)C36—C31—C32—O33178.5 (2)
C3—N4—C5—C651.0 (3)C37—C31—C32—O331.6 (3)
C2—N1—C6—C559.7 (3)C36—C31—C32—C330.3 (3)
N4—C5—C6—N156.4 (3)C37—C31—C32—C33179.5 (2)
C3—N4—C21—C26171.8 (2)O33—C32—C33—C34178.6 (2)
C5—N4—C21—C2637.8 (3)C31—C32—C33—C340.3 (4)
C3—N4—C21—C229.6 (3)C32—C33—C34—C350.0 (4)
C5—N4—C21—C22143.6 (2)C33—C34—C35—C360.2 (4)
C26—C21—C22—C231.7 (4)C34—C35—C36—C310.2 (4)
N4—C21—C22—C23176.9 (3)C32—C31—C36—C350.1 (4)
C21—C22—C23—C240.8 (4)C37—C31—C36—C35179.8 (2)
C22—C23—C24—O24179.2 (3)C36—C31—C37—O326.6 (4)
C22—C23—C24—C251.0 (4)C32—C31—C37—O32173.2 (2)
C23—C24—C25—C261.8 (4)C36—C31—C37—O31171.9 (2)
O24—C24—C25—C26178.5 (3)C32—C31—C37—O318.3 (3)
C24—C25—C26—C210.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.96 (3)1.85 (3)2.759 (3)156 (3)
N1—H11···O320.96 (3)2.47 (3)3.283 (3)142 (2)
N1—H12···O32i0.95 (3)1.87 (3)2.806 (3)166 (2)
O33—H33A···O310.97 (3)1.60 (3)2.516 (3)156 (3)
C6—H6A···O33ii0.972.583.444 (3)148
C2—H2A···Cg1iii0.972.883.711 (3)144
C26—H26···Cg1iv0.932.873.642 (3)141
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
4-(4-Methoxyphenyl)piperazin-1-ium pyridine-3-carboxylate (VI) top
Crystal data top
C11H17N2O+·C6H4NO2Dx = 1.319 Mg m3
Mr = 315.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3593 reflections
a = 9.2817 (7) Åθ = 2.6–27.9°
b = 11.2905 (7) ŵ = 0.09 mm1
c = 30.309 (2) ÅT = 296 K
V = 3176.2 (4) Å3Block, colourless
Z = 80.46 × 0.42 × 0.36 mm
F(000) = 1344
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3593 independent reflections
Radiation source: Enhance (Mo) X-ray Source2616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.879, Tmax = 0.968k = 1413
22154 measured reflectionsl = 3835
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.5726P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.19 e Å3
3593 reflectionsΔρmin = 0.16 e Å3
215 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0074 (6)
Primary atom site location: difference Fourier map
Special details top

Experimental. Compound (VI). IR (KBr , cm-1) 3040 (NH2), 2829 (OCH3), 1584 (COO). NMR (CDCl3) δ(1H) 3.27 (m, 4H, piperazine), 3.34 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.90 (m, 4H, methoxyphenyl), 7.33 (m, 1H, nicotinate), 8.67 (m, 2H, nicotinate), 9.24 (m, 1H, nicotinate).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.66467 (17)0.63416 (13)0.53807 (5)0.0405 (4)
H120.711 (2)0.5701 (18)0.5241 (6)0.049*
H110.650 (2)0.6962 (17)0.5161 (6)0.049*
C20.52299 (18)0.59306 (15)0.55418 (6)0.0401 (4)
H2A0.46420.56840.52940.048*
H2B0.47390.65770.56900.048*
C30.54099 (18)0.49095 (14)0.58566 (5)0.0368 (4)
H3A0.44730.46690.59670.044*
H3B0.58310.42420.57020.044*
N40.63342 (14)0.52403 (11)0.62269 (4)0.0337 (3)
C50.77180 (19)0.57192 (16)0.60810 (6)0.0440 (4)
H5A0.82730.50940.59420.053*
H5B0.82550.59950.63360.053*
C60.7534 (2)0.67296 (16)0.57600 (6)0.0479 (5)
H6A0.70700.73910.59070.058*
H6B0.84700.69900.56560.058*
C210.63956 (17)0.44215 (13)0.65799 (5)0.0317 (3)
C220.5429 (2)0.35039 (16)0.66255 (6)0.0449 (4)
H220.47500.33790.64050.054*
C230.5436 (2)0.27603 (15)0.69898 (6)0.0464 (5)
H230.47590.21550.70100.056*
C240.64245 (19)0.29057 (14)0.73195 (5)0.0391 (4)
C250.7405 (2)0.38118 (18)0.72806 (6)0.0558 (5)
H250.80870.39260.75010.067*
C260.7395 (2)0.45523 (17)0.69203 (6)0.0523 (5)
H260.80730.51570.69030.063*
O240.65388 (16)0.22083 (12)0.76910 (4)0.0551 (4)
C270.5378 (3)0.14351 (19)0.77845 (7)0.0632 (6)
H27A0.55810.09990.80490.095*
H27B0.45120.18880.78240.095*
H27C0.52520.08930.75440.095*
N310.6143 (2)1.14730 (14)0.39733 (6)0.0587 (5)
C320.6210 (2)1.07950 (15)0.43309 (6)0.0439 (4)
H320.60921.11580.46040.053*
C330.64434 (17)0.95882 (13)0.43243 (5)0.0332 (4)
C340.66384 (19)0.90618 (16)0.39174 (6)0.0419 (4)
H340.67860.82490.38960.050*
C350.6611 (2)0.97549 (19)0.35436 (6)0.0517 (5)
H350.67670.94220.32670.062*
C360.6353 (2)1.09376 (19)0.35863 (7)0.0588 (6)
H360.63211.13970.33320.071*
C370.64844 (18)0.88736 (15)0.47434 (6)0.0378 (4)
O310.60454 (17)0.78319 (11)0.47188 (4)0.0589 (4)
O320.69492 (15)0.93503 (12)0.50849 (4)0.0543 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0484 (9)0.0353 (7)0.0379 (8)0.0052 (7)0.0025 (7)0.0083 (6)
C20.0387 (9)0.0413 (9)0.0403 (9)0.0052 (7)0.0030 (7)0.0026 (8)
C30.0337 (9)0.0384 (9)0.0383 (9)0.0016 (7)0.0021 (7)0.0027 (7)
N40.0313 (7)0.0354 (7)0.0344 (7)0.0020 (6)0.0001 (6)0.0032 (6)
C50.0382 (9)0.0509 (10)0.0428 (9)0.0112 (8)0.0039 (8)0.0099 (8)
C60.0515 (11)0.0435 (10)0.0488 (11)0.0119 (8)0.0021 (9)0.0082 (8)
C210.0315 (8)0.0321 (8)0.0314 (8)0.0024 (6)0.0031 (6)0.0009 (6)
C220.0483 (11)0.0452 (10)0.0413 (10)0.0135 (8)0.0089 (8)0.0042 (8)
C230.0536 (11)0.0405 (9)0.0452 (10)0.0153 (8)0.0004 (8)0.0044 (8)
C240.0465 (10)0.0363 (8)0.0345 (8)0.0008 (8)0.0049 (7)0.0038 (7)
C250.0547 (12)0.0632 (12)0.0495 (11)0.0151 (10)0.0169 (9)0.0159 (10)
C260.0487 (11)0.0556 (11)0.0526 (11)0.0201 (9)0.0122 (9)0.0165 (9)
O240.0657 (9)0.0559 (8)0.0436 (7)0.0092 (7)0.0005 (6)0.0169 (6)
C270.0701 (14)0.0575 (12)0.0620 (13)0.0050 (11)0.0117 (11)0.0232 (10)
N310.0794 (13)0.0393 (8)0.0573 (10)0.0007 (9)0.0084 (9)0.0127 (8)
C320.0537 (11)0.0356 (9)0.0425 (10)0.0018 (8)0.0021 (8)0.0007 (8)
C330.0283 (8)0.0318 (8)0.0396 (9)0.0024 (6)0.0031 (7)0.0036 (6)
C340.0434 (10)0.0364 (9)0.0458 (10)0.0001 (8)0.0040 (8)0.0040 (8)
C350.0523 (12)0.0664 (13)0.0363 (10)0.0086 (10)0.0004 (8)0.0028 (9)
C360.0712 (14)0.0595 (13)0.0458 (11)0.0115 (11)0.0079 (10)0.0195 (10)
C370.0343 (9)0.0377 (9)0.0415 (9)0.0008 (7)0.0032 (7)0.0065 (7)
O310.0833 (11)0.0368 (7)0.0566 (8)0.0120 (7)0.0157 (7)0.0144 (6)
O320.0670 (9)0.0575 (8)0.0385 (7)0.0166 (7)0.0106 (6)0.0060 (6)
Geometric parameters (Å, º) top
N1—C21.477 (2)C24—C251.375 (3)
N1—C61.480 (2)C24—O241.3781 (19)
N1—H120.94 (2)C25—C261.375 (2)
N1—H110.97 (2)C25—H250.9300
C2—C31.506 (2)C26—H260.9300
C2—H2A0.9700O24—C271.416 (2)
C2—H2B0.9700C27—H27A0.9600
C3—N41.461 (2)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700N31—C321.328 (2)
N4—C211.4152 (19)N31—C361.334 (3)
N4—C51.462 (2)C32—C331.380 (2)
C5—C61.509 (2)C32—H320.9300
C5—H5A0.9700C33—C341.381 (2)
C5—H5B0.9700C33—C371.505 (2)
C6—H6A0.9700C34—C351.377 (3)
C6—H6B0.9700C34—H340.9300
C21—C221.377 (2)C35—C361.363 (3)
C21—C261.395 (2)C35—H350.9300
C22—C231.387 (2)C36—H360.9300
C22—H220.9300C37—O321.244 (2)
C23—C241.366 (3)C37—O311.247 (2)
C23—H230.9300
C2—N1—C6109.37 (13)C24—C23—C22120.82 (16)
C2—N1—H12108.5 (12)C24—C23—H23119.6
C6—N1—H12108.6 (12)C22—C23—H23119.6
C2—N1—H11109.1 (11)C23—C24—C25118.14 (16)
C6—N1—H11113.2 (11)C23—C24—O24125.48 (16)
H12—N1—H11107.9 (15)C25—C24—O24116.38 (16)
N1—C2—C3110.55 (13)C24—C25—C26121.05 (17)
N1—C2—H2A109.5C24—C25—H25119.5
C3—C2—H2A109.5C26—C25—H25119.5
N1—C2—H2B109.5C25—C26—C21121.82 (17)
C3—C2—H2B109.5C25—C26—H26119.1
H2A—C2—H2B108.1C21—C26—H26119.1
N4—C3—C2110.87 (13)C24—O24—C27117.22 (15)
N4—C3—H3A109.5O24—C27—H27A109.5
C2—C3—H3A109.5O24—C27—H27B109.5
N4—C3—H3B109.5H27A—C27—H27B109.5
C2—C3—H3B109.5O24—C27—H27C109.5
H3A—C3—H3B108.1H27A—C27—H27C109.5
C21—N4—C3115.94 (13)H27B—C27—H27C109.5
C21—N4—C5115.77 (13)C32—N31—C36116.71 (16)
C3—N4—C5112.21 (13)N31—C32—C33124.38 (17)
N4—C5—C6112.02 (15)N31—C32—H32117.8
N4—C5—H5A109.2C33—C32—H32117.8
C6—C5—H5A109.2C32—C33—C34117.29 (16)
N4—C5—H5B109.2C32—C33—C37121.41 (15)
C6—C5—H5B109.2C34—C33—C37121.31 (14)
H5A—C5—H5B107.9C35—C34—C33119.20 (17)
N1—C6—C5109.88 (14)C35—C34—H34120.4
N1—C6—H6A109.7C33—C34—H34120.4
C5—C6—H6A109.7C36—C35—C34118.80 (18)
N1—C6—H6B109.7C36—C35—H35120.6
C5—C6—H6B109.7C34—C35—H35120.6
H6A—C6—H6B108.2N31—C36—C35123.59 (18)
C22—C21—C26116.02 (15)N31—C36—H36118.2
C22—C21—N4122.74 (15)C35—C36—H36118.2
C26—C21—N4121.11 (14)O32—C37—O31124.84 (16)
C21—C22—C23122.14 (16)O32—C37—C33118.62 (15)
C21—C22—H22118.9O31—C37—C33116.54 (15)
C23—C22—H22118.9
C6—N1—C2—C359.85 (18)O24—C24—C25—C26179.32 (18)
N1—C2—C3—N457.18 (18)C24—C25—C26—C210.1 (3)
C2—C3—N4—C21170.15 (13)C22—C21—C26—C250.4 (3)
C2—C3—N4—C553.72 (18)N4—C21—C26—C25175.52 (18)
C21—N4—C5—C6170.28 (14)C23—C24—O24—C2713.4 (3)
C3—N4—C5—C653.52 (19)C25—C24—O24—C27167.31 (18)
C2—N1—C6—C558.59 (19)C36—N31—C32—C331.7 (3)
N4—C5—C6—N155.7 (2)N31—C32—C33—C340.9 (3)
C3—N4—C21—C2213.9 (2)N31—C32—C33—C37179.08 (17)
C5—N4—C21—C22148.45 (17)C32—C33—C34—C350.9 (3)
C3—N4—C21—C26170.48 (16)C37—C33—C34—C35179.12 (16)
C5—N4—C21—C2635.9 (2)C33—C34—C35—C361.8 (3)
C26—C21—C22—C230.7 (3)C32—N31—C36—C350.7 (3)
N4—C21—C22—C23175.17 (16)C34—C35—C36—N311.0 (3)
C21—C22—C23—C240.6 (3)C32—C33—C37—O3232.1 (2)
C22—C23—C24—C250.3 (3)C34—C33—C37—O32147.86 (17)
C22—C23—C24—O24178.99 (17)C32—C33—C37—O31148.09 (18)
C23—C24—C25—C260.0 (3)C34—C33—C37—O3131.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.976 (19)1.714 (19)2.677 (2)168.2 (18)
N1—H12···O32i0.94 (2)1.82 (2)2.749 (2)168.3 (17)
C2—H2B···N31ii0.972.563.518 (2)169
C36—H36···O24iii0.932.513.432 (2)172
C3—H3A···Cg1iv0.972.973.775 (2)156
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x1/2, y+3/2, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium 2-hydroxy-3,5-dinitrobenzoate (VII) top
Crystal data top
C7H3N2O7+·C11H17N2OF(000) = 880
Mr = 420.38Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5500 (9) ÅCell parameters from 4078 reflections
b = 7.6489 (9) Åθ = 2.7–28.0°
c = 32.719 (6) ŵ = 0.12 mm1
β = 91.30 (1)°T = 296 K
V = 1889.0 (5) Å3Block, colourless
Z = 40.18 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4074 independent reflections
Radiation source: Enhance (Mo) X-ray Source2003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 95
Tmin = 0.916, Tmax = 0.993k = 99
8215 measured reflectionsl = 4241
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4471P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4074 reflectionsΔρmax = 0.22 e Å3
281 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Experimental. Compound (VII). IR (KBr , cm-1) 3084 (NH2), 2834 (OCH3), 1568 (COO), 1499 (NO2). NMR (CDCl3) δ(1H) 3.05 (m, 4H, piperazine), 3.37 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.85 (m, 4H, methoxyphenyl), 7.52 (s, 1H, 3,5-dinitrosalicylate), 8.09 (s, 1H, 3,5-dinitrosalicylate), 8.99 (s, 1H, 3,5-dinitrosalicylate).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6215 (3)0.5723 (4)0.61103 (8)0.0465 (7)
H110.703 (4)0.587 (4)0.5906 (9)0.056*
H120.533 (4)0.494 (4)0.6028 (9)0.056*
C20.5349 (4)0.7433 (4)0.61776 (9)0.0531 (9)
H2A0.47830.78260.59250.064*
H2B0.62350.82920.62580.064*
C30.3982 (4)0.7294 (4)0.65055 (9)0.0489 (8)
H3A0.35040.84460.65590.059*
H3B0.30160.65580.64070.059*
N40.4712 (3)0.6567 (3)0.68854 (7)0.0399 (6)
C50.5669 (4)0.4924 (4)0.68187 (9)0.0483 (8)
H5A0.48320.40240.67340.058*
H5B0.62330.45540.70740.058*
C60.7057 (4)0.5118 (4)0.64972 (8)0.0505 (8)
H6A0.79470.59550.65880.061*
H6B0.76370.40030.64540.061*
C210.3501 (4)0.6515 (4)0.72152 (9)0.0382 (7)
C220.1878 (4)0.7370 (4)0.72002 (10)0.0510 (8)
H220.15380.79660.69630.061*
C230.0745 (4)0.7358 (4)0.75303 (10)0.0522 (8)
H230.03270.79540.75120.063*
C240.1201 (4)0.6473 (4)0.78814 (9)0.0455 (8)
C250.2807 (4)0.5624 (4)0.79002 (9)0.0547 (9)
H250.31380.50280.81380.066*
C260.3934 (4)0.5636 (4)0.75758 (9)0.0499 (8)
H260.50080.50440.75980.060*
O240.0184 (3)0.6354 (3)0.82246 (6)0.0640 (7)
C270.1485 (4)0.7203 (5)0.82152 (11)0.0745 (11)
H27A0.20610.70170.84700.112*
H27B0.22060.67330.79960.112*
H27C0.13180.84330.81730.112*
C310.8836 (3)0.6893 (4)0.46865 (8)0.0355 (7)
C320.8864 (3)0.7026 (4)0.51247 (9)0.0374 (7)
C331.0424 (3)0.7812 (4)0.52995 (8)0.0352 (7)
C341.1812 (3)0.8371 (4)0.50706 (8)0.0372 (7)
H341.27970.88920.51950.045*
C351.1728 (3)0.8150 (4)0.46526 (9)0.0368 (7)
C361.0252 (3)0.7425 (4)0.44590 (9)0.0383 (7)
H361.02170.72980.41760.046*
C370.7243 (4)0.6189 (4)0.44690 (10)0.0446 (8)
O310.7120 (3)0.6063 (3)0.40978 (6)0.0609 (7)
O320.5931 (2)0.5689 (3)0.46961 (7)0.0626 (7)
H320.638 (4)0.590 (5)0.4996 (12)0.094*
O330.7553 (2)0.6499 (3)0.53332 (6)0.0530 (6)
N331.0576 (3)0.8102 (4)0.57403 (8)0.0481 (7)
O340.9695 (3)0.7215 (4)0.59704 (7)0.0868 (9)
O351.1628 (3)0.9203 (3)0.58660 (6)0.0627 (7)
N351.3207 (3)0.8725 (3)0.44092 (9)0.0492 (7)
O361.4399 (3)0.9552 (3)0.45754 (7)0.0715 (7)
O371.3199 (3)0.8357 (3)0.40434 (7)0.0687 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0429 (15)0.061 (2)0.0360 (15)0.0125 (14)0.0016 (11)0.0055 (14)
C20.064 (2)0.053 (2)0.0417 (19)0.0007 (17)0.0004 (16)0.0075 (17)
C30.0565 (19)0.053 (2)0.0371 (18)0.0086 (16)0.0021 (15)0.0053 (16)
N40.0438 (13)0.0416 (16)0.0342 (14)0.0040 (11)0.0003 (11)0.0033 (12)
C50.0505 (18)0.055 (2)0.0397 (19)0.0108 (16)0.0033 (14)0.0063 (16)
C60.0477 (18)0.066 (2)0.0374 (18)0.0033 (16)0.0019 (14)0.0007 (17)
C210.0430 (16)0.0340 (18)0.0375 (17)0.0001 (13)0.0035 (13)0.0012 (14)
C220.0511 (19)0.057 (2)0.045 (2)0.0118 (16)0.0001 (15)0.0135 (17)
C230.0480 (18)0.053 (2)0.056 (2)0.0132 (15)0.0034 (16)0.0039 (18)
C240.0482 (18)0.045 (2)0.044 (2)0.0021 (15)0.0057 (15)0.0026 (16)
C250.062 (2)0.064 (2)0.0382 (19)0.0154 (18)0.0005 (15)0.0126 (18)
C260.0490 (18)0.059 (2)0.0417 (19)0.0167 (16)0.0010 (15)0.0055 (17)
O240.0614 (15)0.0814 (18)0.0497 (14)0.0129 (12)0.0142 (11)0.0028 (13)
C270.057 (2)0.096 (3)0.071 (3)0.014 (2)0.0207 (19)0.007 (2)
C310.0344 (15)0.0352 (17)0.0366 (17)0.0028 (13)0.0008 (13)0.0002 (14)
C320.0318 (15)0.0367 (18)0.0437 (18)0.0004 (13)0.0011 (13)0.0046 (15)
C330.0367 (16)0.0371 (18)0.0315 (16)0.0003 (13)0.0022 (13)0.0003 (14)
C340.0352 (15)0.0340 (18)0.0422 (18)0.0016 (13)0.0053 (13)0.0020 (15)
C350.0316 (15)0.0345 (17)0.0443 (19)0.0064 (13)0.0036 (13)0.0017 (15)
C360.0405 (16)0.0355 (17)0.0388 (17)0.0019 (13)0.0018 (13)0.0015 (14)
C370.0397 (17)0.048 (2)0.046 (2)0.0086 (14)0.0020 (15)0.0005 (16)
O310.0570 (13)0.0868 (19)0.0389 (14)0.0254 (12)0.0012 (10)0.0093 (13)
O320.0429 (13)0.099 (2)0.0455 (13)0.0297 (12)0.0024 (10)0.0073 (14)
O330.0396 (12)0.0793 (17)0.0404 (13)0.0153 (11)0.0032 (10)0.0039 (12)
N330.0381 (14)0.063 (2)0.0424 (17)0.0001 (13)0.0041 (12)0.0013 (15)
O340.0712 (16)0.146 (3)0.0427 (15)0.0443 (16)0.0011 (12)0.0102 (16)
O350.0688 (15)0.0690 (17)0.0495 (14)0.0132 (13)0.0138 (11)0.0063 (13)
N350.0460 (16)0.0512 (18)0.0505 (18)0.0110 (13)0.0022 (13)0.0012 (15)
O360.0604 (14)0.092 (2)0.0616 (16)0.0425 (13)0.0006 (12)0.0031 (14)
O370.0643 (15)0.095 (2)0.0474 (15)0.0258 (13)0.0132 (11)0.0123 (15)
Geometric parameters (Å, º) top
N1—C61.478 (4)C25—H250.9300
N1—C21.481 (4)C26—H260.9300
N1—H110.93 (3)O24—C271.417 (3)
N1—H120.93 (3)C27—H27A0.9600
C2—C31.509 (4)C27—H27B0.9600
C2—H2A0.9700C27—H27C0.9600
C2—H2B0.9700C31—C361.378 (4)
C3—N41.458 (3)C31—C321.437 (4)
C3—H3A0.9700C31—C371.485 (4)
C3—H3B0.9700C32—O331.280 (3)
N4—C211.431 (3)C32—C331.430 (4)
N4—C51.469 (3)C33—C341.370 (3)
C5—C61.509 (4)C33—N331.461 (3)
C5—H5A0.9700C34—C351.378 (4)
C5—H5B0.9700C34—H340.9300
C6—H6A0.9700C35—C361.385 (4)
C6—H6B0.9700C35—N351.455 (3)
C21—C221.389 (4)C36—H360.9300
C21—C261.391 (4)C37—O311.220 (3)
C22—C231.393 (4)C37—O321.309 (3)
C22—H220.9300O32—H321.04 (4)
C23—C241.371 (4)N33—O341.222 (3)
C23—H230.9300N33—O351.223 (3)
C24—C251.376 (4)N35—O361.218 (3)
C24—O241.378 (3)N35—O371.229 (3)
C25—C261.375 (4)
C6—N1—C2109.4 (2)C25—C24—O24116.1 (3)
C6—N1—H11112.1 (18)C26—C25—C24121.5 (3)
C2—N1—H11107.5 (18)C26—C25—H25119.2
C6—N1—H12109.6 (18)C24—C25—H25119.2
C2—N1—H12107.2 (18)C25—C26—C21121.3 (3)
H11—N1—H12111 (3)C25—C26—H26119.3
N1—C2—C3110.8 (2)C21—C26—H26119.3
N1—C2—H2A109.5C24—O24—C27117.6 (3)
C3—C2—H2A109.5O24—C27—H27A109.5
N1—C2—H2B109.5O24—C27—H27B109.5
C3—C2—H2B109.5H27A—C27—H27B109.5
H2A—C2—H2B108.1O24—C27—H27C109.5
N4—C3—C2112.4 (2)H27A—C27—H27C109.5
N4—C3—H3A109.1H27B—C27—H27C109.5
C2—C3—H3A109.1C36—C31—C32121.6 (2)
N4—C3—H3B109.1C36—C31—C37118.6 (3)
C2—C3—H3B109.1C32—C31—C37119.8 (2)
H3A—C3—H3B107.8O33—C32—C33124.0 (3)
C21—N4—C3114.7 (2)O33—C32—C31121.0 (2)
C21—N4—C5114.4 (2)C33—C32—C31115.0 (2)
C3—N4—C5112.2 (2)C34—C33—C32123.1 (3)
N4—C5—C6111.8 (3)C34—C33—N33116.7 (2)
N4—C5—H5A109.3C32—C33—N33120.3 (2)
C6—C5—H5A109.3C33—C34—C35119.0 (2)
N4—C5—H5B109.3C33—C34—H34120.5
C6—C5—H5B109.3C35—C34—H34120.5
H5A—C5—H5B107.9C34—C35—C36121.5 (2)
N1—C6—C5109.6 (2)C34—C35—N35119.2 (2)
N1—C6—H6A109.7C36—C35—N35119.4 (3)
C5—C6—H6A109.7C31—C36—C35119.8 (3)
N1—C6—H6B109.7C31—C36—H36120.1
C5—C6—H6B109.7C35—C36—H36120.1
H6A—C6—H6B108.2O31—C37—O32120.1 (3)
C22—C21—C26116.6 (3)O31—C37—C31123.2 (3)
C22—C21—N4122.6 (3)O32—C37—C31116.7 (3)
C26—C21—N4120.8 (2)C37—O32—H32104.6 (18)
C21—C22—C23121.8 (3)C32—O33—H3299.0 (13)
C21—C22—H22119.1O34—N33—O35122.3 (3)
C23—C22—H22119.1O34—N33—C33119.5 (3)
C24—C23—C22120.4 (3)O35—N33—C33118.2 (3)
C24—C23—H23119.8O36—N35—O37122.8 (2)
C22—C23—H23119.8O36—N35—C35118.8 (3)
C23—C24—C25118.4 (3)O37—N35—C35118.5 (2)
C23—C24—O24125.6 (3)
C6—N1—C2—C358.5 (3)C36—C31—C32—C332.6 (4)
N1—C2—C3—N454.3 (3)C37—C31—C32—C33176.6 (2)
C2—C3—N4—C21176.0 (2)O33—C32—C33—C34179.8 (3)
C2—C3—N4—C551.2 (3)C31—C32—C33—C341.3 (4)
C21—N4—C5—C6174.0 (2)O33—C32—C33—N331.6 (4)
C3—N4—C5—C653.0 (3)C31—C32—C33—N33176.9 (3)
C2—N1—C6—C560.0 (3)C32—C33—C34—C350.9 (4)
N4—C5—C6—N157.5 (3)N33—C33—C34—C35179.2 (2)
C3—N4—C21—C2211.2 (4)C33—C34—C35—C362.0 (4)
C5—N4—C21—C22142.9 (3)C33—C34—C35—N35179.4 (2)
C3—N4—C21—C26170.9 (3)C32—C31—C36—C351.7 (4)
C5—N4—C21—C2639.2 (4)C37—C31—C36—C35177.5 (3)
C26—C21—C22—C230.4 (5)C34—C35—C36—C310.6 (4)
N4—C21—C22—C23177.6 (3)N35—C35—C36—C31179.3 (2)
C21—C22—C23—C240.8 (5)C36—C31—C37—O310.3 (5)
C22—C23—C24—C250.9 (5)C32—C31—C37—O31179.0 (3)
C22—C23—C24—O24179.3 (3)C36—C31—C37—O32179.6 (3)
C23—C24—C25—C260.6 (5)C32—C31—C37—O321.1 (4)
O24—C24—C25—C26179.5 (3)C34—C33—N33—O34158.4 (3)
C24—C25—C26—C210.3 (5)C32—C33—N33—O3423.3 (4)
C22—C21—C26—C250.2 (5)C34—C33—N33—O3519.6 (4)
N4—C21—C26—C25177.9 (3)C32—C33—N33—O35158.7 (3)
C23—C24—O24—C270.6 (5)C34—C35—N35—O367.6 (4)
C25—C24—O24—C27179.6 (3)C36—C35—N35—O36171.1 (3)
C36—C31—C32—O33178.8 (3)C34—C35—N35—O37172.5 (3)
C37—C31—C32—O332.0 (4)C36—C35—N35—O378.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O331.04 (4)1.47 (4)2.472 (3)158 (3)
N1—H11···O330.93 (3)1.98 (3)2.820 (3)150 (3)
N1—H11···O340.93 (3)2.27 (3)2.910 (3)126 (2)
N1—H12···O31i0.93 (3)2.04 (3)2.931 (3)160 (3)
N1—H12···O32i0.93 (3)2.58 (3)3.250 (3)129 (2)
C34—H34···O36ii0.932.533.449 (3)171
C5—H5B···Cg2iii0.972.843.639 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y+2, z+1; (iii) x+1, y1/2, z+3/2.
4-(4-Methoxyphenyl)piperazin-1-ium hydrogensuccinate (VIII) top
Crystal data top
C11H17N2O+·C4H5O4Dx = 1.344 Mg m3
Mr = 310.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2423 reflections
a = 9.3225 (9) Åθ = 2.6–27.8°
b = 28.261 (3) ŵ = 0.10 mm1
c = 5.8228 (8) ÅT = 296 K
V = 1534.1 (3) Å3Block, colourless
Z = 40.44 × 0.42 × 0.24 mm
F(000) = 664
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2419 independent reflections
Radiation source: Enhance (Mo) X-ray Source2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 611
Tmin = 0.816, Tmax = 0.976k = 3627
5828 measured reflectionsl = 75
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.356P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2419 reflectionsΔρmax = 0.16 e Å3
233 parametersΔρmin = 0.24 e Å3
16 restraintsAbsolute structure: Flack x determined using 460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Special details top

Experimental. Compound (VIII). IR (KBr , cm-1) 3135 (NH2), 2836 (OCH3), 1562 (COO). NMR (CDCl3) δ(1H) ) 2.66 (s, 4H, succinate), 3.32 (m, 4H, piperazine), 3.35 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.90 (m, 4H, methoxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5210 (3)0.66867 (8)0.5428 (5)0.0395 (6)
H110.580 (3)0.6921 (11)0.556 (7)0.047*
H120.435 (3)0.6801 (10)0.623 (7)0.047*
C20.5853 (3)0.62541 (9)0.6443 (7)0.0435 (7)
H2A0.61350.63170.80180.052*
H2B0.67040.61670.55860.052*
C30.4786 (3)0.58515 (9)0.6388 (6)0.0414 (7)
H3A0.52380.55680.69920.050*
H3B0.39810.59290.73740.050*
N40.4259 (2)0.57556 (7)0.4075 (5)0.0347 (5)
C50.3676 (3)0.61875 (9)0.3026 (6)0.0439 (7)
H5A0.28240.62840.38590.053*
H5B0.33970.61200.14540.053*
C60.4745 (3)0.65878 (10)0.3038 (6)0.0479 (8)
H6A0.55700.65030.21100.058*
H6B0.43120.68690.23800.058*
C210.3353 (3)0.53502 (9)0.3862 (5)0.0331 (6)
C220.3336 (3)0.49886 (9)0.5496 (6)0.0394 (7)
H220.39260.50110.67790.047*
C230.2451 (3)0.45967 (10)0.5241 (6)0.0440 (7)
H230.24560.43610.63540.053*
C240.1567 (3)0.45534 (9)0.3356 (6)0.0407 (7)
C250.1589 (3)0.48988 (10)0.1703 (7)0.0484 (8)
H250.10130.48700.04060.058*
C260.2469 (3)0.52924 (10)0.1961 (6)0.0464 (8)
H260.24660.55240.08260.056*
O240.0728 (2)0.41532 (8)0.3280 (5)0.0620 (8)
C270.0230 (4)0.41098 (13)0.1399 (9)0.0729 (12)
H27A0.07900.38270.15720.109*
H27B0.03070.40940.00050.109*
H27C0.08560.43790.13580.109*
C310.7061 (15)0.7714 (3)0.797 (3)0.0296 (18)0.660 (15)
O310.7173 (15)0.7375 (5)0.655 (3)0.0463 (18)0.660 (15)
O320.7811 (18)0.8079 (5)0.790 (4)0.0443 (15)0.660 (15)
C320.5909 (9)0.7663 (3)0.9790 (16)0.0375 (16)0.660 (15)
H32A0.63310.75171.11380.045*0.660 (15)
H32B0.51750.74500.92160.045*0.660 (15)
C330.5200 (11)0.8123 (3)1.0509 (19)0.056 (3)0.660 (15)
H33A0.59330.83391.10500.067*0.660 (15)
H33B0.47470.82650.91780.067*0.660 (15)
C340.4093 (16)0.8060 (6)1.237 (3)0.0468 (19)0.660 (15)
O330.3172 (11)0.8361 (3)1.279 (2)0.086 (3)0.660 (15)
O340.4253 (19)0.7688 (5)1.359 (2)0.065 (3)0.660 (15)
H340.35330.76471.43780.098*0.660 (15)
C410.702 (3)0.7808 (8)0.792 (6)0.0296 (18)0.340 (15)
O410.736 (3)0.7440 (11)0.678 (7)0.0463 (18)0.340 (15)
O420.782 (4)0.8158 (10)0.816 (8)0.0443 (15)0.340 (15)
C420.567 (2)0.7768 (6)0.934 (3)0.0375 (16)0.340 (15)
H42A0.48530.78190.83320.045*0.340 (15)
H42B0.56010.74470.99160.045*0.340 (15)
C430.555 (2)0.8103 (7)1.134 (3)0.056 (3)0.340 (15)
H43A0.55700.84251.07700.067*0.340 (15)
H43B0.63690.80601.23370.067*0.340 (15)
C440.419 (3)0.8032 (11)1.272 (5)0.0468 (19)0.340 (15)
O430.304 (2)0.8221 (6)1.225 (5)0.086 (3)0.340 (15)
O440.425 (4)0.7694 (12)1.418 (5)0.065 (3)0.340 (15)
H440.34900.76811.48920.098*0.340 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0367 (12)0.0305 (11)0.0512 (17)0.0052 (10)0.0144 (13)0.0049 (11)
C20.0389 (14)0.0366 (13)0.055 (2)0.0012 (11)0.0002 (16)0.0023 (14)
C30.0440 (15)0.0361 (13)0.0440 (18)0.0024 (11)0.0032 (15)0.0033 (13)
N40.0388 (12)0.0296 (10)0.0357 (13)0.0015 (9)0.0050 (11)0.0003 (10)
C50.0592 (17)0.0331 (12)0.0395 (17)0.0042 (12)0.0014 (16)0.0044 (13)
C60.0606 (18)0.0386 (14)0.0446 (19)0.0070 (13)0.0126 (18)0.0056 (14)
C210.0345 (13)0.0314 (12)0.0333 (16)0.0023 (10)0.0055 (12)0.0008 (11)
C220.0421 (15)0.0354 (13)0.0406 (17)0.0004 (11)0.0064 (14)0.0037 (13)
C230.0483 (16)0.0366 (14)0.0472 (19)0.0025 (12)0.0064 (16)0.0123 (13)
C240.0370 (13)0.0332 (12)0.052 (2)0.0019 (11)0.0022 (15)0.0026 (13)
C250.0533 (17)0.0456 (15)0.046 (2)0.0059 (13)0.0156 (17)0.0056 (15)
C260.0587 (18)0.0414 (14)0.0391 (19)0.0073 (13)0.0055 (16)0.0104 (14)
O240.0604 (13)0.0480 (11)0.078 (2)0.0194 (10)0.0266 (15)0.0143 (12)
C270.067 (2)0.061 (2)0.090 (3)0.0233 (17)0.036 (2)0.011 (2)
C310.0307 (14)0.020 (4)0.0377 (18)0.002 (3)0.0121 (15)0.002 (4)
O310.039 (4)0.043 (4)0.056 (4)0.018 (2)0.025 (4)0.025 (2)
O320.0467 (11)0.029 (4)0.057 (5)0.011 (3)0.027 (2)0.014 (3)
C320.043 (3)0.025 (3)0.045 (4)0.002 (2)0.019 (3)0.004 (2)
C330.069 (5)0.0348 (18)0.064 (7)0.008 (3)0.043 (5)0.009 (4)
C340.053 (3)0.032 (2)0.055 (5)0.0033 (16)0.031 (3)0.001 (2)
O330.097 (3)0.054 (5)0.107 (7)0.039 (4)0.067 (4)0.016 (4)
O340.0654 (15)0.0655 (15)0.065 (8)0.0228 (12)0.054 (5)0.026 (4)
C410.0307 (14)0.020 (4)0.0377 (18)0.002 (3)0.0121 (15)0.002 (4)
O410.039 (4)0.043 (4)0.056 (4)0.018 (2)0.025 (4)0.025 (2)
O420.0467 (11)0.029 (4)0.057 (5)0.011 (3)0.027 (2)0.014 (3)
C420.043 (3)0.025 (3)0.045 (4)0.002 (2)0.019 (3)0.004 (2)
C430.069 (5)0.0348 (18)0.064 (7)0.008 (3)0.043 (5)0.009 (4)
C440.053 (3)0.032 (2)0.055 (5)0.0033 (16)0.031 (3)0.001 (2)
O430.097 (3)0.054 (5)0.107 (7)0.039 (4)0.067 (4)0.016 (4)
O440.0654 (15)0.0655 (15)0.065 (8)0.0228 (12)0.054 (5)0.026 (4)
Geometric parameters (Å, º) top
N1—C61.484 (5)O24—C271.419 (5)
N1—C21.484 (4)C27—H27A0.9600
N1—H110.86 (3)C27—H27B0.9600
N1—H120.98 (3)C27—H27C0.9600
C2—C31.512 (4)C31—O321.247 (5)
C2—H2A0.9700C31—O311.270 (7)
C2—H2B0.9700C31—C321.513 (6)
C3—N41.459 (4)C32—C331.517 (7)
C3—H3A0.9700C32—H32A0.9700
C3—H3B0.9700C32—H32B0.9700
N4—C211.429 (3)C33—C341.505 (6)
N4—C51.469 (3)C33—H33A0.9700
C5—C61.508 (4)C33—H33B0.9700
C5—H5A0.9700C34—O331.233 (9)
C5—H5B0.9700C34—O341.280 (6)
C6—H6A0.9700O34—H340.8200
C6—H6B0.9700C41—O421.247 (9)
C21—C261.390 (4)C41—O411.271 (10)
C21—C221.396 (4)C41—C421.514 (9)
C22—C231.388 (4)C42—C431.507 (11)
C22—H220.9300C42—H42A0.9700
C23—C241.378 (5)C42—H42B0.9700
C23—H230.9300C43—C441.508 (10)
C24—C251.371 (4)C43—H43A0.9700
C24—O241.376 (3)C43—H43B0.9700
C25—C261.390 (4)C44—O431.235 (13)
C25—H250.9300C44—O441.282 (9)
C26—H260.9300O44—H440.8200
C6—N1—C2109.6 (2)C21—C26—C25122.0 (3)
C6—N1—H11114 (3)C21—C26—H26119.0
C2—N1—H11110 (2)C25—C26—H26119.0
C6—N1—H12106 (2)C24—O24—C27117.0 (3)
C2—N1—H12114 (2)O24—C27—H27A109.5
H11—N1—H12103 (3)O24—C27—H27B109.5
N1—C2—C3110.2 (2)H27A—C27—H27B109.5
N1—C2—H2A109.6O24—C27—H27C109.5
C3—C2—H2A109.6H27A—C27—H27C109.5
N1—C2—H2B109.6H27B—C27—H27C109.5
C3—C2—H2B109.6O32—C31—O31123.7 (8)
H2A—C2—H2B108.1O32—C31—C32120.0 (6)
N4—C3—C2112.4 (3)O31—C31—C32116.3 (6)
N4—C3—H3A109.1C31—C32—C33114.8 (6)
C2—C3—H3A109.1C31—C32—H32A108.6
N4—C3—H3B109.1C33—C32—H32A108.6
C2—C3—H3B109.1C31—C32—H32B108.6
H3A—C3—H3B107.9C33—C32—H32B108.6
C21—N4—C3115.3 (2)H32A—C32—H32B107.5
C21—N4—C5114.3 (2)C34—C33—C32113.3 (6)
C3—N4—C5110.7 (2)C34—C33—H33A108.9
N4—C5—C6112.1 (2)C32—C33—H33A108.9
N4—C5—H5A109.2C34—C33—H33B108.9
C6—C5—H5A109.2C32—C33—H33B108.9
N4—C5—H5B109.2H33A—C33—H33B107.7
C6—C5—H5B109.2O33—C34—O34122.3 (7)
H5A—C5—H5B107.9O33—C34—C33122.8 (7)
N1—C6—C5109.8 (3)O34—C34—C33114.7 (6)
N1—C6—H6A109.7C34—O34—H34109.5
C5—C6—H6A109.7O42—C41—O41124.3 (15)
N1—C6—H6B109.7O42—C41—C42119.7 (12)
C5—C6—H6B109.7O41—C41—C42115.3 (12)
H6A—C6—H6B108.2C43—C42—C41116.0 (12)
C26—C21—C22116.7 (2)C43—C42—H42A108.3
C26—C21—N4120.9 (3)C41—C42—H42A108.3
C22—C21—N4122.3 (3)C43—C42—H42B108.3
C23—C22—C21121.2 (3)C41—C42—H42B108.3
C23—C22—H22119.4H42A—C42—H42B107.4
C21—C22—H22119.4C42—C43—C44113.1 (15)
C24—C23—C22120.8 (3)C42—C43—H43A109.0
C24—C23—H23119.6C44—C43—H43A109.0
C22—C23—H23119.6C42—C43—H43B109.0
C25—C24—O24124.8 (3)C44—C43—H43B109.0
C25—C24—C23119.1 (3)H43A—C43—H43B107.8
O24—C24—C23116.0 (3)O43—C44—O44120.3 (16)
C24—C25—C26120.2 (3)O43—C44—C43123.7 (14)
C24—C25—H25119.9O44—C44—C43114.8 (12)
C26—C25—H25119.9C44—O44—H44109.5
C6—N1—C2—C357.9 (3)O24—C24—C25—C26179.3 (3)
N1—C2—C3—N456.2 (3)C23—C24—C25—C261.5 (5)
C2—C3—N4—C21174.2 (2)C22—C21—C26—C251.0 (4)
C2—C3—N4—C554.0 (3)N4—C21—C26—C25179.3 (3)
C21—N4—C5—C6172.9 (3)C24—C25—C26—C210.4 (5)
C3—N4—C5—C654.8 (3)C25—C24—O24—C273.1 (5)
C2—N1—C6—C558.5 (3)C23—C24—O24—C27177.7 (3)
N4—C5—C6—N157.4 (3)O32—C31—C32—C3332 (2)
C3—N4—C21—C26161.9 (3)O31—C31—C32—C33146 (2)
C5—N4—C21—C2631.8 (4)C31—C32—C33—C34178.3 (12)
C3—N4—C21—C2219.9 (4)C32—C33—C34—O33162 (2)
C5—N4—C21—C22150.0 (3)C32—C33—C34—O3423 (2)
C26—C21—C22—C231.3 (4)O42—C41—C42—C4313 (5)
N4—C21—C22—C23179.6 (3)O41—C41—C42—C43157 (4)
C21—C22—C23—C240.2 (5)C41—C42—C43—C44178 (2)
C22—C23—C24—C251.2 (5)C42—C43—C44—O4386 (4)
C22—C23—C24—O24179.5 (3)C42—C43—C44—O4482 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.86 (3)1.90 (3)2.750 (15)167 (4)
N1—H12···O32i0.98 (3)1.77 (4)2.741 (19)171 (3)
O34—H34···O31ii0.821.792.60 (2)168
N1—H11···O410.86 (3)2.18 (4)3.03 (3)165 (4)
N1—H12···O42i0.98 (3)1.82 (5)2.77 (4)163 (3)
O44—H44···O41ii0.821.562.35 (2)161
C3—H3A···Cg2iii0.972.763.652 (3)154
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1/2.
4-(4-Methoxyphenyl)piperazin-1-ium hydrogenfumarate (IX) top
Crystal data top
C11H17N2O+·C4H3O4Dx = 1.356 Mg m3
Mr = 308.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2829 reflections
a = 9.069 (1) Åθ = 2.7–27.7°
b = 28.528 (3) ŵ = 0.10 mm1
c = 5.8375 (9) ÅT = 296 K
V = 1510.3 (3) Å3Plate, colourless
Z = 40.48 × 0.48 × 0.08 mm
F(000) = 656
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2827 independent reflections
Radiation source: Enhance (Mo) X-ray Source2316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 811
Tmin = 0.888, Tmax = 0.992k = 3235
5834 measured reflectionsl = 76
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.4265P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2827 reflectionsΔρmax = 0.15 e Å3
221 parametersΔρmin = 0.14 e Å3
11 restraintsAbsolute structure: Flack x determined using 769 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Special details top

Experimental. Compound (IX). IR (KBr , cm-1) 3001 (NH2), 2839 (OCH3), 1562 (COO). NMR (CDCl3) δ(1H) ) 3.09 (m, 4H, piperazine), 3.35 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.26 (s, 2H, fumarate), 6.90 (m, 4H, methoxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5253 (3)0.66688 (8)0.5154 (5)0.0448 (6)
H110.588 (4)0.6872 (12)0.518 (6)0.054*
H120.440 (4)0.6776 (11)0.596 (6)0.054*
C20.5885 (3)0.62425 (10)0.6244 (6)0.0490 (8)
H2A0.61820.63150.78010.059*
H2B0.67530.61440.54030.059*
C30.4771 (3)0.58500 (9)0.6274 (6)0.0449 (7)
H3A0.52250.55720.69160.054*
H3B0.39520.59370.72540.054*
N40.4215 (3)0.57432 (7)0.3988 (4)0.0395 (6)
C50.3637 (4)0.61653 (10)0.2869 (6)0.0505 (8)
H5A0.27670.62720.36850.061*
H5B0.33440.60890.13150.061*
C60.4751 (4)0.65530 (10)0.2808 (6)0.0540 (9)
H6A0.55890.64580.18860.065*
H6B0.43170.68290.21060.065*
C210.3300 (3)0.53374 (9)0.3824 (5)0.0372 (6)
C220.3313 (3)0.49854 (9)0.5482 (6)0.0441 (7)
H220.39190.50170.67580.053*
C230.2439 (3)0.45907 (10)0.5261 (7)0.0485 (8)
H230.24680.43610.63930.058*
C240.1529 (3)0.45301 (10)0.3401 (6)0.0456 (8)
C250.1521 (4)0.48719 (10)0.1732 (6)0.0518 (8)
H250.09240.48360.04480.062*
C260.2391 (4)0.52673 (11)0.1945 (6)0.0509 (8)
H260.23660.54930.07960.061*
O240.0698 (3)0.41291 (8)0.3349 (5)0.0668 (8)
C270.0259 (4)0.40672 (14)0.1473 (9)0.0804 (13)
H27A0.08190.37850.16800.121*
H27B0.03070.40450.00880.121*
H27C0.09180.43300.13730.121*
C310.7171 (3)0.77494 (10)0.8023 (6)0.0452 (7)
O310.7323 (3)0.73835 (7)0.6832 (5)0.0673 (8)
O320.7875 (3)0.81180 (7)0.7776 (5)0.0595 (7)
C320.6095 (4)0.77182 (10)0.9941 (6)0.0526 (9)0.906 (9)
H320.59930.74271.06430.063*0.906 (9)
C330.5305 (7)0.80489 (15)1.0714 (12)0.0607 (11)0.906 (9)
H330.54560.83451.00890.073*0.906 (9)
C340.4163 (5)0.80084 (15)1.2518 (8)0.0518 (9)0.906 (9)
O330.3241 (5)0.83097 (16)1.2845 (8)0.0992 (18)0.906 (9)
O340.4218 (4)0.76290 (13)1.3671 (8)0.0734 (13)0.906 (9)
H340.35260.76211.45740.110*0.906 (9)
C420.6095 (4)0.77182 (10)0.9941 (6)0.0526 (9)0.094 (9)
H420.59820.74211.05660.063*0.094 (9)
C430.531 (6)0.8035 (9)1.086 (10)0.0607 (11)0.094 (9)
H430.55330.83431.04770.073*0.094 (9)
C440.407 (4)0.7961 (12)1.247 (6)0.0518 (9)0.094 (9)
O430.280 (4)0.8058 (15)1.203 (7)0.0992 (18)0.094 (9)
O440.444 (4)0.7801 (13)1.442 (6)0.0734 (13)0.094 (9)
H440.36970.77431.51690.110*0.094 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0436 (14)0.0378 (12)0.0531 (18)0.0049 (10)0.0167 (13)0.0020 (12)
C20.0444 (16)0.0431 (15)0.060 (2)0.0018 (12)0.0054 (16)0.0042 (15)
C30.0482 (17)0.0398 (14)0.047 (2)0.0019 (13)0.0013 (15)0.0052 (13)
N40.0466 (13)0.0348 (11)0.0371 (14)0.0016 (10)0.0048 (12)0.0005 (10)
C50.072 (2)0.0403 (14)0.0396 (19)0.0043 (14)0.0015 (17)0.0079 (14)
C60.077 (2)0.0423 (14)0.043 (2)0.0044 (15)0.0172 (18)0.0048 (15)
C210.0398 (15)0.0355 (13)0.0363 (17)0.0060 (11)0.0060 (14)0.0009 (12)
C220.0484 (17)0.0402 (14)0.0437 (19)0.0029 (12)0.0071 (15)0.0040 (14)
C230.0532 (18)0.0413 (15)0.0510 (19)0.0005 (13)0.0054 (17)0.0123 (15)
C240.0391 (15)0.0409 (14)0.057 (2)0.0015 (12)0.0036 (15)0.0009 (14)
C250.0560 (19)0.0519 (17)0.048 (2)0.0013 (15)0.0160 (17)0.0035 (16)
C260.065 (2)0.0455 (15)0.042 (2)0.0041 (14)0.0061 (16)0.0115 (14)
O240.0633 (15)0.0532 (12)0.084 (2)0.0163 (11)0.0224 (15)0.0125 (13)
C270.064 (2)0.070 (2)0.107 (4)0.0205 (19)0.034 (3)0.012 (2)
C310.0431 (16)0.0435 (15)0.049 (2)0.0003 (12)0.0227 (15)0.0016 (14)
O310.0655 (15)0.0577 (13)0.079 (2)0.0153 (11)0.0428 (14)0.0234 (13)
O320.0632 (14)0.0469 (11)0.0684 (17)0.0123 (10)0.0369 (13)0.0050 (11)
C320.0564 (19)0.0380 (14)0.063 (2)0.0018 (14)0.0321 (18)0.0001 (15)
C330.067 (2)0.0474 (16)0.067 (3)0.0048 (16)0.034 (2)0.0065 (17)
C340.0558 (19)0.0416 (18)0.058 (2)0.0052 (15)0.0280 (18)0.0037 (15)
O330.115 (3)0.064 (2)0.119 (3)0.045 (2)0.081 (3)0.028 (2)
O340.081 (2)0.0502 (19)0.089 (3)0.0215 (17)0.061 (2)0.0185 (17)
C420.0564 (19)0.0380 (14)0.063 (2)0.0018 (14)0.0321 (18)0.0001 (15)
C430.067 (2)0.0474 (16)0.067 (3)0.0048 (16)0.034 (2)0.0065 (17)
C440.0558 (19)0.0416 (18)0.058 (2)0.0052 (15)0.0280 (18)0.0037 (15)
O430.115 (3)0.064 (2)0.119 (3)0.045 (2)0.081 (3)0.028 (2)
O440.081 (2)0.0502 (19)0.089 (3)0.0215 (17)0.061 (2)0.0185 (17)
Geometric parameters (Å, º) top
N1—C61.481 (4)C24—C251.378 (4)
N1—C21.487 (4)C25—C261.382 (4)
N1—H110.81 (3)C25—H250.9300
N1—H120.96 (4)C26—H260.9300
C2—C31.508 (4)O24—C271.409 (5)
C2—H2A0.9700C27—H27A0.9600
C2—H2B0.9700C27—H27B0.9600
C3—N41.459 (4)C27—H27C0.9600
C3—H3A0.9700C31—O321.239 (3)
C3—H3B0.9700C31—O311.262 (4)
N4—C211.428 (3)C31—C321.488 (4)
N4—C51.467 (4)C32—C331.268 (4)
C5—C61.499 (4)C32—H320.9300
C5—H5A0.9700C33—C341.481 (5)
C5—H5B0.9700C33—H330.9300
C6—H6A0.9700C34—O331.214 (4)
C6—H6B0.9700C34—O341.276 (5)
C21—C261.387 (4)O34—H340.8200
C21—C221.395 (4)C43—C441.479 (12)
C22—C231.383 (4)C43—H430.9300
C22—H220.9300C44—O431.212 (12)
C23—C241.375 (5)C44—O441.274 (12)
C23—H230.9300O44—H440.8200
C24—O241.370 (3)
C6—N1—C2109.4 (2)C21—C22—H22119.4
C6—N1—H11113 (3)C24—C23—C22121.3 (3)
C2—N1—H11108 (2)C24—C23—H23119.3
C6—N1—H12106 (2)C22—C23—H23119.3
C2—N1—H12111 (2)O24—C24—C23116.9 (3)
H11—N1—H12109 (3)O24—C24—C25124.9 (3)
N1—C2—C3110.7 (3)C23—C24—C25118.2 (3)
N1—C2—H2A109.5C24—C25—C26120.7 (3)
C3—C2—H2A109.5C24—C25—H25119.7
N1—C2—H2B109.5C26—C25—H25119.7
C3—C2—H2B109.5C25—C26—C21121.9 (3)
H2A—C2—H2B108.1C25—C26—H26119.0
N4—C3—C2112.1 (3)C21—C26—H26119.0
N4—C3—H3A109.2C24—O24—C27117.4 (3)
C2—C3—H3A109.2O24—C27—H27A109.5
N4—C3—H3B109.2O24—C27—H27B109.5
C2—C3—H3B109.2H27A—C27—H27B109.5
H3A—C3—H3B107.9O24—C27—H27C109.5
C21—N4—C3115.6 (2)H27A—C27—H27C109.5
C21—N4—C5115.3 (2)H27B—C27—H27C109.5
C3—N4—C5111.1 (2)O32—C31—O31125.6 (3)
N4—C5—C6112.0 (3)O32—C31—C32118.5 (3)
N4—C5—H5A109.2O31—C31—C32115.9 (2)
C6—C5—H5A109.2C33—C32—C31126.4 (3)
N4—C5—H5B109.2C33—C32—H32116.8
C6—C5—H5B109.2C31—C32—H32116.8
H5A—C5—H5B107.9C32—C33—C34126.2 (4)
N1—C6—C5110.5 (3)C32—C33—H33116.9
N1—C6—H6A109.6C34—C33—H33116.9
C5—C6—H6A109.6O33—C34—O34123.0 (4)
N1—C6—H6B109.6O33—C34—C33122.5 (4)
C5—C6—H6B109.6O34—C34—C33114.5 (3)
H6A—C6—H6B108.1C34—O34—H34109.5
C26—C21—C22116.7 (3)C44—C43—H43116.8
C26—C21—N4121.0 (3)O43—C44—O44121.3 (18)
C22—C21—N4122.2 (3)O43—C44—C43124 (2)
C23—C22—C21121.1 (3)O44—C44—C43114.9 (18)
C23—C22—H22119.4C44—O44—H44109.5
C6—N1—C2—C357.2 (3)C22—C23—C24—O24179.4 (3)
N1—C2—C3—N455.8 (3)C22—C23—C24—C250.8 (5)
C2—C3—N4—C21172.3 (2)O24—C24—C25—C26179.4 (3)
C2—C3—N4—C553.8 (3)C23—C24—C25—C260.9 (5)
C21—N4—C5—C6171.4 (3)C24—C25—C26—C210.0 (5)
C3—N4—C5—C654.7 (3)C22—C21—C26—C250.9 (5)
C2—N1—C6—C557.9 (3)N4—C21—C26—C25178.6 (3)
N4—C5—C6—N157.2 (4)C23—C24—O24—C27178.8 (3)
C3—N4—C21—C26162.4 (3)C25—C24—O24—C271.4 (5)
C5—N4—C21—C2630.5 (4)O32—C31—C32—C3334.7 (7)
C3—N4—C21—C2220.1 (4)O31—C31—C32—C33148.0 (6)
C5—N4—C21—C22151.9 (3)C31—C32—C33—C34175.5 (5)
C26—C21—C22—C230.9 (4)C32—C33—C34—O33164.1 (8)
N4—C21—C22—C23178.6 (3)C32—C33—C34—O3414.9 (10)
C21—C22—C23—C240.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.81 (4)2.18 (3)2.940 (4)155 (3)
N1—H12···O32i0.96 (4)1.77 (4)2.714 (4)169 (3)
O34—H34···O31ii0.821.712.522 (5)170
O44—H44···O31ii0.821.622.44 (2)175
C3—H3A···Cg2iii0.972.763.650 (3)153
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1/2.
4-(4-Methoxyphenyl)piperazin-1-ium hydrogenmaleate (X) top
Crystal data top
C11H17N2O+·C4H3O4F(000) = 656
Mr = 308.33Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.063 (1) ÅCell parameters from 3315 reflections
b = 6.4956 (9) Åθ = 2.7–27.8°
c = 26.093 (3) ŵ = 0.10 mm1
β = 93.18 (1)°T = 296 K
V = 1533.7 (3) Å3Block, colourless
Z = 40.48 × 0.44 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3311 independent reflections
Radiation source: Enhance (Mo) X-ray Source2459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.871, Tmax = 0.968k = 68
6112 measured reflectionsl = 2633
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3046P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.21 e Å3
3311 reflectionsΔρmin = 0.13 e Å3
210 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0192 (18)
Primary atom site location: difference Fourier map
Special details top

Experimental. Compound (X). IR (KBr , cm-1) 3073 (NH2), 2836 (OCH3), 1565 (COO). NMR (CDCl3) δ(1H) ) 3.34 (m, 4H, piperazine), 3.41 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.29 (s, 2H, maleate), 6.90 (m, 4H, methoxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54059 (15)0.1806 (2)0.56144 (5)0.0431 (3)
H110.6147 (19)0.166 (3)0.5393 (6)0.052*
H120.452 (2)0.174 (3)0.5426 (7)0.052*
C20.5537 (2)0.3928 (3)0.58165 (6)0.0531 (4)
H2A0.54280.49030.55350.064*
H2B0.65060.41210.59860.064*
C30.43600 (18)0.4321 (2)0.61930 (6)0.0468 (4)
H3A0.44720.57060.63290.056*
H3B0.33920.42220.60160.056*
N40.44597 (13)0.28484 (17)0.66144 (4)0.0362 (3)
C50.43395 (19)0.0748 (2)0.64123 (6)0.0481 (4)
H5A0.33700.05590.62430.058*
H5B0.44380.02220.66950.058*
C60.55084 (18)0.0302 (2)0.60367 (6)0.0468 (4)
H6A0.64800.03770.62110.056*
H6B0.53730.10770.59000.056*
C210.35362 (15)0.3268 (2)0.70263 (5)0.0354 (3)
C220.26577 (18)0.5006 (2)0.70426 (6)0.0481 (4)
H220.26320.59200.67680.058*
C230.18120 (18)0.5421 (3)0.74593 (6)0.0530 (4)
H230.12470.66160.74630.064*
C240.18071 (17)0.4076 (3)0.78649 (5)0.0489 (4)
C250.2673 (2)0.2332 (3)0.78540 (6)0.0537 (4)
H250.26790.14100.81270.064*
C260.35276 (18)0.1936 (3)0.74451 (6)0.0464 (4)
H3260.41100.07570.74480.056*
O240.10103 (14)0.4323 (2)0.82944 (4)0.0706 (4)
C270.0207 (2)0.6185 (4)0.83401 (7)0.0844 (7)
H27A0.02310.62190.86670.127*
H27B0.05560.62600.80700.127*
H27C0.08640.73340.83140.127*
C310.81864 (16)0.2456 (2)0.48041 (7)0.0439 (4)
C320.93279 (17)0.2644 (2)0.44164 (6)0.0460 (4)
H320.89510.28150.40800.055*
C331.07926 (16)0.2605 (2)0.44719 (6)0.0429 (4)
H331.12740.27430.41680.052*
C341.17846 (15)0.2380 (2)0.49393 (6)0.0370 (3)
O310.68826 (12)0.23449 (19)0.46522 (5)0.0627 (4)
O320.85878 (12)0.23939 (18)0.52832 (4)0.0520 (3)
O331.12495 (12)0.23595 (18)0.53839 (4)0.0488 (3)
H33A0.996 (2)0.240 (3)0.5354 (8)0.073*
O341.31216 (11)0.22095 (17)0.48789 (4)0.0495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0357 (6)0.0568 (8)0.0375 (7)0.0007 (6)0.0084 (5)0.0023 (6)
C20.0645 (10)0.0474 (9)0.0493 (9)0.0055 (8)0.0214 (8)0.0037 (7)
C30.0590 (10)0.0388 (8)0.0440 (8)0.0018 (7)0.0146 (7)0.0034 (7)
N40.0396 (6)0.0349 (6)0.0346 (6)0.0002 (5)0.0054 (5)0.0009 (5)
C50.0591 (10)0.0385 (8)0.0484 (9)0.0012 (7)0.0186 (7)0.0000 (7)
C60.0507 (9)0.0450 (9)0.0454 (8)0.0080 (7)0.0087 (7)0.0013 (7)
C210.0340 (7)0.0391 (7)0.0329 (7)0.0023 (6)0.0007 (5)0.0016 (6)
C220.0550 (9)0.0482 (9)0.0419 (8)0.0101 (7)0.0106 (7)0.0080 (7)
C230.0539 (10)0.0584 (10)0.0472 (9)0.0176 (8)0.0085 (7)0.0009 (8)
C240.0435 (8)0.0715 (11)0.0316 (7)0.0060 (8)0.0023 (6)0.0037 (7)
C250.0645 (10)0.0662 (11)0.0305 (7)0.0109 (9)0.0042 (7)0.0111 (7)
C260.0525 (9)0.0508 (9)0.0358 (8)0.0120 (7)0.0001 (6)0.0044 (6)
O240.0722 (8)0.1024 (11)0.0386 (6)0.0251 (7)0.0175 (6)0.0033 (6)
C270.0759 (13)0.126 (2)0.0528 (11)0.0418 (14)0.0177 (10)0.0042 (12)
C310.0357 (8)0.0337 (8)0.0631 (10)0.0035 (6)0.0104 (7)0.0045 (7)
C320.0425 (8)0.0529 (9)0.0427 (8)0.0026 (7)0.0035 (6)0.0069 (7)
C330.0411 (8)0.0493 (9)0.0395 (8)0.0003 (7)0.0118 (6)0.0033 (7)
C340.0352 (7)0.0300 (7)0.0463 (8)0.0020 (6)0.0071 (6)0.0005 (6)
O310.0334 (6)0.0690 (8)0.0858 (9)0.0036 (5)0.0040 (6)0.0110 (7)
O320.0418 (6)0.0641 (8)0.0517 (7)0.0009 (5)0.0172 (5)0.0003 (5)
O330.0427 (6)0.0647 (8)0.0393 (6)0.0007 (5)0.0056 (4)0.0020 (5)
O340.0337 (5)0.0572 (7)0.0580 (7)0.0010 (5)0.0069 (5)0.0012 (5)
Geometric parameters (Å, º) top
N1—C61.472 (2)C23—H230.9300
N1—C21.478 (2)C24—O241.3759 (17)
N1—H110.915 (17)C24—C251.379 (2)
N1—H120.917 (18)C25—C261.377 (2)
C2—C31.511 (2)C25—H250.9300
C2—H2A0.9700C26—H3260.9300
C2—H2B0.9700O24—C271.420 (3)
C3—N41.4567 (18)C27—H27A0.9600
C3—H3A0.9700C27—H27B0.9600
C3—H3B0.9700C27—H27C0.9600
N4—C211.4248 (17)C31—O311.2274 (19)
N4—C51.4645 (19)C31—O321.283 (2)
C5—C61.511 (2)C31—C321.492 (2)
C5—H5A0.9700C32—C331.328 (2)
C5—H5B0.9700C32—H320.9300
C6—H6A0.9700C33—C341.482 (2)
C6—H6B0.9700C33—H330.9300
C21—C221.383 (2)C34—O341.2355 (17)
C21—C261.394 (2)C34—O331.2820 (17)
C22—C231.391 (2)O32—H33A1.25 (2)
C22—H220.9300O33—H33A1.17 (2)
C23—C241.373 (2)
C6—N1—C2110.57 (12)C21—C22—C23121.70 (14)
C6—N1—H11112.8 (11)C21—C22—H22119.2
C2—N1—H11105.8 (11)C23—C22—H22119.2
C6—N1—H12112.6 (11)C24—C23—C22120.31 (15)
C2—N1—H12106.8 (11)C24—C23—H23119.8
H11—N1—H12107.8 (15)C22—C23—H23119.8
N1—C2—C3110.13 (13)C23—C24—O24125.33 (15)
N1—C2—H2A109.6C23—C24—C25118.74 (14)
C3—C2—H2A109.6O24—C24—C25115.93 (14)
N1—C2—H2B109.6C26—C25—C24120.98 (15)
C3—C2—H2B109.6C26—C25—H25119.5
H2A—C2—H2B108.1C24—C25—H25119.5
N4—C3—C2111.29 (13)C25—C26—C21121.25 (15)
N4—C3—H3A109.4C25—C26—H326119.4
C2—C3—H3A109.4C21—C26—H326119.4
N4—C3—H3B109.4C24—O24—C27117.53 (15)
C2—C3—H3B109.4O24—C27—H27A109.5
H3A—C3—H3B108.0O24—C27—H27B109.5
C21—N4—C3115.42 (11)H27A—C27—H27B109.5
C21—N4—C5114.50 (11)O24—C27—H27C109.5
C3—N4—C5109.87 (12)H27A—C27—H27C109.5
N4—C5—C6111.79 (12)H27B—C27—H27C109.5
N4—C5—H5A109.3O31—C31—O32121.90 (14)
C6—C5—H5A109.3O31—C31—C32118.52 (15)
N4—C5—H5B109.3O32—C31—C32119.57 (14)
C6—C5—H5B109.3C33—C32—C31130.65 (15)
H5A—C5—H5B107.9C33—C32—H32114.7
N1—C6—C5109.95 (13)C31—C32—H32114.7
N1—C6—H6A109.7C32—C33—C34130.48 (13)
C5—C6—H6A109.7C32—C33—H33114.8
N1—C6—H6B109.7C34—C33—H33114.8
C5—C6—H6B109.7O34—C34—O33122.51 (14)
H6A—C6—H6B108.2O34—C34—C33117.29 (13)
C22—C21—C26117.01 (13)O33—C34—C33120.20 (12)
C22—C21—N4122.86 (13)C31—O32—H33A111.7 (9)
C26—C21—N4120.09 (13)C34—O33—H33A111.5 (10)
C6—N1—C2—C357.07 (18)C22—C23—C24—O24179.65 (16)
N1—C2—C3—N457.68 (18)C22—C23—C24—C251.0 (3)
C2—C3—N4—C21171.43 (13)C23—C24—C25—C260.1 (3)
C2—C3—N4—C557.26 (17)O24—C24—C25—C26179.42 (16)
C21—N4—C5—C6171.06 (12)C24—C25—C26—C210.7 (3)
C3—N4—C5—C657.15 (17)C22—C21—C26—C250.4 (2)
C2—N1—C6—C556.57 (17)N4—C21—C26—C25178.39 (14)
N4—C5—C6—N157.02 (18)C23—C24—O24—C274.6 (3)
C3—N4—C21—C223.3 (2)C25—C24—O24—C27174.67 (18)
C5—N4—C21—C22132.32 (16)O31—C31—C32—C33173.24 (17)
C3—N4—C21—C26178.91 (14)O32—C31—C32—C336.0 (2)
C5—N4—C21—C2649.85 (18)C31—C32—C33—C340.5 (3)
C26—C21—C22—C230.6 (2)C32—C33—C34—O34173.69 (16)
N4—C21—C22—C23177.33 (14)C32—C33—C34—O336.1 (2)
C21—C22—C23—C241.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H33A···O321.167 (18)1.247 (18)2.4121 (16)175 (2)
N1—H11···O310.915 (17)2.126 (16)2.9309 (19)146.2 (15)
N1—H11···O320.915 (17)2.296 (17)3.0798 (18)143.5 (14)
N1—H12···O34i0.919 (18)1.881 (18)2.7563 (17)158.5 (17)
C2—H2A···O34ii0.972.563.363 (2)140
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium trichloroacetate (XI) top
Crystal data top
C11H17N2O+·C2Cl3O2Dx = 1.477 Mg m3
Mr = 355.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2428 reflections
a = 10.6117 (11) Åθ = 3.0–27.7°
b = 13.808 (1) ŵ = 0.58 mm1
c = 10.9137 (8) ÅT = 296 K
V = 1599.1 (2) Å3Block, colourless
Z = 40.48 × 0.48 × 0.20 mm
F(000) = 736
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2428 independent reflections
Radiation source: Enhance (Mo) X-ray Source2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.7°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 513
Tmin = 0.476, Tmax = 0.892k = 1617
6173 measured reflectionsl = 145
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0532P)2 + 0.3843P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.086Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.30 e Å3
2428 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
198 parametersExtinction coefficient: 0.023 (2)
1 restraintAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.11 (7)
Hydrogen site location: mixed
Special details top

Experimental. Compound (XI). IR (KBr , cm-1) 3073 (NH2), 2829 (OCH3), 1561 (COO). NMR (CDCl3) δ(1H) ) 3.07 (m, 4H, piperazine), 3.19 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.89 (m, 4H, methoxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1394 (2)0.44188 (17)0.2473 (3)0.0301 (5)
H110.168 (3)0.495 (3)0.204 (3)0.036*
H120.061 (3)0.426 (3)0.206 (4)0.036*
C20.1158 (3)0.4667 (2)0.3775 (3)0.0343 (7)
H2A0.05420.51850.38220.041*
H2B0.19330.48950.41480.041*
C30.0680 (3)0.37961 (19)0.4468 (3)0.0320 (6)
H3A0.05460.39670.53200.038*
H3B0.01210.35910.41260.038*
N40.1586 (2)0.30039 (15)0.4389 (2)0.0261 (5)
C50.1815 (3)0.2750 (2)0.3106 (3)0.0311 (6)
H5A0.10370.25230.27380.037*
H5B0.24240.22270.30670.037*
C60.2304 (2)0.3607 (2)0.2392 (3)0.0324 (6)
H6A0.31120.38080.27210.039*
H6B0.24230.34260.15410.039*
C210.1350 (2)0.22071 (19)0.5194 (3)0.0269 (6)
C220.0345 (3)0.2170 (2)0.5993 (3)0.0347 (6)
H220.02650.26530.59590.042*
C230.0216 (3)0.1433 (2)0.6846 (3)0.0396 (7)
H230.04680.14300.73790.048*
C240.1103 (3)0.0700 (2)0.6906 (3)0.0398 (7)
C250.2088 (3)0.0707 (2)0.6074 (4)0.0388 (7)
H250.26710.02050.60830.047*
C260.2220 (3)0.14432 (19)0.5235 (3)0.0324 (6)
H260.28920.14340.46890.039*
O240.1108 (3)0.00368 (18)0.7747 (3)0.0587 (8)
C270.0095 (6)0.0086 (4)0.8579 (5)0.0733 (13)
H27A0.02340.06080.91450.110*
H27B0.06750.01970.81380.110*
H27C0.00350.05130.90220.110*
C310.3163 (2)0.61757 (18)0.1132 (3)0.0266 (5)
O310.20314 (18)0.60081 (16)0.1045 (3)0.0444 (6)
O320.39463 (19)0.57402 (18)0.1749 (3)0.0464 (6)
C320.3653 (3)0.7076 (2)0.0383 (3)0.0304 (6)
Cl10.52532 (7)0.69160 (6)0.00662 (9)0.0426 (2)
Cl20.35730 (10)0.80958 (5)0.13523 (10)0.0505 (3)
Cl30.27618 (8)0.72790 (7)0.09480 (9)0.0540 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0286 (11)0.0228 (11)0.0389 (15)0.0020 (8)0.0003 (11)0.0038 (11)
C20.0433 (14)0.0199 (13)0.0398 (18)0.0022 (11)0.0004 (14)0.0032 (12)
C30.0354 (13)0.0242 (13)0.0364 (16)0.0059 (11)0.0060 (12)0.0015 (12)
N40.0304 (11)0.0178 (10)0.0300 (13)0.0008 (8)0.0049 (9)0.0026 (9)
C50.0370 (14)0.0234 (13)0.0331 (15)0.0034 (11)0.0027 (13)0.0025 (12)
C60.0308 (14)0.0307 (14)0.0356 (16)0.0041 (10)0.0064 (13)0.0002 (13)
C210.0295 (11)0.0196 (11)0.0316 (16)0.0051 (9)0.0001 (11)0.0022 (11)
C220.0335 (13)0.0295 (13)0.0411 (18)0.0016 (11)0.0036 (13)0.0032 (13)
C230.0455 (15)0.0342 (15)0.0392 (19)0.0102 (13)0.0117 (14)0.0011 (14)
C240.0628 (19)0.0206 (12)0.0361 (18)0.0128 (13)0.0005 (15)0.0005 (13)
C250.0487 (15)0.0198 (12)0.048 (2)0.0005 (11)0.0002 (16)0.0004 (13)
C260.0336 (13)0.0229 (13)0.0408 (18)0.0009 (10)0.0034 (12)0.0015 (13)
O240.0943 (19)0.0332 (12)0.0485 (17)0.0085 (13)0.0079 (15)0.0129 (13)
C270.095 (3)0.064 (3)0.061 (3)0.028 (2)0.008 (3)0.023 (2)
C310.0303 (12)0.0190 (11)0.0305 (15)0.0017 (9)0.0033 (12)0.0005 (11)
O310.0301 (9)0.0391 (11)0.0640 (17)0.0070 (8)0.0039 (11)0.0214 (12)
O320.0328 (11)0.0421 (12)0.0643 (18)0.0046 (9)0.0072 (11)0.0244 (12)
C320.0320 (12)0.0260 (13)0.0332 (15)0.0049 (10)0.0009 (12)0.0029 (12)
Cl10.0343 (3)0.0457 (4)0.0478 (5)0.0125 (3)0.0085 (3)0.0007 (4)
Cl20.0714 (6)0.0236 (3)0.0565 (6)0.0017 (3)0.0089 (5)0.0065 (4)
Cl30.0514 (5)0.0652 (6)0.0455 (5)0.0134 (4)0.0124 (4)0.0233 (5)
Geometric parameters (Å, º) top
N1—C61.482 (3)C22—C231.386 (5)
N1—C21.484 (4)C22—H220.9300
N1—H110.92 (4)C23—C241.383 (5)
N1—H120.97 (3)C23—H230.9300
C2—C31.509 (4)C24—O241.370 (4)
C2—H2A0.9700C24—C251.385 (5)
C2—H2B0.9700C25—C261.375 (4)
C3—N41.459 (3)C25—H250.9300
C3—H3A0.9700C26—H260.9300
C3—H3B0.9700O24—C271.410 (6)
N4—C211.430 (4)C27—H27A0.9600
N4—C51.464 (4)C27—H27B0.9600
C5—C61.509 (4)C27—H27C0.9600
C5—H5A0.9700C31—O311.227 (3)
C5—H5B0.9700C31—O321.227 (4)
C6—H6A0.9700C31—C321.576 (4)
C6—H6B0.9700C32—Cl31.756 (3)
C21—C221.379 (4)C32—Cl21.763 (3)
C21—C261.402 (4)C32—Cl11.781 (3)
C6—N1—C2110.0 (2)C22—C21—N4123.5 (3)
C6—N1—H11111 (2)C26—C21—N4118.9 (2)
C2—N1—H11111 (2)C21—C22—C23121.9 (3)
C6—N1—H12111 (2)C21—C22—H22119.0
C2—N1—H12111 (2)C23—C22—H22119.0
H11—N1—H12103 (3)C24—C23—C22120.1 (3)
N1—C2—C3110.6 (2)C24—C23—H23119.9
N1—C2—H2A109.5C22—C23—H23119.9
C3—C2—H2A109.5O24—C24—C23125.3 (3)
N1—C2—H2B109.5O24—C24—C25116.2 (3)
C3—C2—H2B109.5C23—C24—C25118.5 (3)
H2A—C2—H2B108.1C26—C25—C24121.3 (3)
N4—C3—C2110.3 (2)C26—C25—H25119.4
N4—C3—H3A109.6C24—C25—H25119.4
C2—C3—H3A109.6C25—C26—C21120.7 (3)
N4—C3—H3B109.6C25—C26—H26119.7
C2—C3—H3B109.6C21—C26—H26119.7
H3A—C3—H3B108.1C24—O24—C27117.7 (3)
C21—N4—C3115.2 (2)O24—C27—H27A109.5
C21—N4—C5115.6 (2)O24—C27—H27B109.5
C3—N4—C5110.2 (2)H27A—C27—H27B109.5
N4—C5—C6111.3 (2)O24—C27—H27C109.5
N4—C5—H5A109.4H27A—C27—H27C109.5
C6—C5—H5A109.4H27B—C27—H27C109.5
N4—C5—H5B109.4O31—C31—O32127.8 (3)
C6—C5—H5B109.4O31—C31—C32115.6 (2)
H5A—C5—H5B108.0O32—C31—C32116.6 (2)
N1—C6—C5109.8 (2)C31—C32—Cl3112.15 (19)
N1—C6—H6A109.7C31—C32—Cl2107.6 (2)
C5—C6—H6A109.7Cl3—C32—Cl2110.05 (16)
N1—C6—H6B109.7C31—C32—Cl1111.06 (19)
C5—C6—H6B109.7Cl3—C32—Cl1107.82 (18)
H6A—C6—H6B108.2Cl2—C32—Cl1108.08 (15)
C22—C21—C26117.4 (3)
C6—N1—C2—C357.4 (3)C22—C23—C24—O24176.6 (3)
N1—C2—C3—N458.2 (3)C22—C23—C24—C252.1 (5)
C2—C3—N4—C21168.8 (3)O24—C24—C25—C26176.2 (3)
C2—C3—N4—C558.2 (3)C23—C24—C25—C262.6 (5)
C21—N4—C5—C6168.7 (2)C24—C25—C26—C210.4 (5)
C3—N4—C5—C658.5 (3)C22—C21—C26—C252.3 (4)
C2—N1—C6—C556.6 (3)N4—C21—C26—C25174.1 (3)
N4—C5—C6—N157.6 (3)C23—C24—O24—C273.5 (5)
C3—N4—C21—C220.2 (4)C25—C24—O24—C27177.7 (4)
C5—N4—C21—C22130.3 (3)O31—C31—C32—Cl329.9 (3)
C3—N4—C21—C26175.9 (3)O32—C31—C32—Cl3151.5 (3)
C5—N4—C21—C2653.6 (3)O31—C31—C32—Cl291.3 (3)
C26—C21—C22—C232.8 (5)O32—C31—C32—Cl287.3 (3)
N4—C21—C22—C23173.3 (3)O31—C31—C32—Cl1150.6 (2)
C21—C22—C23—C240.7 (5)O32—C31—C32—Cl130.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.92 (4)1.86 (4)2.775 (4)172 (3)
N1—H12···O32i0.97 (3)1.80 (3)2.724 (3)158 (3)
Symmetry code: (i) x1/2, y+1, z.
Bis(4-(4-methoxyphenyl)piperazin-1-ium) chloranilate(2-) dihydrate (XII) top
Crystal data top
C11H17N2O+·0.5C6Cl2O42·H2OF(000) = 664
Mr = 314.76Dx = 1.417 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1597 (5) ÅCell parameters from 3253 reflections
b = 15.1434 (8) Åθ = 2.6–28.0°
c = 10.8742 (6) ŵ = 0.28 mm1
β = 102.067 (5)°T = 296 K
V = 1475.02 (14) Å3Block, colourless
Z = 40.44 × 0.24 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
9650 independent reflections
Radiation source: Enhance (Mo) X-ray Source7444 reflections with I > 2σ(I)
Graphite monochromatorθmax = 27.6°, θmin = 2.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1919
Tmin = 0.892, Tmax = 0.947l = 1314
9650 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.263P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
9650 reflectionsΔρmax = 0.23 e Å3
204 parametersΔρmin = 0.32 e Å3
Special details top

Experimental. Compound (XII). IR (KBr , cm-1) 3311 (OH), 3073 (NH2), 2825 (OCH3), 1561 (COO), 793 and 741 (CCl) . NMR (CDCl3) δ(1H) ) 3.11 (m, 4H, piperazine), 3.40 (m, 4H, piperazine), 3.77 (s, 3H, OCH3), 6.88 (m, 4H, methoxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4381 (2)0.32824 (14)0.35576 (19)0.0420 (5)
H110.437 (2)0.3477 (15)0.278 (3)0.050*
H120.420 (3)0.3725 (16)0.405 (2)0.050*
C20.5890 (2)0.29024 (17)0.4015 (2)0.0472 (6)
H2A0.66290.33700.41250.057*
H2B0.61150.24900.33970.057*
C30.5965 (2)0.24346 (16)0.5241 (2)0.0427 (6)
H3A0.69390.21640.55090.051*
H3B0.58270.28560.58780.051*
N40.48097 (19)0.17569 (13)0.51047 (18)0.0398 (5)
C50.3334 (2)0.21513 (17)0.4745 (2)0.0455 (6)
H5A0.31860.25720.53810.055*
H5B0.25760.16960.46810.055*
C60.3188 (2)0.26139 (16)0.3494 (2)0.0454 (6)
H6A0.32560.21840.28470.054*
H6B0.22210.28990.32710.054*
C210.5025 (2)0.10929 (15)0.6041 (2)0.0357 (5)
C220.6331 (2)0.05976 (16)0.6228 (2)0.0432 (6)
H220.70330.07190.57440.052*
C230.6610 (2)0.00626 (16)0.7103 (2)0.0457 (6)
H230.75030.03750.72220.055*
C240.5565 (2)0.02672 (15)0.7812 (2)0.0418 (6)
C250.4243 (2)0.01896 (16)0.7614 (2)0.0452 (6)
H250.35160.00400.80590.054*
C260.3991 (2)0.08760 (16)0.6747 (2)0.0419 (6)
H260.31060.11950.66410.050*
O240.59700 (19)0.09318 (12)0.86827 (19)0.0615 (5)
C270.4842 (3)0.12833 (17)0.9257 (3)0.0577 (7)
H27A0.52080.18060.97200.086*
H27B0.39800.14290.86210.086*
H27C0.45730.08530.98200.086*
C310.4846 (2)0.41334 (14)0.0515 (2)0.0301 (5)
O310.46952 (17)0.34242 (10)0.10569 (14)0.0429 (4)
C320.4674 (2)0.42353 (14)0.0785 (2)0.0313 (5)
Cl320.42518 (7)0.33070 (4)0.17371 (6)0.04725 (19)
O330.54043 (16)0.48217 (10)0.25106 (14)0.0419 (4)
C330.5224 (2)0.49523 (14)0.13592 (19)0.0297 (5)
O410.3458 (2)0.45297 (16)0.5134 (2)0.0698 (6)
H410.383 (4)0.464 (2)0.589 (4)0.105*
H420.295 (4)0.497 (2)0.492 (3)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0531 (12)0.0465 (13)0.0271 (11)0.0008 (11)0.0101 (9)0.0103 (10)
C20.0458 (13)0.0526 (15)0.0447 (15)0.0023 (12)0.0132 (11)0.0145 (13)
C30.0397 (12)0.0497 (14)0.0362 (14)0.0084 (12)0.0026 (10)0.0099 (12)
N40.0358 (10)0.0461 (11)0.0344 (11)0.0073 (9)0.0003 (8)0.0123 (9)
C50.0372 (12)0.0559 (16)0.0411 (14)0.0077 (12)0.0028 (10)0.0152 (13)
C60.0462 (13)0.0509 (15)0.0343 (14)0.0037 (12)0.0026 (10)0.0082 (12)
C210.0368 (12)0.0404 (13)0.0280 (12)0.0096 (11)0.0027 (9)0.0032 (10)
C220.0374 (13)0.0471 (15)0.0472 (15)0.0058 (11)0.0139 (11)0.0057 (12)
C230.0358 (12)0.0451 (14)0.0566 (17)0.0018 (11)0.0103 (11)0.0088 (13)
C240.0462 (13)0.0399 (14)0.0375 (14)0.0005 (12)0.0043 (10)0.0093 (11)
C250.0429 (13)0.0540 (16)0.0413 (15)0.0008 (12)0.0146 (10)0.0123 (12)
C260.0358 (12)0.0498 (15)0.0398 (14)0.0045 (11)0.0070 (10)0.0125 (12)
O240.0567 (11)0.0620 (12)0.0673 (14)0.0079 (9)0.0164 (9)0.0339 (11)
C270.0752 (18)0.0480 (16)0.0522 (18)0.0012 (15)0.0190 (14)0.0151 (14)
C310.0292 (10)0.0331 (12)0.0290 (12)0.0005 (9)0.0083 (8)0.0032 (10)
O310.0612 (10)0.0355 (9)0.0327 (9)0.0024 (8)0.0115 (7)0.0066 (7)
C320.0368 (11)0.0315 (11)0.0256 (11)0.0004 (10)0.0060 (8)0.0010 (9)
Cl320.0648 (4)0.0407 (3)0.0347 (3)0.0058 (3)0.0068 (3)0.0065 (3)
O330.0582 (9)0.0456 (10)0.0215 (8)0.0073 (8)0.0073 (7)0.0036 (7)
C330.0282 (10)0.0381 (12)0.0232 (11)0.0019 (9)0.0065 (8)0.0014 (9)
O410.0876 (16)0.0781 (15)0.0408 (12)0.0001 (12)0.0066 (10)0.0146 (12)
Geometric parameters (Å, º) top
N1—C61.481 (3)C23—C241.384 (3)
N1—C21.484 (3)C23—H230.9300
N1—H110.89 (3)C24—C251.372 (3)
N1—H120.89 (2)C24—O241.379 (3)
C2—C31.498 (3)C25—C261.390 (3)
C2—H2A0.9700C25—H250.9300
C2—H2B0.9700C26—H260.9300
C3—N41.459 (3)O24—C271.419 (3)
C3—H3A0.9700C27—H27A0.9600
C3—H3B0.9700C27—H27B0.9600
N4—C211.415 (3)C27—H27C0.9600
N4—C51.455 (3)C31—O311.246 (2)
C5—C61.511 (3)C31—C321.398 (3)
C5—H5A0.9700C31—C331.539 (3)
C5—H5B0.9700C32—C33i1.392 (3)
C6—H6A0.9700C32—Cl321.741 (2)
C6—H6B0.9700O33—C331.244 (2)
C21—C261.378 (3)C33—C32i1.392 (3)
C21—C221.390 (3)O41—H410.83 (4)
C22—C231.367 (3)O41—H420.82 (3)
C22—H220.9300
C6—N1—C2112.16 (18)C26—C21—N4124.1 (2)
C6—N1—H11108.7 (15)C22—C21—N4118.3 (2)
C2—N1—H11105.7 (14)C23—C22—C21121.7 (2)
C6—N1—H12108.2 (15)C23—C22—H22119.1
C2—N1—H12111.7 (16)C21—C22—H22119.1
H11—N1—H12110 (2)C22—C23—C24120.1 (2)
N1—C2—C3110.34 (18)C22—C23—H23120.0
N1—C2—H2A109.6C24—C23—H23120.0
C3—C2—H2A109.6C25—C24—O24125.3 (2)
N1—C2—H2B109.6C25—C24—C23119.4 (2)
C3—C2—H2B109.6O24—C24—C23115.3 (2)
H2A—C2—H2B108.1C24—C25—C26120.0 (2)
N4—C3—C2110.20 (19)C24—C25—H25120.0
N4—C3—H3A109.6C26—C25—H25120.0
C2—C3—H3A109.6C21—C26—C25121.3 (2)
N4—C3—H3B109.6C21—C26—H26119.4
C2—C3—H3B109.6C25—C26—H26119.4
H3A—C3—H3B108.1C24—O24—C27117.40 (19)
C21—N4—C5117.85 (18)O24—C27—H27A109.5
C21—N4—C3115.96 (17)O24—C27—H27B109.5
C5—N4—C3110.60 (18)H27A—C27—H27B109.5
N4—C5—C6109.54 (18)O24—C27—H27C109.5
N4—C5—H5A109.8H27A—C27—H27C109.5
C6—C5—H5A109.8H27B—C27—H27C109.5
N4—C5—H5B109.8O31—C31—C32125.0 (2)
C6—C5—H5B109.8O31—C31—C33116.47 (18)
H5A—C5—H5B108.2C32—C31—C33118.55 (18)
N1—C6—C5110.47 (18)C31—C32—C33i123.2 (2)
N1—C6—H6A109.6C31—C32—Cl32118.45 (17)
C5—C6—H6A109.6C33i—C32—Cl32118.31 (16)
N1—C6—H6B109.6O33—C33—C32i125.8 (2)
C5—C6—H6B109.6O33—C33—C31115.99 (19)
H6A—C6—H6B108.1C32i—C33—C31118.20 (17)
C26—C21—C22117.5 (2)H41—O41—H42102 (3)
C6—N1—C2—C353.5 (3)C22—C23—C24—O24178.8 (2)
N1—C2—C3—N456.5 (3)O24—C24—C25—C26176.9 (2)
C2—C3—N4—C21161.1 (2)C23—C24—C25—C262.8 (4)
C2—C3—N4—C561.3 (3)C22—C21—C26—C250.1 (3)
C21—N4—C5—C6162.3 (2)N4—C21—C26—C25177.1 (2)
C3—N4—C5—C661.0 (3)C24—C25—C26—C212.3 (4)
C2—N1—C6—C553.7 (3)C25—C24—O24—C2712.2 (4)
N4—C5—C6—N156.7 (3)C23—C24—O24—C27168.1 (2)
C5—N4—C21—C268.7 (3)O31—C31—C32—C33i176.5 (2)
C3—N4—C21—C26125.7 (2)C33—C31—C32—C33i2.4 (3)
C5—N4—C21—C22168.2 (2)O31—C31—C32—Cl321.3 (3)
C3—N4—C21—C2257.4 (3)C33—C31—C32—Cl32179.81 (14)
C26—C21—C22—C232.0 (3)O31—C31—C33—O332.8 (3)
N4—C21—C22—C23179.1 (2)C32—C31—C33—O33178.16 (18)
C21—C22—C23—C241.5 (4)O31—C31—C33—C32i176.76 (18)
C22—C23—C24—C250.9 (4)C32—C31—C33—C32i2.2 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.89 (3)1.96 (3)2.802 (3)157 (2)
N1—H11···O330.89 (3)2.29 (2)2.838 (3)119 (2)
N1—H12···O410.90 (2)1.92 (2)2.798 (3)168 (3)
O41—H41···O33ii0.84 (4)1.92 (4)2.738 (3)166 (3)
O41—H42···O24iii0.82 (3)2.49 (3)3.269 (3)160 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond parameters and short intermolecular contacts (Å, °) top
Cg1 andCg2 are the centroids of the C31–C36 and C21–C26 rings, respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H11···O310.90 (2)1.88 (2)2.777 (3)174.1 (19)
N1—H12···O410.97 (2)1.85 (2)2.808 (3)169.7 (18)
O41—H41···O32i0.88 (3)1.75 (3)2.631 (3)177 (3)
O41—H42···O31ii0.91 (3)1.87 (3)2.763 (3)169 (3)
C2—H2B···O31iii0.972.543.485 (3)165
C22—H22···Cg1ii0.932.853.603 (3)139
C26—H26···Cg1iv0.932.903.62 (2)135
C56—H56···Cg1iv0.932.643.41 (5)141
(II)N1—H11···O311.09 (3)1.67 (3)2.758 (4)174.1 (19)
N1—H12···O410.86 (3)1.96 (3)2.818 (4)170 (3)
O41—H41···O32i0.86 (4)1.75 (4)2.627 (4)174 (4)
O41—H42···O31ii0.91 (4)1.88 (4)2.768 (3)163 (3)
C2—H2B···O31iii0.972.583.529 (4)166
C6—H6B···O41i0.972.573.386 (4)142
C26—H26···Cg1iv0.932.813.56 (2)138
C56—H56···Cg1iv0.932.963.55 (9)123
(III)N1—H11···O311.09 (3)1.71 (3)2.790 (4)176 (3)
N1—H12···O410.83 (3)1.98 (3)2.811 (4)174 (3)
O41—H41···O32i0.91 (4)1.73 (4)2.624 (4)172 (4)
O41—H42···O31ii0.94 (4)1.84 (4)2.775 (4)170 (4)
C2—H2B···O31iii0.972.523.467 (4)165
C6—H6B···O41i0.972.603.408 (4)141
C22—H22···Cg1iv0.932.893.631 (13)137
C26—H26···Cg1iv0.932.813.58 (2)141
(IV)N1—H11···O310.78 (4)2.03 (4)2.805 (5)174 (5)
N1—H12···O410.95 (5)1.86 (5)2.802 (5)172 (4)
O41—H41···O32i0.79 (6)1.84 (6)2.623 (6)170 (6)
O41—H42···O31ii0.79 (7)2.00 (7)2.772 (5)169 (6)
C2—H2B···O31iii0.972.523.471 (5)166
C22—H22···Cg1ii0.932.523.471 (5)166
C26—H26···Cg1iv0.932.843.58 (2)137
(V)N1—H11···O310.96 (3)1.85 (3)2.759 (3)156 (3)
N1—H11···O320.96 (3)2.47 (3)3.283 (3)142 (2)
N1—H12···O32v0.95 (3)1.87 (3)2.806 (3)166 (2)
O33—H33A···O310.97 (3)1.60 (3)2.516 (3)156 (3)
C6—H6A···O33vi0.972.583.444 (3)148
C2—H2A···Cg1vii0.972.883.711 (3)144
C26—H26···Cg1viii0.932.873.642 (3)141
(VI)N1—H11···O310.976 (19)1.714 (19)2.677 (2)168.2 (18)
N1—H12···O32ix0.94 (2)1.82 (2)2.749 (2)168.3 (17)
C2—H2B···N31iv0.972.563.518 (2)169
C36—H36···O24x0.932.513.432 (2)172
C3—H3A···Cg1xi0.972.973.775 (2)156
(VII)O32—H32···O331.04 (4)1.47 (4)2.472 (3)158 (3)
N1—H11···O330.93 (3)1.98 (3)2.020 (3)150 (3)
N1—H11···O340.93 (3)2.27 (3)2.910 (3)126 (2)
N1—H12···O31i0.93 (3)2.04 (3)2.931 (3)160 (3)
N1—H12···O32i0.93 (3)2.58 (3)3.250 (3)129 (2)
C34—H34···O36xii0.932.533.449 (3)171
C5—H5B···Cg2xiii0.972.843.639 (3)140
(VIII)N1—H11···O310.86 (3)1.90 (3)2.750 (15)167 (4)
N1—H12···O32xiv0.98 (3)1.77 (4)2.741 (19)171 (3)
O34—H34···O31xv0.821.792.60 (2)168
N1—H11···O410.86 (3)2.18 (4)3.03 (3)165 (4)
N1—H12···O42xiv0.98 (3)1.82 (5)2.77 (4)163 (3)
O44—H44···O41xv0.821.562.35 (2)161
C3—H3A···Cg2xvi0.972.763.652 (3)154
(IX)N1—H11···O310.81 (4)2.18 (3)2.940 (4)155 (3)
N1—H12···O32xiv0.96 (4)1.77 (4)2.714 (4)169 (3)
O34—H34···O31xv0.821.712.522 (5)170
O43—H34···O31xv0.821.622.44 (2)175
C3—H3A···Cg2xvi0.972.763.650 (3)153
(X)O33—H33A···O321.167 (18)1.247 (18)2.4121 (16)175 (2)
N1—H11···O310.915 (17)2.126 (16)2.9309 (19)146.2 (15)
N1—H11···O320.915 (17)2.296 (17)3.0798 (18)143.5 (14)
N1—H12···O34xvii0.919 (18)1.881 (18)2.7563 (17)158.5 (17)
C2—H2A···O34ii0.972.563.363 (2)140
(XI)N1—H11···O310.92 (4)1.86 (4)2.775 (4)172 (3)
N1—H11···O32xviii0.97 (3)1.80 (3)2.724 (3)158 (3)
(XII)N1—H11···O310.89 (3)1.96 (3)2.802 (3)157 (2)
N1—H11···O330.89 (3)2.29 (2)2.838 (3)119 (2)
N1—H12···O410.90 (2)1.92 (2)2.798 (3)168 (3)
O41—H41···O33i0.84 (4)1.92 (4)2.738 (3)166 (3)
O41—H42···O24xix0.82 (3)2.49 (3)3.269 (3)160 (3)
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) 2 - x, 2 - y, 1 - z; (iv) 1 - x, 2 - y, 1 - z; (v) 1 - x, -1/2 + y, 1/2 - z; (vi) 2 - x, -1/2 + y, 1/2 - z; (vii) 2 - x, 1/2 + y, 1/2 - z; (viii) 1 - x, 1/2 + y, 1/2 - z; (ix) 3/2 - x, -1/2 + y, z; (x) x, 3/2 - y, 1/2 + z; (xi) -1/2 + x, 3/2 - y, 1 - z; (xii) 3 - x, 2 - y, 1 - z; (xiii) 1 - x, -1/2 + y, 3/2 - z; (xiv) -1/2 + x, 3/2 - y, z; (xv) -1/2 + x, 3/2 - y, 1 + z; (xvi) 1 - x, 1 - y, 1/2 + z; (xvii) -1 + x, y, z; (xviii) -1/2 + x, 1 - y, z; (xix) -1/2 + x, 1/2 - y, -1/2 + z.
 

Acknowledgements

HKK thanks University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years, and HKK thanks the UGC–BSR for a stipend.

References

First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245–o246.  CSD CrossRef IUCr Journals Google Scholar
First citationArbo, M. D., Bastos, M. L. & Carmo, H. F. (2012). Drug Alcohol Depend. 122, 174–185.  CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 5–11.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEmsley, J. (1980). Chem. Soc. Rev. 9, 91–124.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHerschlag, D. & Pinney, M. M. (2018). Biochemistry, 57, 3338–3352.  CrossRef CAS PubMed Google Scholar
First citationIshida, H. (2004a). Acta Cryst. E60, o974–o976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004b). Acta Cryst. E60, o1900–o1901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004c). Acta Cryst. E60, o2005–o2006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004d). Acta Cryst. E60, o2506–o2508.  CSD CrossRef IUCr Journals Google Scholar
First citationKaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406–413.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Kaur, M., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 805–811.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132–137.  CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320–1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513–1516.  CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488–1492.  CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292–298.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSovago, I., Thomas, L. H., Adam, M. S., Capelli, S. C., Wilson, C. C. & Farrugia, L. J. (2016). CrystEngComm, 18, 5697–5709.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333–342.  CrossRef CAS Google Scholar
First citationStaack, R. F. & Maurer, H. H. (2005). Curr. Drug Metab. 6, 259–274.  CrossRef PubMed CAS Google Scholar
First citationStaack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). Xenobiotica, 34, 179–192.  CrossRef PubMed CAS Google Scholar
First citationVerdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWohlfarth, A., Weinmann, W. & Dresen, S. (2010). Anal. Bioanal. Chem. 396, 2403–2414.  CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationZia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds