research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinolin-2-yl]-1,2-di­phenyl­ethanol

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Recherche en Energie et Matière pour le Développement des Sciences Nucléaires, Centre National des Sciences et Technologies Nucléaires, Pôle Technologique, 2020 Sidi-Thabet, Tunisia, and bInstitut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Paris-Saclay University, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: pascal.retailleau@cnrs.fr

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 24 July 2019; accepted 29 August 2019; online 3 September 2019)

The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral di­hydro­iso­quinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title mol­ecule being found to be the (S,R) diastereoisomer. In the crystal, mol­ecules are packed in a herringbone manner parallel to (103) and (10[\overline{3}]) via weak C—H⋯O and C—H⋯π(ring) inter­actions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H inter­actions (ca 75%). The crystal studied was refined as a two-component inversion twin.

1. Chemical context

β-amino alcohols exhibit a broad spectrum of biological activities and are used as anti­bacterial and tuberculostatic agents (Yendapally & Lee, 2008[Yendapally, R. & Lee, R. E. (2008). Bioorg. Med. Chem. Lett. 18, 1607-1611.]). In particular, chiral β-amino alcohols are very important chiral mol­ecules that are used as building blocks and structural motifs in pharmaceutically active mol­ecules and natural products and which serve as the main sources of chirality in asymmetric synthesis (Lee et al., 2003[Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172-187.]; Malkov et al., 2007[Malkov, A. V., Kabeshov, M. A., Bella, M., Kysilka, O., Malyshev, D. A., Pluháčková, K. & Kočovský, P. (2007). Org. Lett. 9, 5473-5476.]; Guo et al., 2017[Guo, J., Zhu, M., Wu, T., Hao, C., Wang, K., Yan, Z., Huang, W., Wang, J., Zhao, D. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 3500-3511.]).

[Scheme 1]

Among this family of chiral amino-alcohols is the title compound, (I)[link], which we prepared through the alkyl­ation of tetra­hydro­iso­quinoline by the opening racemic trans-stilbene oxide reaction. Two diastereoisomers were obtained in a 1:1 ratio as determined by 1H NMR analysis on the crude mixture. These diastereoisomers were separated by column chromatography. The title mol­ecule was found to be the (S,R) diastereoisomer.

2. Structural commentary

The structure of (I)[link] was confirmed using single crystal X-ray diffraction. The asymmetric unit of the ortho­rhom­bic unit cell comprises a single mol­ecule, shown in Fig. 1[link]. The tetra­hydro­iso­quinoline unit is substituted by a methyl group in position 3, a phenyl substituent in position 4 and a β-alcohol substituent at the N atom. The heterocyclic ring exhibits a half-chair conformation, with atom C3 deviating by 0.706 (3) Å from the plane formed by atoms C1/N2/C4/C9/C10. The substituents in positions 3 and 4 of the heterocyclic ring are in axial positions. The mol­ecular structure of (I)[link] is stabilized by an intra­molecular hydrogen bond between the hy­droxy O19—H19 group and atom N2, and to a lesser extent, between the aromatic C21—H21 and the phenyl group in position 4 (Table 1[link]). By reference to two unchanging chiral C18 and C19 atoms, the mol­ecule was found to be the (18R,19S) diastereoisomer resulting from the reaction of tetra­hydro­iso­quinoline and the (S,S) trans-stilbene oxide enanti­omer.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4 and Cg5 are the centroids of the C5–C10, C12-C17, C20–C25, and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O19—HOH⋯N2 0.86 (3) 2.18 (3) 2.737 (2) 123 (2)
C27—H27⋯O19 0.93 2.48 2.798 (3) 100
C21—H21⋯Cg3 0.93 3.14 3.930 (4) 144
C6—H6⋯O19i 0.93 2.57 3.492 (3) 170
C14—H14⋯Cg5ii 0.93 2.95 3.770 (4) 147
C16—H16⋯Cg4iii 0.93 2.92 3.743 (3) 148
C31—H31⋯Cg2iv 0.93 2.96 3.803 (3) 152
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radius. The dashed cyan line indicates the intra­molecular hydrogen bond between the hy­droxy group and the secondary amine.

This structure was confirmed through the means of usual 1D and 2D NMR experiments. NMR data show that the trans diequatorial arrangement of H3 and H4 is suggested by the coupling constant between H3 and H4 in 1H NMR (J3,4 ∼0 Hz), so the substituents C3-methyl and C4-phenyl are in an axial disposition. The absolute configurations of carbon atoms C18 and C19 were deduced from the NOESY maps to be R and S, respectively (Fig. 2[link]).

[Figure 2]
Figure 2
Selected NOESY correlations observed for compound (I)[link].

3. Supra­molecular features

In the crystal, mol­ecules of (I)[link] pack with no classical hydrogen bonds: the potential donor hydroxyl group is involved in an intra­molecular inter­action with the N atom. However, the oxygen atom acts as an acceptor in the short contact C6—H6⋯O19 (−x, [{1\over 2}] + y, [{1\over 2}] − z) with an O19⋯H distance of 2.57 Å, which is of the same order of magnitude of the H⋯O van der Waals distance (2.60 Å), whereas C—H⋯O contacts are frequently reported with H⋯O separations shorter than 2.4 Å (Taylor & Kennard, 1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]). The N atom does not play a role in the packing as it is buried inside the structure. Nevertheless, these directed C—H⋯O inter­actions make an important contribution to the packing: zigzagging along the [010] direction, they pair mol­ecules in ribbons, placing the iso­quinoline moieties parallel to the (103) plane on both sides but without overlapping. The ribbon cohesion is reinforced by C—H⋯π inter­actions involving the phenyl group in position 4 and those attached to the β-alcohol part and which flank the ribbon, as shown in Fig. 3[link]. They stack in the [100] direction as columns arranged in a herringbone manner but avoiding π-π- stacking (Fig. 4[link]).

[Figure 3]
Figure 3
The ribbon structure of (I)[link] formed along the b-axis direction via C—H⋯O inter­actions (cyan dashed lines) and C—H⋯π inter­actions (blue dashed lines). The red spheres indicate the centroids of the phenyl rings.
[Figure 4]
Figure 4
Crystal packing of compound (I)[link] viewed down the b-axis direction. Ribbons stack in a herringbone arrangement with the phenyl groups at the column inter­face.

4. Database survey

A search of the Cambridge Structural Database, CSD (Version 5.40; ConQuest 1.21; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 495 structures of tetra­hydro­iso­quinoline derivatives. Limiting the search to compounds with tri-substitutions on positions C3, C4 and the secondary amine N reduces the number of structures to seven: ADAGOC (Gzella et al., 2006[Gzella, A., Chrzanowska, M., Dreas, A., Kaczmarek, M. S. & Woźniak, Z. (2006). Acta Cryst. E62, o1774-o1776.]), JIPKEZ (White et al., 2007[White, J., Hulme, A. & Parsons, S. (2007). Private communication (refcode JIPKEZ). CCDC, Cambridge, England.]), TIBPIE (Ben Ali et al., 2007[Ben Ali, K., Chiaroni, A. & Bohe, L. (2007). Acta Cryst. E63, o1719-o1720.]), VAHJOG (Davies et al., 2016[Davies, S. G., Fletcher, A. M., Frost, A. B., Kennedy, M. S., Roberts, P. M. & Thomson, J. E. (2016). Tetrahedron, 72, 2139-2163.]), XOSDUE (Gzella et al., 2002[Gzella, A., Brózda, D., Koroniak, Ł. & Rozwadowska, M. D. (2002). Acta Cryst. C58, o503-o506.]), YEKKIK (Shi et al., 2012[Shi, L., Ye, Z.-S., Cao, L.-L., Guo, R.-N., Hu, Y. & Zhou, Y.-G. (2012). Angew. Chem. Int. Ed. 51, 8286-8289.]) and ZIFSUE (Guo et al., 2013[Guo, R.-N., Cai, X.-F., Shi, L., Ye, Z.-S., Chen, M.-W. & Zhou, Y.-G. (2013). Chem. Commun. 49, 8537-8539.]). Except for the racemic VAHJOG, they all crystallize in the same P212121 space group. The structures of ZIFSUE, TIBPIE, VAHJOG, JIPKEZ and (I)[link] superimpose well over the heterobicycle with the same conformation, unlike ADAGOC and XOSDUE which have a different half-chair configuration. The amino alcohol TIBPIE is obviously the closest related structure, differing in the N substitution of a cyclo­hexane carrying the hydroxyl group which is involved in the intra­molecular hydrogen bond.

5. Hirshfeld surface analysis

The inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis and the associated two-dimensional fingerprint plots using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The electrostatic potentials were calculated using TONTO, integrated within CrystalExplorer. The analysis of inter­molecular inter­actions through the mapping of dnorm presented in Fig. 5[link] compares the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, with their respective van der Waals radii. The blue, white and red colour conventions recognize the inter­atomic contacts as longer, at van der Waals separations and short inter­atomic contacts. The C—H⋯O contacts are identified in the dnorm-mapped surface as two red spots showing the inter­action between the neighbouring mol­ecules (Fig. 5[link]a). The overall two-dimensional fingerprint plot derived form the Hirshfeld surface is a useful method to summarize the frequency of each combination of de and di across the surface of the studied mol­ecule, encompassing all inter­molecular contacts (Fig. 5[link]b). The delineated fingerprint plots (Fig. 5[link]b and 6a,c) focus on specific inter­actions, providing information about the major and minor percentage contribution of inter­atomic contacts in the compound. The H⋯H inter­actions account for the three quarters of the total (73.7%) with an evident sting at about di = de = 1.1 Å (Fig. 5[link]b). The C⋯H/H⋯C plot, which refers to the C—H⋯π inter­actions previously described (22.7%,) shows two broad symmetrical wings at about di + de = 2.8 Å (Fig. 6[link]a). These inter­actions are observed as red regions on the shape-index surface (Fig. 6[link]b). The absence of C⋯C contacts, highlighted by the Hirshfeld surface with high curvedness delineated by dark-blue edges, confirms that no ππ stacking inter­actions take place in the crystal packing (Fig. 6[link]c,d). The third marginal contribution is O⋯H/H⋯O (3.6%) with a pair of sharp spikes at about di + de = 2.4 Å, symmetrically disposed with respect to the diagonal, indicating the presence of inter­molecular C—H⋯O inter­actions, which play a role in ordering the mol­ecules inside the crystal.

[Figure 5]
Figure 5
(a) View of the three-dimensional Hirshfeld surface mapped over dnorm, over the range −0.1345 and +1.8231 arbitrary units, (b) the full two-dimensional fingerprint plot for (I)[link] and the two-dimensional fingerprint plots for the O⋯H/H⋯O inter­actions and the H⋯H inter­actions
[Figure 6]
Figure 6
(a) The Hirshfeld surface mapped over the shape-index property, (b) the two-dimensional fingerprint plot for the H⋯C/C⋯H inter­actions, (c) the Hirshfeld surface mapped over curvedness and (d) the two-dimensional fingerprint plot for the C⋯C inter­actions in the title compound.

6. Synthesis and crystallization

The title β-amino alcohol was obtained by mixing racemic trans-stilbene oxide (5.1g, 26mmol) with (3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinoleine (3g, 13mmol), which was prepared according to the method of Bohé et al. (1999[Bohé, L., Lusinchi, M. & Lusinchi, X. (1999). Tetrahedron, 55, 141-154.]).

The mixture was heated at 353.15 K for 48 h in CF3CH2OH (65 ml), the reaction being monitored by TLC. Two diastereoisomers were obtained in a 1:1 ratio. These diastereoisomers were separated by column chromatography. Only the title compound (white solid) was successfully recrystallized. Crystals were grown by placing this dastereoisomer in a minimum amount of hot heptane. [α] D25 = −23.6 (c 1, CHCl3), m.p. 425 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The crystal studied was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C30H29NO
Mr 419.54
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 7.3009 (8), 11.0552 (11), 30.006 (3)
V3) 2421.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.59 × 0.45 × 0.35
 
Data collection
Diffractometer Nonius KappaCCD area detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.844, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21751, 4427, 3948
Rint 0.027
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 1.07
No. of reflections 4425
No. of parameters 295
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.11, −0.11
Absolute structure Refined as an inversion twin.
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); COLLECT (Hooft, 1998); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

(1S,2R)-2-[(3R,4S)-3-Methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-2-yl]-1,2-diphenylethanol top
Crystal data top
C30H29NODx = 1.151 Mg m3
Mr = 419.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6302 reflections
a = 7.3009 (8) Åθ = 2.0–24.2°
b = 11.0552 (11) ŵ = 0.07 mm1
c = 30.006 (3) ÅT = 293 K
V = 2421.8 (4) Å3Prism, colorless
Z = 40.59 × 0.45 × 0.35 mm
F(000) = 896
Data collection top
Nonius KappaCCD area detector
diffractometer
4427 independent reflections
Radiation source: 1.5kW sealed tube3948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 88
Tmin = 0.844, Tmax = 1.000k = 1313
21751 measured reflectionsl = 3636
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3321P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.11 e Å3
4425 reflectionsΔρmin = 0.11 e Å3
295 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0139 (11)
Primary atom site location: dualAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3286 (4)0.0015 (2)0.21766 (7)0.0459 (6)
H1A0.4284470.0383500.2341130.053*
H1B0.2434830.0651330.2095240.053*
N20.4019 (2)0.05352 (14)0.17689 (6)0.0355 (4)
C30.5027 (3)0.16552 (19)0.18741 (7)0.0400 (5)
H30.5568150.1950010.1595630.046*
C40.3616 (3)0.26023 (18)0.20271 (7)0.0379 (5)
H40.4304880.3294480.2143490.044*
C50.1547 (3)0.2891 (2)0.26931 (7)0.0471 (6)
H50.1627080.3722080.2649930.054*
C60.0507 (3)0.2447 (3)0.30407 (8)0.0553 (7)
H60.0091960.2978360.3231590.064*
C70.0357 (4)0.1222 (3)0.31050 (8)0.0576 (7)
H70.0354740.0920570.3336770.066*
C80.1265 (3)0.0443 (2)0.28246 (8)0.0518 (6)
H80.1169210.0386040.2870840.060*
C90.2328 (3)0.0871 (2)0.24723 (7)0.0405 (5)
C100.2479 (3)0.2114 (2)0.24055 (7)0.0383 (5)
C110.6589 (3)0.1502 (2)0.22101 (9)0.0567 (7)
H11A0.7261980.2245750.2232620.068*
H11B0.7391910.0868770.2111870.068*
H11C0.6090650.1297000.2496340.068*
C120.2492 (3)0.30571 (18)0.16372 (7)0.0400 (5)
C130.3195 (4)0.3956 (2)0.13673 (8)0.0570 (7)
H130.4319910.4301290.1437370.066*
C140.2254 (5)0.4350 (3)0.09946 (9)0.0707 (9)
H140.2753930.4951640.0815430.081*
C150.0593 (5)0.3858 (3)0.08888 (9)0.0699 (9)
H150.0039270.4124410.0638320.080*
C160.0138 (4)0.2967 (3)0.11542 (9)0.0623 (7)
H160.1268690.2629950.1083990.072*
C170.0809 (3)0.2573 (2)0.15257 (8)0.0488 (6)
H170.0303620.1971190.1703850.056*
C180.5032 (3)0.03477 (18)0.14947 (7)0.0367 (5)
H180.6007140.0700120.1677760.042*
C190.3684 (3)0.13740 (19)0.13610 (8)0.0416 (5)
H190.3380160.1828610.1631430.048*
O190.2046 (2)0.08765 (16)0.11933 (6)0.0560 (5)
HOH0.198 (4)0.016 (3)0.1307 (9)0.067*
C200.5896 (3)0.02111 (19)0.10855 (7)0.0394 (5)
C210.4942 (4)0.0997 (2)0.08094 (8)0.0553 (7)
H210.3772230.1253200.0887190.064*
C220.5742 (5)0.1398 (3)0.04165 (9)0.0730 (8)
H220.5106860.1927120.0231540.084*
C230.7467 (5)0.1018 (3)0.02999 (10)0.0778 (10)
H230.7983590.1277460.0033120.089*
C240.8428 (4)0.0263 (3)0.05729 (10)0.0685 (8)
H240.9606000.0019270.0495890.079*
C250.7644 (3)0.0137 (2)0.09627 (8)0.0502 (6)
H250.8303350.0652580.1147750.058*
C260.4523 (3)0.22470 (19)0.10333 (7)0.0434 (5)
C270.4150 (4)0.2197 (2)0.05843 (9)0.0648 (8)
H270.3309320.1635290.0477120.075*
C280.5013 (5)0.2974 (3)0.02915 (9)0.0816 (10)
H280.4747350.2933900.0011300.094*
C290.6252 (5)0.3798 (3)0.04431 (11)0.0786 (9)
H290.6842400.4311680.0244310.090*
C300.6622 (4)0.3865 (2)0.08887 (11)0.0693 (8)
H300.7461200.4429750.0993740.080*
C310.5752 (4)0.3097 (2)0.11835 (9)0.0533 (6)
H310.5999630.3154880.1486730.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0562 (15)0.0388 (12)0.0426 (13)0.0048 (11)0.0068 (11)0.0038 (10)
N20.0361 (10)0.0336 (8)0.0369 (9)0.0008 (8)0.0058 (8)0.0001 (7)
C30.0384 (12)0.0391 (11)0.0426 (12)0.0037 (10)0.0039 (10)0.0003 (9)
C40.0419 (13)0.0322 (10)0.0395 (12)0.0059 (10)0.0006 (10)0.0037 (9)
C50.0441 (13)0.0536 (14)0.0437 (13)0.0038 (11)0.0043 (11)0.0078 (11)
C60.0421 (14)0.0826 (19)0.0413 (13)0.0074 (14)0.0005 (11)0.0127 (13)
C70.0482 (15)0.0850 (19)0.0395 (13)0.0076 (14)0.0064 (12)0.0015 (13)
C80.0552 (15)0.0596 (14)0.0406 (13)0.0126 (13)0.0031 (12)0.0036 (11)
C90.0423 (13)0.0472 (12)0.0320 (11)0.0030 (11)0.0010 (10)0.0002 (9)
C100.0364 (12)0.0442 (12)0.0342 (11)0.0002 (10)0.0019 (10)0.0030 (9)
C110.0433 (14)0.0589 (15)0.0680 (17)0.0014 (12)0.0081 (13)0.0064 (13)
C120.0494 (14)0.0319 (10)0.0387 (12)0.0043 (11)0.0068 (10)0.0036 (9)
C130.0653 (17)0.0470 (13)0.0586 (16)0.0024 (13)0.0074 (14)0.0085 (12)
C140.093 (2)0.0637 (17)0.0558 (17)0.0100 (18)0.0123 (17)0.0203 (14)
C150.091 (2)0.0766 (19)0.0426 (15)0.0331 (19)0.0020 (15)0.0037 (14)
C160.0589 (16)0.0737 (17)0.0544 (16)0.0111 (15)0.0078 (14)0.0108 (14)
C170.0526 (15)0.0485 (13)0.0452 (13)0.0024 (12)0.0009 (11)0.0013 (11)
C180.0336 (11)0.0391 (11)0.0375 (11)0.0034 (10)0.0016 (10)0.0010 (9)
C190.0396 (12)0.0390 (11)0.0463 (13)0.0003 (10)0.0006 (10)0.0009 (10)
O190.0414 (9)0.0551 (10)0.0715 (12)0.0037 (8)0.0092 (9)0.0069 (9)
C200.0415 (13)0.0403 (11)0.0364 (12)0.0010 (10)0.0015 (10)0.0042 (9)
C210.0617 (17)0.0595 (14)0.0448 (14)0.0047 (14)0.0015 (12)0.0049 (12)
C220.097 (2)0.0752 (19)0.0467 (15)0.0039 (19)0.0026 (17)0.0129 (14)
C230.095 (3)0.091 (2)0.0469 (16)0.024 (2)0.0244 (17)0.0042 (16)
C240.0622 (18)0.082 (2)0.0616 (18)0.0138 (17)0.0209 (15)0.0176 (16)
C250.0452 (14)0.0532 (14)0.0522 (15)0.0035 (12)0.0073 (11)0.0090 (11)
C260.0456 (14)0.0384 (11)0.0461 (13)0.0055 (11)0.0012 (11)0.0046 (10)
C270.086 (2)0.0577 (15)0.0507 (16)0.0103 (16)0.0131 (15)0.0060 (12)
C280.122 (3)0.076 (2)0.0477 (16)0.007 (2)0.0009 (18)0.0158 (15)
C290.095 (2)0.0622 (18)0.078 (2)0.0071 (19)0.0216 (19)0.0239 (16)
C300.069 (2)0.0568 (16)0.082 (2)0.0137 (15)0.0011 (17)0.0151 (15)
C310.0581 (16)0.0453 (12)0.0563 (15)0.0058 (12)0.0049 (13)0.0066 (11)
Geometric parameters (Å, º) top
C1—N21.467 (3)C16—C171.382 (3)
C1—C91.496 (3)C16—H160.9300
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C18—C201.512 (3)
N2—C31.475 (3)C18—C191.555 (3)
N2—C181.475 (3)C18—H180.9800
C3—C111.531 (3)C19—O191.409 (3)
C3—C41.539 (3)C19—C261.508 (3)
C3—H30.9800C19—H190.9800
C4—C101.507 (3)O19—HOH0.86 (3)
C4—C121.515 (3)C20—C251.383 (3)
C4—H40.9800C20—C211.388 (3)
C5—C61.380 (3)C21—C221.389 (4)
C5—C101.395 (3)C21—H210.9300
C5—H50.9300C22—C231.373 (4)
C6—C71.372 (4)C22—H220.9300
C6—H60.9300C23—C241.364 (4)
C7—C81.374 (4)C23—H230.9300
C7—H70.9300C24—C251.375 (4)
C8—C91.394 (3)C24—H240.9300
C8—H80.9300C25—H250.9300
C9—C101.393 (3)C26—C311.375 (3)
C11—H11A0.9600C26—C271.376 (3)
C11—H11B0.9600C27—C281.381 (4)
C11—H11C0.9600C27—H270.9300
C12—C131.380 (3)C28—C291.362 (4)
C12—C171.381 (3)C28—H280.9300
C13—C141.383 (4)C29—C301.366 (4)
C13—H130.9300C29—H290.9300
C14—C151.367 (4)C30—C311.381 (4)
C14—H140.9300C30—H300.9300
C15—C161.374 (4)C31—H310.9300
C15—H150.9300
N2—C1—C9113.18 (17)C16—C15—H15120.2
N2—C1—H1A108.9C15—C16—C17119.9 (3)
C9—C1—H1A108.9C15—C16—H16120.0
N2—C1—H1B108.9C17—C16—H16120.0
C9—C1—H1B108.9C12—C17—C16121.2 (2)
H1A—C1—H1B107.8C12—C17—H17119.4
C1—N2—C3110.59 (16)C16—C17—H17119.4
C1—N2—C18111.93 (16)N2—C18—C20113.06 (16)
C3—N2—C18115.13 (16)N2—C18—C19108.02 (16)
N2—C3—C11114.83 (18)C20—C18—C19110.66 (17)
N2—C3—C4107.52 (17)N2—C18—H18108.3
C11—C3—C4112.15 (18)C20—C18—H18108.3
N2—C3—H3107.3C19—C18—H18108.3
C11—C3—H3107.3O19—C19—C26111.22 (19)
C4—C3—H3107.3O19—C19—C18110.15 (17)
C10—C4—C12113.71 (18)C26—C19—C18112.22 (18)
C10—C4—C3110.49 (17)O19—C19—H19107.7
C12—C4—C3110.99 (17)C26—C19—H19107.7
C10—C4—H4107.1C18—C19—H19107.7
C12—C4—H4107.1C19—O19—HOH105 (2)
C3—C4—H4107.1C25—C20—C21118.6 (2)
C6—C5—C10121.1 (2)C25—C20—C18119.2 (2)
C6—C5—H5119.4C21—C20—C18122.1 (2)
C10—C5—H5119.4C20—C21—C22119.7 (3)
C7—C6—C5120.1 (2)C20—C21—H21120.1
C7—C6—H6120.0C22—C21—H21120.1
C5—C6—H6120.0C23—C22—C21120.3 (3)
C6—C7—C8119.6 (2)C23—C22—H22119.9
C6—C7—H7120.2C21—C22—H22119.9
C8—C7—H7120.2C24—C23—C22120.4 (3)
C7—C8—C9121.3 (2)C24—C23—H23119.8
C7—C8—H8119.3C22—C23—H23119.8
C9—C8—H8119.3C23—C24—C25119.5 (3)
C10—C9—C8119.2 (2)C23—C24—H24120.2
C10—C9—C1121.60 (19)C25—C24—H24120.2
C8—C9—C1119.2 (2)C24—C25—C20121.4 (3)
C9—C10—C5118.7 (2)C24—C25—H25119.3
C9—C10—C4120.36 (19)C20—C25—H25119.3
C5—C10—C4121.0 (2)C31—C26—C27118.6 (2)
C3—C11—H11A109.5C31—C26—C19119.3 (2)
C3—C11—H11B109.5C27—C26—C19122.2 (2)
H11A—C11—H11B109.5C26—C27—C28120.5 (3)
C3—C11—H11C109.5C26—C27—H27119.8
H11A—C11—H11C109.5C28—C27—H27119.8
H11B—C11—H11C109.5C29—C28—C27120.4 (3)
C13—C12—C17117.9 (2)C29—C28—H28119.8
C13—C12—C4119.3 (2)C27—C28—H28119.8
C17—C12—C4122.7 (2)C28—C29—C30119.7 (3)
C12—C13—C14121.1 (3)C28—C29—H29120.2
C12—C13—H13119.5C30—C29—H29120.2
C14—C13—H13119.5C29—C30—C31120.2 (3)
C15—C14—C13120.2 (3)C29—C30—H30119.9
C15—C14—H14119.9C31—C30—H30119.9
C13—C14—H14119.9C26—C31—C30120.7 (3)
C14—C15—C16119.7 (3)C26—C31—H31119.7
C14—C15—H15120.2C30—C31—H31119.7
C9—C1—N2—C347.4 (2)C13—C12—C17—C160.5 (3)
C9—C1—N2—C18177.26 (19)C4—C12—C17—C16176.6 (2)
C1—N2—C3—C1156.3 (2)C15—C16—C17—C120.1 (4)
C18—N2—C3—C1171.7 (2)C1—N2—C18—C20176.66 (18)
C1—N2—C3—C469.2 (2)C3—N2—C18—C2049.2 (2)
C18—N2—C3—C4162.68 (16)C1—N2—C18—C1960.5 (2)
N2—C3—C4—C1054.4 (2)C3—N2—C18—C19172.04 (17)
C11—C3—C4—C1072.8 (2)N2—C18—C19—O1948.5 (2)
N2—C3—C4—C1272.7 (2)C20—C18—C19—O1975.7 (2)
C11—C3—C4—C12160.16 (19)N2—C18—C19—C26173.03 (17)
C10—C5—C6—C70.8 (4)C20—C18—C19—C2648.8 (2)
C5—C6—C7—C80.8 (4)N2—C18—C20—C25138.8 (2)
C6—C7—C8—C90.6 (4)C19—C18—C20—C2599.9 (2)
C7—C8—C9—C100.4 (4)N2—C18—C20—C2146.1 (3)
C7—C8—C9—C1179.9 (2)C19—C18—C20—C2175.2 (2)
N2—C1—C9—C1012.7 (3)C25—C20—C21—C221.0 (4)
N2—C1—C9—C8167.7 (2)C18—C20—C21—C22174.2 (2)
C8—C9—C10—C50.4 (3)C20—C21—C22—C230.2 (4)
C1—C9—C10—C5179.9 (2)C21—C22—C23—C241.4 (5)
C8—C9—C10—C4179.9 (2)C22—C23—C24—C251.3 (4)
C1—C9—C10—C40.4 (3)C23—C24—C25—C200.1 (4)
C6—C5—C10—C90.6 (3)C21—C20—C25—C241.1 (3)
C6—C5—C10—C4179.8 (2)C18—C20—C25—C24174.2 (2)
C12—C4—C10—C9104.1 (2)O19—C19—C26—C31159.3 (2)
C3—C4—C10—C921.5 (3)C18—C19—C26—C3176.8 (3)
C12—C4—C10—C575.4 (2)O19—C19—C26—C2723.1 (3)
C3—C4—C10—C5159.02 (19)C18—C19—C26—C27100.8 (3)
C10—C4—C12—C13152.5 (2)C31—C26—C27—C280.9 (4)
C3—C4—C12—C1382.2 (2)C19—C26—C27—C28176.8 (3)
C10—C4—C12—C1730.5 (3)C26—C27—C28—C290.2 (5)
C3—C4—C12—C1794.8 (2)C27—C28—C29—C300.9 (5)
C17—C12—C13—C140.7 (4)C28—C29—C30—C310.4 (5)
C4—C12—C13—C14176.5 (2)C27—C26—C31—C301.4 (4)
C12—C13—C14—C150.5 (4)C19—C26—C31—C30176.4 (2)
C13—C14—C15—C160.1 (4)C29—C30—C31—C260.8 (4)
C14—C15—C16—C170.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4 and Cg5 are the centroids of the C5–C10, C12-C17, C20–C25, and C26–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O19—HOH···N20.86 (3)2.18 (3)2.737 (2)123 (2)
C27—H27···O190.932.482.798 (3)100
C21—H21···Cg30.933.143.930 (4)144
C6—H6···O19i0.932.573.492 (3)170
C14—H14···Cg5ii0.932.953.770 (4)147
C16—H16···Cg4iii0.932.923.743 (3)148
C31—H31···Cg2iv0.932.963.803 (3)152
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Dr Ma­thias Meyer (Rigaku) for his invaluable help in converting ancient KappaCCD images into a format readable by CrysAlis PRO software.

References

First citationBen Ali, K., Chiaroni, A. & Bohe, L. (2007). Acta Cryst. E63, o1719–o1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBohé, L., Lusinchi, M. & Lusinchi, X. (1999). Tetrahedron, 55, 141–154.  Google Scholar
First citationDavies, S. G., Fletcher, A. M., Frost, A. B., Kennedy, M. S., Roberts, P. M. & Thomson, J. E. (2016). Tetrahedron, 72, 2139–2163.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, J., Zhu, M., Wu, T., Hao, C., Wang, K., Yan, Z., Huang, W., Wang, J., Zhao, D. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 3500–3511.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, R.-N., Cai, X.-F., Shi, L., Ye, Z.-S., Chen, M.-W. & Zhou, Y.-G. (2013). Chem. Commun. 49, 8537–8539.  Web of Science CSD CrossRef CAS Google Scholar
First citationGzella, A., Brózda, D., Koroniak, Ł. & Rozwadowska, M. D. (2002). Acta Cryst. C58, o503–o506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGzella, A., Chrzanowska, M., Dreas, A., Kaczmarek, M. S. & Woźniak, Z. (2006). Acta Cryst. E62, o1774–o1776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalkov, A. V., Kabeshov, M. A., Bella, M., Kysilka, O., Malyshev, D. A., Pluháčková, K. & Kočovský, P. (2007). Org. Lett. 9, 5473–5476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, L., Ye, Z.-S., Cao, L.-L., Guo, R.-N., Hu, Y. & Zhou, Y.-G. (2012). Angew. Chem. Int. Ed. 51, 8286–8289.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CrossRef CAS Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWhite, J., Hulme, A. & Parsons, S. (2007). Private communication (refcode JIPKEZ). CCDC, Cambridge, England.  Google Scholar
First citationYendapally, R. & Lee, R. E. (2008). Bioorg. Med. Chem. Lett. 18, 1607–1611.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds