research communications
In situ decarbonylation of N,N-dimethylformamide to form dimethylammonium cations in the hybrid framework compound {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n
aDepartment of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, USA, bDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA, and cDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
*Correspondence e-mail: padelani@stmarytx.edu
The title phosphonate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) [(μ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]], {(C2H8N)2[Zn(C6H4O8P2)]}n, was formed unexpectedly when dimethylammonium cations were formed from the in situ decarbonylation of the N,N-dimethylformamide solvent. The framework is built up from ZnO4 tetrahedra and bridging diphosphonate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the (CH3)2NH2+ cations. Within the channels, an array of N—H⋯O hydrogen bonds help to establish the structure. In addition, intramolecular O—H⋯O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO32− groups are observed.
Keywords: crystal structure; decarbonylation; phosphonic acid; inorganic–organic hybrid framework; hydrogen bonding.
CCDC reference: 1954737
1. Chemical context
Studies on the structural chemistry of metal phosphonates developed as a result of the versatility of the phosphonate ligands (Zubieta et al., 2011; Mao, 2007; Clearfield, 1996, 1998, 2002). A slight modification of the organic residues of the phosphonic acids (R-PO3H2, where R = organic residue) can lead to rich structural diversity. In general, phosphonates tend to assume various coordination modes as a result of the three coordinating oxygen atoms of the central phosphorus units. As a consequence, most metal phosphonates form a low-dimensional and dense layered structure (Deria et al., 2015; Gagnon et al., 2012). Nevertheless, a large number of isolated metal phosphonates have shown various potential applications in ion-exchange, gas storage, catalysis, and as small molecule sensors and magnetic interactions (Adelani & Albrecht-Schmitt, 2010; Ramaswamy et al., 2015; Deria et al., 2015; Kirumakki et al., 2008; Brousseau et al., 1997; Zheng et al., 2011).
The majority of metal–organic frameworks (MOFs) are designed with carboxylate- and nitrogen-containing heterocyclic ligands, while phosphonate-based MOFs are less well studied. One possible explanation may have to do with the predisposition of phosphonates to precipitate rapidly into less ordered insoluble phases. However, carboxylate-based MOFs are less stable in air and water, and this poses a significant problem if they are to be used in industrial applications. Metal carboxylate MOFs are subject to hydrolysis and are quite soluble in acidic solutions. On the contrary, phosphonates manifest stronger interactions with oxophilic metal ions than carboxylates and are not subject to hydrolysis (Deria et al., 2015; Gagnon et al., 2012).
About a decade ago, a crystalline and porous zinc diphosphonate MOF, {[Zn(DHBP)](DMF)2} (DMF = N,N-dimethylformamide) was reported (Liang & Shimizu, 2007). These researchers utilized a modified phosphonate ligand, 1,4-dihydroxy-2,5-benzenediphosphonate (DHBP), to cross-link one-dimensional Zn(RPO3) columns into an ordered three-dimensional network. Herein, we report the synthesis and structure of the title inorganic–organic hybrid framework, (I), using 1,4-dihydroxy-2,5-benzenediphosphonate via the in situ formation of the guest cation.
2. Structural commentary
The structure of (I) crystallizes in the monoclinic P21/n. The contains one Zn2+ cation, a C6H4P2O84− hydroxyphosphonate tetra-anion and two (CH3)2NH2+ cations (Fig. 1). The extended structure is constructed from tetrahedral ZnO4 units with the O atoms arising from four rigid phenyl spacers into a three-dimensional framework (Fig. 2). Two of the oxygen atoms of each PO32− moiety are involved in coordination to the Zn2+ ion and the others (O2 and O6) are not. The Zn—O bond distances range from 1.9055 (11) to 1.9671 (11) Å and the hydroxyphosphonate ligand is present in (I) with P—O bonds that range from 1.5129 (11) to 1.5337 (11) Å in length. The latter bond lengths are within the expected range for deprotonated P—O bonds (Liang & Shimizu, 2007).
The structure of (I) is similar to that of {[Zn(DHBP)](DMF)2} (Liang & Shimizu, 2007; CCDC refcode JIVFUQ) in that the zinc–phosphonate framework comprises one-dimensional channels occupied by guest species, but with the significant difference that the guest species in JIVFUQ are neutral DMF molecules and the phosphonate groups are singly, rather than doubly deprotonated to form C6H6P2O82− dianions.
The channels reported here are smaller than those in JIVFUQ and measure approximately 12.9 × 7.1 Å between phenyl groups and 9.9 Å between Zn centers. The (CH3)2NH2+ cations in (I) have been formed by the in situ decarbonylation of the DMF solvent. It is known that N,N-dimethylformamide can undergo loss of CO to form dimethylamine in the presence of a metal catalyst or through slow decomposition at elevated temperature around 427 K (Hulushe et al., 2016; Siddiqui et al., 2012; Chen et al., 2007; Karpova et al., 2004). In the previous reports, the nitrate salts of Mg2+/Pb2+/Ho3+ and chloride salts of Nd3+/Zr4+ were suggested to act as a metal catalyst in the decarbonylation of the DMF solvent.
3. Supramolecular features
The C6—O8H and C3—O7H groups appended on the phenyl ring of the ligand form intramolecular O—H⋯O hydrogen bonds with the adjacent RPO32− moieties (Figs. 1 and 3). Within the channels, the (CH3)2NH2+ cations are linked by N—H⋯O hydrogen bonds to the RPO32− groups of the framework (Table 1). Some short C—H⋯O contacts (Table 1) may help to consolidate the structure.
4. Synthesis and crystallization
The title compound was synthesized by placing Zn(NO3)2·6H2O (29.7 mg, 0.1 mmol) and 2,5-dihydroxy-1,4-benzenediphosphonic acid (27.0 mg, 0.1 mmol) into a 125 ml PTFE-lined Parr reaction vessel along with DMF/H2O/ethanol (2.0/0.5/0.5 ml, respectively). The vessel was heated in a programmable furnace at 353 K for 3 d, and then the autoclave was cooled to 296 K at an average rate of 274 K h−1. The mother liquor was decanted from the products and then placed in a petri dish. The solid products were washed with distilled water, dispersed with ethanol and allowed to dry in air. Colorless tablets of the title compound were isolated and studied for single-crystal X-ray diffraction.
5. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Supporting information
CCDC reference: 1954737
https://doi.org/10.1107/S2056989019012969/hb7847sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012969/hb7847Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: CIFTAB (Sheldrick, 2008b).(C2H8N)2[Zn(C6H4O8P2)] | F(000) = 872 |
Mr = 423.59 | Dx = 1.730 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8455 (5) Å | Cell parameters from 8723 reflections |
b = 16.4492 (9) Å | θ = 2.2–28.8° |
c = 11.2721 (6) Å | µ = 1.75 mm−1 |
β = 97.338 (1)° | T = 220 K |
V = 1626.67 (15) Å3 | Block, colorless |
Z = 4 | 0.09 × 0.03 × 0.03 mm |
Bruker APEXII diffractometer | 4040 independent reflections |
Radiation source: Incoatec micro-focus | 3582 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.027 |
combination of ω and φ–scans | θmax = 29.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.706, Tmax = 0.746 | k = −22→21 |
19692 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.060 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0327P)2 + 0.4955P] where P = (Fo2 + 2Fc2)/3 |
4040 reflections | (Δ/σ)max = 0.002 |
288 parameters | Δρmax = 0.42 e Å−3 |
1 restraint | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.73693 (2) | 0.50748 (2) | −0.00920 (2) | 0.01208 (6) | |
P1 | 0.53496 (4) | 0.52463 (2) | 0.21300 (3) | 0.01348 (9) | |
P2 | 0.52017 (4) | 0.86078 (2) | 0.50529 (3) | 0.01240 (8) | |
O1 | 0.61568 (13) | 0.54669 (7) | 0.10670 (10) | 0.0251 (3) | |
O2 | 0.61879 (14) | 0.46378 (7) | 0.29864 (11) | 0.0241 (3) | |
O3 | 0.37005 (12) | 0.49818 (6) | 0.17307 (10) | 0.0173 (2) | |
O4 | 0.66080 (13) | 0.90494 (6) | 0.47282 (10) | 0.0217 (2) | |
O5 | 0.37382 (13) | 0.90513 (7) | 0.45507 (10) | 0.0220 (2) | |
O6 | 0.53036 (13) | 0.84096 (7) | 0.63713 (9) | 0.0216 (2) | |
O7 | 0.31114 (15) | 0.80860 (7) | 0.26689 (12) | 0.0287 (3) | |
O8 | 0.71416 (17) | 0.57148 (8) | 0.45775 (13) | 0.0382 (4) | |
C1 | 0.52417 (16) | 0.61778 (9) | 0.29782 (13) | 0.0137 (3) | |
C2 | 0.42525 (17) | 0.67996 (9) | 0.25376 (13) | 0.0161 (3) | |
C3 | 0.41615 (17) | 0.75253 (9) | 0.31601 (13) | 0.0155 (3) | |
C4 | 0.51147 (16) | 0.76540 (8) | 0.42426 (13) | 0.0128 (3) | |
C5 | 0.60872 (17) | 0.70290 (9) | 0.46917 (14) | 0.0176 (3) | |
C6 | 0.61546 (17) | 0.62969 (9) | 0.40804 (14) | 0.0186 (3) | |
C7 | 0.5494 (3) | 0.29794 (13) | 0.13241 (19) | 0.0387 (5) | |
N1 | 0.57872 (18) | 0.30131 (9) | 0.26452 (15) | 0.0277 (3) | |
C8 | 0.7362 (3) | 0.27776 (15) | 0.3120 (2) | 0.0443 (5) | |
C9 | 0.5188 (3) | 1.01513 (14) | 0.8070 (2) | 0.0356 (4) | |
N2 | 0.63088 (18) | 0.94927 (9) | 0.80290 (13) | 0.0246 (3) | |
C10 | 0.6615 (3) | 0.90359 (13) | 0.91563 (18) | 0.0371 (5) | |
H1A | 0.568 (2) | 0.3527 (14) | 0.287 (2) | 0.038 (6)* | |
H1B | 0.515 (2) | 0.2695 (14) | 0.2980 (19) | 0.037 (6)* | |
H2A | 0.360 (2) | 0.6731 (12) | 0.1787 (17) | 0.026 (5)* | |
H2B | 0.709 (3) | 0.9705 (14) | 0.783 (2) | 0.041 (6)* | |
H2C | 0.588 (3) | 0.9111 (15) | 0.735 (2) | 0.054 (7)* | |
H5A | 0.676 (2) | 0.7101 (11) | 0.5433 (17) | 0.024 (5)* | |
H7A | 0.306 (3) | 0.8427 (16) | 0.316 (2) | 0.050 (7)* | |
H7B | 0.450 (3) | 0.3113 (17) | 0.109 (2) | 0.071 (9)* | |
H7C | 0.620 (2) | 0.3284 (16) | 0.101 (2) | 0.055 (7)* | |
H7D | 0.566 (3) | 0.2430 (15) | 0.109 (2) | 0.044 (6)* | |
H8A | 0.691 (3) | 0.5308 (18) | 0.410 (3) | 0.064 (8)* | |
H8B | 0.806 (3) | 0.3177 (15) | 0.281 (2) | 0.052 (7)* | |
H8C | 0.750 (3) | 0.2805 (15) | 0.402 (2) | 0.053 (7)* | |
H8D | 0.748 (3) | 0.2232 (16) | 0.278 (2) | 0.056 (7)* | |
H9A | 0.501 (2) | 1.0337 (13) | 0.729 (2) | 0.036 (6)* | |
H9B | 0.569 (3) | 1.0562 (16) | 0.869 (2) | 0.054 (7)* | |
H9C | 0.431 (3) | 0.9924 (13) | 0.828 (2) | 0.042 (7)* | |
H10A | 0.719 (4) | 0.936 (2) | 0.970 (3) | 0.088 (11)* | |
H10B | 0.564 (4) | 0.8940 (17) | 0.947 (3) | 0.077 (9)* | |
H10C | 0.716 (3) | 0.8557 (17) | 0.902 (2) | 0.062 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01243 (9) | 0.01005 (9) | 0.01414 (9) | −0.00104 (6) | 0.00319 (6) | −0.00073 (6) |
P1 | 0.01327 (18) | 0.01165 (17) | 0.01539 (18) | 0.00072 (13) | 0.00134 (14) | −0.00453 (14) |
P2 | 0.01391 (18) | 0.00907 (17) | 0.01421 (18) | 0.00096 (13) | 0.00174 (14) | −0.00254 (13) |
O1 | 0.0271 (6) | 0.0243 (6) | 0.0268 (6) | −0.0033 (5) | 0.0146 (5) | −0.0084 (5) |
O2 | 0.0287 (6) | 0.0141 (5) | 0.0268 (6) | 0.0053 (5) | −0.0070 (5) | −0.0053 (5) |
O3 | 0.0153 (5) | 0.0196 (5) | 0.0167 (5) | −0.0027 (4) | 0.0006 (4) | −0.0046 (4) |
O4 | 0.0219 (6) | 0.0142 (5) | 0.0302 (6) | −0.0051 (4) | 0.0085 (5) | −0.0057 (4) |
O5 | 0.0210 (6) | 0.0185 (5) | 0.0253 (6) | 0.0094 (4) | −0.0018 (5) | −0.0068 (5) |
O6 | 0.0331 (6) | 0.0162 (5) | 0.0152 (5) | −0.0024 (5) | 0.0023 (5) | −0.0024 (4) |
O7 | 0.0350 (7) | 0.0169 (6) | 0.0293 (7) | 0.0113 (5) | −0.0149 (5) | −0.0073 (5) |
O8 | 0.0463 (8) | 0.0237 (7) | 0.0367 (8) | 0.0212 (6) | −0.0249 (6) | −0.0140 (6) |
C1 | 0.0132 (7) | 0.0125 (7) | 0.0156 (7) | 0.0004 (5) | 0.0019 (5) | −0.0032 (5) |
C2 | 0.0177 (7) | 0.0144 (7) | 0.0152 (7) | −0.0005 (6) | −0.0020 (6) | −0.0025 (6) |
C3 | 0.0158 (7) | 0.0123 (6) | 0.0176 (7) | 0.0023 (5) | −0.0005 (6) | 0.0002 (5) |
C4 | 0.0142 (7) | 0.0105 (6) | 0.0141 (7) | −0.0008 (5) | 0.0029 (5) | −0.0016 (5) |
C5 | 0.0184 (7) | 0.0160 (7) | 0.0168 (7) | 0.0018 (6) | −0.0032 (6) | −0.0032 (6) |
C6 | 0.0192 (7) | 0.0147 (7) | 0.0207 (8) | 0.0062 (6) | −0.0028 (6) | −0.0032 (6) |
C7 | 0.0482 (13) | 0.0331 (11) | 0.0375 (11) | −0.0098 (10) | 0.0162 (10) | −0.0045 (9) |
N1 | 0.0312 (8) | 0.0175 (7) | 0.0373 (9) | −0.0035 (6) | 0.0154 (7) | −0.0030 (6) |
C8 | 0.0363 (11) | 0.0374 (12) | 0.0601 (16) | 0.0052 (9) | 0.0091 (11) | −0.0063 (11) |
C9 | 0.0353 (11) | 0.0405 (11) | 0.0326 (11) | 0.0034 (9) | 0.0096 (9) | 0.0022 (9) |
N2 | 0.0254 (8) | 0.0297 (8) | 0.0202 (7) | −0.0096 (6) | 0.0087 (6) | −0.0050 (6) |
C10 | 0.0577 (14) | 0.0300 (10) | 0.0236 (9) | 0.0000 (10) | 0.0052 (9) | −0.0045 (8) |
Zn1—O1 | 1.9055 (11) | C5—C6 | 1.392 (2) |
Zn1—O3i | 1.9671 (11) | C5—H5A | 0.971 (19) |
Zn1—O4ii | 1.9330 (11) | C7—N1 | 1.480 (3) |
Zn1—O5iii | 1.9543 (10) | C7—H7B | 0.92 (2) |
P1—O1 | 1.5151 (12) | C7—H7C | 0.91 (2) |
P1—O2 | 1.5169 (12) | C7—H7D | 0.96 (2) |
P1—O3 | 1.5337 (11) | N1—C8 | 1.479 (3) |
P1—C1 | 1.8150 (14) | N1—H1A | 0.89 (2) |
P2—O6 | 1.5129 (11) | N1—H1B | 0.89 (2) |
P2—O4 | 1.5249 (11) | C8—H8B | 1.00 (3) |
P2—O5 | 1.5301 (11) | C8—H8C | 1.01 (3) |
P2—C4 | 1.8121 (14) | C8—H8D | 0.98 (3) |
O7—C3 | 1.3743 (18) | C9—N2 | 1.473 (3) |
O7—H7A | 0.79 (3) | C9—H9A | 0.92 (2) |
O8—C6 | 1.3668 (19) | C9—H9B | 1.03 (3) |
O8—H8A | 0.86 (3) | C9—H9C | 0.92 (3) |
C1—C2 | 1.395 (2) | N2—C10 | 1.471 (2) |
C1—C6 | 1.406 (2) | N2—H2B | 0.83 (2) |
C2—C3 | 1.392 (2) | N2—H2C | 1.02 (3) |
C2—H2A | 0.968 (19) | C10—H10A | 0.92 (4) |
C3—C4 | 1.408 (2) | C10—H10B | 0.98 (3) |
C4—C5 | 1.394 (2) | C10—H10C | 0.95 (3) |
O1—Zn1—O4ii | 116.04 (5) | O8—C6—C5 | 117.94 (14) |
O1—Zn1—O5iii | 108.06 (5) | O8—C6—C1 | 121.95 (13) |
O4ii—Zn1—O5iii | 113.58 (5) | C5—C6—C1 | 120.11 (13) |
O1—Zn1—O3i | 114.48 (5) | N1—C7—H7B | 108.8 (17) |
O4ii—Zn1—O3i | 108.30 (5) | N1—C7—H7C | 109.5 (15) |
O5iii—Zn1—O3i | 94.45 (4) | H7B—C7—H7C | 116 (2) |
O1—P1—O2 | 114.83 (7) | N1—C7—H7D | 107.5 (14) |
O1—P1—O3 | 111.25 (7) | H7B—C7—H7D | 109 (2) |
O2—P1—O3 | 111.65 (7) | H7C—C7—H7D | 106 (2) |
O1—P1—C1 | 106.03 (7) | C8—N1—C7 | 112.97 (17) |
O2—P1—C1 | 106.03 (7) | C8—N1—H1A | 106.0 (14) |
O3—P1—C1 | 106.38 (6) | C7—N1—H1A | 107.9 (14) |
O6—P2—O4 | 112.98 (7) | C8—N1—H1B | 108.3 (14) |
O6—P2—O5 | 114.05 (7) | C7—N1—H1B | 111.4 (14) |
O4—P2—O5 | 111.20 (7) | H1A—N1—H1B | 110 (2) |
O6—P2—C4 | 107.57 (6) | N1—C8—H8B | 107.3 (14) |
O4—P2—C4 | 105.95 (6) | N1—C8—H8C | 110.0 (14) |
O5—P2—C4 | 104.29 (6) | H8B—C8—H8C | 109 (2) |
P1—O1—Zn1 | 145.53 (8) | N1—C8—H8D | 104.0 (15) |
P1—O3—Zn1i | 127.91 (7) | H8B—C8—H8D | 111 (2) |
P2—O4—Zn1iv | 137.62 (7) | H8C—C8—H8D | 115 (2) |
P2—O5—Zn1v | 142.34 (7) | N2—C9—H9A | 104.4 (14) |
C3—O7—H7A | 107.0 (18) | N2—C9—H9B | 105.8 (14) |
C6—O8—H8A | 101.6 (19) | H9A—C9—H9B | 116 (2) |
C2—C1—C6 | 118.38 (13) | N2—C9—H9C | 107.6 (14) |
C2—C1—P1 | 120.27 (11) | H9A—C9—H9C | 109 (2) |
C6—C1—P1 | 121.34 (11) | H9B—C9—H9C | 113 (2) |
C3—C2—C1 | 121.54 (14) | C10—N2—C9 | 113.51 (16) |
C3—C2—H2A | 118.3 (11) | C10—N2—H2B | 112.3 (17) |
C1—C2—H2A | 120.1 (11) | C9—N2—H2B | 106.7 (16) |
O7—C3—C2 | 116.88 (13) | C10—N2—H2C | 110.0 (14) |
O7—C3—C4 | 123.19 (13) | C9—N2—H2C | 106.8 (14) |
C2—C3—C4 | 119.93 (13) | H2B—N2—H2C | 107 (2) |
C5—C4—C3 | 118.52 (13) | N2—C10—H10A | 108 (2) |
C5—C4—P2 | 118.11 (11) | N2—C10—H10B | 108.4 (17) |
C3—C4—P2 | 123.32 (11) | H10A—C10—H10B | 107 (2) |
C6—C5—C4 | 121.45 (14) | N2—C10—H10C | 109.3 (16) |
C6—C5—H5A | 118.1 (11) | H10A—C10—H10C | 110 (3) |
C4—C5—H5A | 120.4 (11) | H10B—C10—H10C | 114 (2) |
O2—P1—O1—Zn1 | 37.88 (16) | C1—C2—C3—O7 | −177.72 (14) |
O3—P1—O1—Zn1 | −90.15 (14) | C1—C2—C3—C4 | 2.0 (2) |
C1—P1—O1—Zn1 | 154.59 (13) | O7—C3—C4—C5 | 176.85 (14) |
O1—P1—O3—Zn1i | −0.87 (10) | C2—C3—C4—C5 | −2.8 (2) |
O2—P1—O3—Zn1i | −130.59 (8) | O7—C3—C4—P2 | −5.8 (2) |
C1—P1—O3—Zn1i | 114.17 (8) | C2—C3—C4—P2 | 174.51 (11) |
O6—P2—O4—Zn1iv | −63.56 (12) | O6—P2—C4—C5 | −43.03 (13) |
O5—P2—O4—Zn1iv | 66.18 (12) | O4—P2—C4—C5 | 78.06 (13) |
C4—P2—O4—Zn1iv | 178.91 (10) | O5—P2—C4—C5 | −164.49 (12) |
O6—P2—O5—Zn1v | 43.33 (14) | O6—P2—C4—C3 | 139.65 (13) |
O4—P2—O5—Zn1v | −85.85 (13) | O4—P2—C4—C3 | −99.26 (13) |
C4—P2—O5—Zn1v | 160.39 (11) | O5—P2—C4—C3 | 18.19 (14) |
O1—P1—C1—C2 | 71.83 (13) | C3—C4—C5—C6 | 1.5 (2) |
O2—P1—C1—C2 | −165.68 (12) | P2—C4—C5—C6 | −175.95 (12) |
O3—P1—C1—C2 | −46.70 (14) | C4—C5—C6—O8 | 179.76 (15) |
O1—P1—C1—C6 | −107.45 (13) | C4—C5—C6—C1 | 0.7 (2) |
O2—P1—C1—C6 | 15.04 (15) | C2—C1—C6—O8 | 179.40 (15) |
O3—P1—C1—C6 | 134.02 (13) | P1—C1—C6—O8 | −1.3 (2) |
C6—C1—C2—C3 | 0.2 (2) | C2—C1—C6—C5 | −1.6 (2) |
P1—C1—C2—C3 | −179.06 (12) | P1—C1—C6—C5 | 177.73 (12) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) x−1/2, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O5 | 0.79 (2) | 1.91 (2) | 2.6510 (17) | 156 (3) |
O8—H8A···O2 | 0.87 (3) | 1.73 (3) | 2.5846 (18) | 168 (3) |
N1—H1A···O2 | 0.89 (2) | 1.88 (2) | 2.7168 (19) | 155.2 (18) |
N1—H1B···O6vi | 0.89 (2) | 2.02 (2) | 2.8125 (19) | 148.3 (18) |
N2—H2B···O3vii | 0.83 (3) | 2.07 (3) | 2.8558 (19) | 158 (2) |
N2—H2C···O6 | 1.03 (2) | 1.63 (2) | 2.6518 (18) | 173 (2) |
C7—H7C···O4ii | 0.91 (2) | 2.54 (2) | 3.443 (3) | 174 (2) |
C9—H9B···O8viii | 1.03 (3) | 2.57 (2) | 3.445 (3) | 142.6 (19) |
C10—H10A···O8viii | 0.92 (3) | 2.42 (3) | 3.236 (3) | 148 (3) |
Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, −y+3/2, z+1/2; (viii) −x+3/2, y+1/2, −z+3/2. |
Acknowledgements
We thank St. Mary's University, the School of Science, Engineering and Technology, and the Department of Chemistry and Biochemistry for supporting undergraduate research. Single-crystal X-ray analyses were conducted at the Materials Characterization Facility of the Center of Sustainable Energy at the University of Notre Dame.
Funding information
Funding for this research was provided by: Welch Foundation Departmental Research Grant Program (grant No. U-0047); St. Mary's University Internal Faculty Research Grant Award.
References
Adelani, P. O. & Albrecht-Schmitt, T. E. (2010). Angew. Chem. Int. Ed. 49, 8909–8911. CSD CrossRef CAS Google Scholar
Brousseau, L. C., Aurentz, D. J., Benesi, A. J. & Mallouk, T. E. (1997). Anal. Chem. 69, 688–694. CrossRef CAS Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133–o1135. Web of Science CSD CrossRef IUCr Journals Google Scholar
Clearfield, A. (1996). Curr. Opin. Solid State Mater. Sci. 1, 268–278. CrossRef CAS Web of Science Google Scholar
Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510. CrossRef CAS Google Scholar
Clearfield, A. (2002). Curr. Opin. Solid State Mater. Sci. 6, 495–506. Web of Science CrossRef CAS Google Scholar
Deria, P., Bury, W., Hod, I., Kung, C.-W., Karagiaridi, O., Hupp, J. T. & Farha, O. K. (2015). Inorg. Chem. 54, 2185–2192. CrossRef CAS PubMed Google Scholar
Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054. Web of Science CrossRef CAS PubMed Google Scholar
Hulushe, S. T., Hosten, E. C. & Watkins, G. M. (2016). Acta Cryst. E72, 1521–1525. CSD CrossRef IUCr Journals Google Scholar
Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491–o2492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kirumakki, S., Samarajeewa, S., Harwell, R., Mukherjee, A., Herber, R. H. & Clearfield, A. (2008). Chem. Commun. pp. 5556–5558. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liang, J. & Shimizu, G. K. H. (2007). Inorg. Chem. 46, 10449–10451. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mao, J.-G. (2007). Coord. Chem. Rev. 251, 1493–1520. Web of Science CrossRef CAS Google Scholar
Ramaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. (2015). J. Am. Chem. Soc. 137, 7640–7643. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008b). CIFTAB. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778. CSD CrossRef IUCr Journals Google Scholar
Zheng, Y.-Z., Evangelisti, M. & Winpenny, R. E. P. (2011). Chem. Sci. 2, 99–102. CSD CrossRef CAS Google Scholar
Zubieta, J., Zon, J., Brunet, E., Winpenny, R., Wright, P. A., Stock, N., Mao, J. G., Zheng, L.-M., Albrecht-Schmitt, T., Bujoli, B., Cahill, C., Murugavel, R., Rocha, J., Hix, G., Shimizu, G., Clearfield, A. & Demadis, K. (2011). Metal Phosphonate Chemistry: From Synthesis to Applications, 1st ed., edited by A. Clearfield & K. Demadis. UK: Royal Society of Chemistry. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.