research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

In situ deca­rbonylation of N,N-di­methyl­formamide to form di­methyl­ammonium cations in the hybrid framework compound {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n

aDepartment of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, USA, bDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA, and cDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
*Correspondence e-mail: padelani@stmarytx.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 August 2019; accepted 19 September 2019; online 27 September 2019)

The title phospho­nate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) [(μ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]], {(C2H8N)2[Zn(C6H4O8P2)]}n, was formed unexpectedly when di­methyl­ammonium cations were formed from the in situ deca­rbonylation of the N,N-di­methyl­formamide solvent. The framework is built up from ZnO4 tetra­hedra and bridging di­phospho­nate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the (CH3)2NH2+ cations. Within the channels, an array of N—H⋯O hydrogen bonds help to establish the structure. In addition, intra­molecular O—H⋯O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO32− groups are observed.

1. Chemical context

Studies on the structural chemistry of metal phospho­nates developed as a result of the versatility of the phospho­nate ligands (Zubieta et al., 2011[Zubieta, J., Zon, J., Brunet, E., Winpenny, R., Wright, P. A., Stock, N., Mao, J. G., Zheng, L.-M., Albrecht-Schmitt, T., Bujoli, B., Cahill, C., Murugavel, R., Rocha, J., Hix, G., Shimizu, G., Clearfield, A. & Demadis, K. (2011). Metal Phosphonate Chemistry: From Synthesis to Applications, 1st ed., edited by A. Clearfield & K. Demadis. UK: Royal Society of Chemistry.]; Mao, 2007[Mao, J.-G. (2007). Coord. Chem. Rev. 251, 1493-1520.]; Clearfield, 1996[Clearfield, A. (1996). Curr. Opin. Solid State Mater. Sci. 1, 268-278.], 1998[Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.], 2002[Clearfield, A. (2002). Curr. Opin. Solid State Mater. Sci. 6, 495-506.]). A slight modification of the organic residues of the phospho­nic acids (R-PO3H2, where R = organic residue) can lead to rich structural diversity. In general, phospho­nates tend to assume various coordination modes as a result of the three coordinating oxygen atoms of the central phospho­rus units. As a consequence, most metal phospho­nates form a low-dimensional and dense layered structure (Deria et al., 2015[Deria, P., Bury, W., Hod, I., Kung, C.-W., Karagiaridi, O., Hupp, J. T. & Farha, O. K. (2015). Inorg. Chem. 54, 2185-2192.]; Gagnon et al., 2012[Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034-1054.]). Nevertheless, a large number of isolated metal phospho­nates have shown various potential applications in ion-exchange, ionic conductivity, gas storage, catalysis, and as small mol­ecule sensors and magnetic inter­actions (Adelani & Albrecht-Schmitt, 2010[Adelani, P. O. & Albrecht-Schmitt, T. E. (2010). Angew. Chem. Int. Ed. 49, 8909-8911.]; Ramaswamy et al., 2015[Ramaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. (2015). J. Am. Chem. Soc. 137, 7640-7643.]; Deria et al., 2015[Deria, P., Bury, W., Hod, I., Kung, C.-W., Karagiaridi, O., Hupp, J. T. & Farha, O. K. (2015). Inorg. Chem. 54, 2185-2192.]; Kirumakki et al., 2008[Kirumakki, S., Samarajeewa, S., Harwell, R., Mukherjee, A., Herber, R. H. & Clearfield, A. (2008). Chem. Commun. pp. 5556-5558.]; Brousseau et al., 1997[Brousseau, L. C., Aurentz, D. J., Benesi, A. J. & Mallouk, T. E. (1997). Anal. Chem. 69, 688-694.]; Zheng et al., 2011[Zheng, Y.-Z., Evangelisti, M. & Winpenny, R. E. P. (2011). Chem. Sci. 2, 99-102.]).

The majority of metal–organic frameworks (MOFs) are designed with carboxyl­ate- and nitro­gen-containing heterocyclic ligands, while phospho­nate-based MOFs are less well studied. One possible explanation may have to do with the predisposition of phospho­nates to precipitate rapidly into less ordered insoluble phases. However, carboxyl­ate-based MOFs are less stable in air and water, and this poses a significant problem if they are to be used in industrial applications. Metal carboxyl­ate MOFs are subject to hydrolysis and are quite soluble in acidic solutions. On the contrary, phospho­nates manifest stronger inter­actions with oxophilic metal ions than carboxyl­ates and are not subject to hydrolysis (Deria et al., 2015[Deria, P., Bury, W., Hod, I., Kung, C.-W., Karagiaridi, O., Hupp, J. T. & Farha, O. K. (2015). Inorg. Chem. 54, 2185-2192.]; Gagnon et al., 2012[Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034-1054.]).

About a decade ago, a crystalline and porous zinc di­phospho­nate MOF, {[Zn(DHBP)](DMF)2} (DMF = N,N-di­methyl­formamide) was reported (Liang & Shimizu, 2007[Liang, J. & Shimizu, G. K. H. (2007). Inorg. Chem. 46, 10449-10451.]). These researchers utilized a modified phospho­nate ligand, 1,4-dihy­droxy-2,5-benzene­diphospho­nate (DHBP), to cross-link one-dimensional Zn(RPO3) columns into an ordered three-dimensional network. Herein, we report the synthesis and structure of the title inorganic–organic hybrid framework, (I)[link], using 1,4-dihy­droxy-2,5-benzene­diphospho­nate via the in situ formation of the guest cation.

[Scheme 1]

2. Structural commentary

The structure of (I)[link] crystallizes in the monoclinic space group P21/n. The asymmetric unit contains one Zn2+ cation, a C6H4P2O84− hy­droxy­phospho­nate tetra-anion and two (CH3)2NH2+ cations (Fig. 1[link]). The extended structure is constructed from tetra­hedral ZnO4 units with the O atoms arising from four rigid phenyl spacers into a three-dimensional framework (Fig. 2[link]). Two of the oxygen atoms of each PO32− moiety are involved in coordination to the Zn2+ ion and the others (O2 and O6) are not. The Zn—O bond distances range from 1.9055 (11) to 1.9671 (11) Å and the hy­droxy­phospho­nate ligand is present in (I)[link] with P—O bonds that range from 1.5129 (11) to 1.5337 (11) Å in length. The latter bond lengths are within the expected range for deprotonated P—O bonds (Liang & Shimizu, 2007[Liang, J. & Shimizu, G. K. H. (2007). Inorg. Chem. 46, 10449-10451.]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] in position 1 − x, 1 − y, 1 − z showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
View down [100] of the three-dimensional framework structure of (I)[link] with the ZnO4 and PO3C moieties shown as polyhedra. Color key: ZnO4 groups = cyan, PO3C groups = magenta, oxygen = red, carbon = black, hydrogen = white. The (CH3)2NH2+ cations are omitted for clarity.

The structure of (I)[link] is similar to that of {[Zn(DHBP)](DMF)2} (Liang & Shimizu, 2007[Liang, J. & Shimizu, G. K. H. (2007). Inorg. Chem. 46, 10449-10451.]; CCDC refcode JIVFUQ) in that the zinc–phospho­nate framework comprises one-dimensional channels occupied by guest species, but with the significant difference that the guest species in JIVFUQ are neutral DMF mol­ecules and the phospho­nate groups are singly, rather than doubly deprotonated to form C6H6P2O82− dianions.

The channels reported here are smaller than those in JIVFUQ and measure approximately 12.9 × 7.1 Å between phenyl groups and 9.9 Å between Zn centers. The (CH3)2NH2+ cations in (I)[link] have been formed by the in situ deca­rbonylation of the DMF solvent. It is known that N,N-di­methyl­formamide can undergo loss of CO to form di­methyl­amine in the presence of a metal catalyst or through slow decomposition at elevated temperature around 427 K (Hulushe et al., 2016[Hulushe, S. T., Hosten, E. C. & Watkins, G. M. (2016). Acta Cryst. E72, 1521-1525.]; Siddiqui et al., 2012[Siddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778.]; Chen et al., 2007[Chen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133-o1135.]; Karpova et al., 2004[Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.]). In the previous reports, the nitrate salts of Mg2+/Pb2+/Ho3+ and chloride salts of Nd3+/Zr4+ were suggested to act as a metal catalyst in the deca­rbonylation of the DMF solvent.

3. Supra­molecular features

The C6—O8H and C3—O7H groups appended on the phenyl ring of the ligand form intra­molecular O—H⋯O hydrogen bonds with the adjacent RPO32− moieties (Figs. 1[link] and 3[link]). Within the channels, the (CH3)2NH2+ cations are linked by N—H⋯O hydrogen bonds to the RPO32− groups of the framework (Table 1[link]). Some short C—H⋯O contacts (Table 1[link]) may help to consolidate the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5 0.79 (2) 1.91 (2) 2.6510 (17) 156 (3)
O8—H8A⋯O2 0.87 (3) 1.73 (3) 2.5846 (18) 168 (3)
N1—H1A⋯O2 0.89 (2) 1.88 (2) 2.7168 (19) 155.2 (18)
N1—H1B⋯O6i 0.89 (2) 2.02 (2) 2.8125 (19) 148.3 (18)
N2—H2B⋯O3ii 0.83 (3) 2.07 (3) 2.8558 (19) 158 (2)
N2—H2C⋯O6 1.03 (2) 1.63 (2) 2.6518 (18) 173 (2)
C7—H7C⋯O4iii 0.91 (2) 2.54 (2) 3.443 (3) 174 (2)
C9—H9B⋯O8iv 1.03 (3) 2.57 (2) 3.445 (3) 142.6 (19)
C10—H10A⋯O8iv 0.92 (3) 2.42 (3) 3.236 (3) 148 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Ball-and-stick representation of the structure of (I)[link] viewed along the [001] axis. The hydrogen bonds involving the –OH groups are drawn as blue dashed lines. Color key as in Fig. 2[link].

4. Synthesis and crystallization

The title compound was synthesized by placing Zn(NO3)2·6H2O (29.7 mg, 0.1 mmol) and 2,5-dihy­droxy-1,4-benzene­diphospho­nic acid (27.0 mg, 0.1 mmol) into a 125 ml PTFE-lined Parr reaction vessel along with DMF/H2O/ethanol (2.0/0.5/0.5 ml, respectively). The vessel was heated in a programmable furnace at 353 K for 3 d, and then the autoclave was cooled to 296 K at an average rate of 274 K h−1. The mother liquor was deca­nted from the products and then placed in a petri dish. The solid products were washed with distilled water, dispersed with ethanol and allowed to dry in air. Colorless tablets of the title compound were isolated and studied for single-crystal X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C2H8N)2[Zn(C6H4O8P2)]
Mr 423.59
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 8.8455 (5), 16.4492 (9), 11.2721 (6)
β (°) 97.338 (1)
V3) 1626.67 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.75
Crystal size (mm) 0.09 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.706, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19692, 4040, 3582
Rint 0.027
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.05
No. of reflections 4040
No. of parameters 288
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.42, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]) and CIFTAB (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CIFTAB. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: CIFTAB (Sheldrick, 2008b).

Poly[bis(dimethylammonium) [(µ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]] top
Crystal data top
(C2H8N)2[Zn(C6H4O8P2)]F(000) = 872
Mr = 423.59Dx = 1.730 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8455 (5) ÅCell parameters from 8723 reflections
b = 16.4492 (9) Åθ = 2.2–28.8°
c = 11.2721 (6) ŵ = 1.75 mm1
β = 97.338 (1)°T = 220 K
V = 1626.67 (15) Å3Block, colorless
Z = 40.09 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII
diffractometer
4040 independent reflections
Radiation source: Incoatec micro-focus3582 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.027
combination of ω and φ–scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.706, Tmax = 0.746k = 2221
19692 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.060All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.4955P]
where P = (Fo2 + 2Fc2)/3
4040 reflections(Δ/σ)max = 0.002
288 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73693 (2)0.50748 (2)0.00920 (2)0.01208 (6)
P10.53496 (4)0.52463 (2)0.21300 (3)0.01348 (9)
P20.52017 (4)0.86078 (2)0.50529 (3)0.01240 (8)
O10.61568 (13)0.54669 (7)0.10670 (10)0.0251 (3)
O20.61879 (14)0.46378 (7)0.29864 (11)0.0241 (3)
O30.37005 (12)0.49818 (6)0.17307 (10)0.0173 (2)
O40.66080 (13)0.90494 (6)0.47282 (10)0.0217 (2)
O50.37382 (13)0.90513 (7)0.45507 (10)0.0220 (2)
O60.53036 (13)0.84096 (7)0.63713 (9)0.0216 (2)
O70.31114 (15)0.80860 (7)0.26689 (12)0.0287 (3)
O80.71416 (17)0.57148 (8)0.45775 (13)0.0382 (4)
C10.52417 (16)0.61778 (9)0.29782 (13)0.0137 (3)
C20.42525 (17)0.67996 (9)0.25376 (13)0.0161 (3)
C30.41615 (17)0.75253 (9)0.31601 (13)0.0155 (3)
C40.51147 (16)0.76540 (8)0.42426 (13)0.0128 (3)
C50.60872 (17)0.70290 (9)0.46917 (14)0.0176 (3)
C60.61546 (17)0.62969 (9)0.40804 (14)0.0186 (3)
C70.5494 (3)0.29794 (13)0.13241 (19)0.0387 (5)
N10.57872 (18)0.30131 (9)0.26452 (15)0.0277 (3)
C80.7362 (3)0.27776 (15)0.3120 (2)0.0443 (5)
C90.5188 (3)1.01513 (14)0.8070 (2)0.0356 (4)
N20.63088 (18)0.94927 (9)0.80290 (13)0.0246 (3)
C100.6615 (3)0.90359 (13)0.91563 (18)0.0371 (5)
H1A0.568 (2)0.3527 (14)0.287 (2)0.038 (6)*
H1B0.515 (2)0.2695 (14)0.2980 (19)0.037 (6)*
H2A0.360 (2)0.6731 (12)0.1787 (17)0.026 (5)*
H2B0.709 (3)0.9705 (14)0.783 (2)0.041 (6)*
H2C0.588 (3)0.9111 (15)0.735 (2)0.054 (7)*
H5A0.676 (2)0.7101 (11)0.5433 (17)0.024 (5)*
H7A0.306 (3)0.8427 (16)0.316 (2)0.050 (7)*
H7B0.450 (3)0.3113 (17)0.109 (2)0.071 (9)*
H7C0.620 (2)0.3284 (16)0.101 (2)0.055 (7)*
H7D0.566 (3)0.2430 (15)0.109 (2)0.044 (6)*
H8A0.691 (3)0.5308 (18)0.410 (3)0.064 (8)*
H8B0.806 (3)0.3177 (15)0.281 (2)0.052 (7)*
H8C0.750 (3)0.2805 (15)0.402 (2)0.053 (7)*
H8D0.748 (3)0.2232 (16)0.278 (2)0.056 (7)*
H9A0.501 (2)1.0337 (13)0.729 (2)0.036 (6)*
H9B0.569 (3)1.0562 (16)0.869 (2)0.054 (7)*
H9C0.431 (3)0.9924 (13)0.828 (2)0.042 (7)*
H10A0.719 (4)0.936 (2)0.970 (3)0.088 (11)*
H10B0.564 (4)0.8940 (17)0.947 (3)0.077 (9)*
H10C0.716 (3)0.8557 (17)0.902 (2)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01243 (9)0.01005 (9)0.01414 (9)0.00104 (6)0.00319 (6)0.00073 (6)
P10.01327 (18)0.01165 (17)0.01539 (18)0.00072 (13)0.00134 (14)0.00453 (14)
P20.01391 (18)0.00907 (17)0.01421 (18)0.00096 (13)0.00174 (14)0.00254 (13)
O10.0271 (6)0.0243 (6)0.0268 (6)0.0033 (5)0.0146 (5)0.0084 (5)
O20.0287 (6)0.0141 (5)0.0268 (6)0.0053 (5)0.0070 (5)0.0053 (5)
O30.0153 (5)0.0196 (5)0.0167 (5)0.0027 (4)0.0006 (4)0.0046 (4)
O40.0219 (6)0.0142 (5)0.0302 (6)0.0051 (4)0.0085 (5)0.0057 (4)
O50.0210 (6)0.0185 (5)0.0253 (6)0.0094 (4)0.0018 (5)0.0068 (5)
O60.0331 (6)0.0162 (5)0.0152 (5)0.0024 (5)0.0023 (5)0.0024 (4)
O70.0350 (7)0.0169 (6)0.0293 (7)0.0113 (5)0.0149 (5)0.0073 (5)
O80.0463 (8)0.0237 (7)0.0367 (8)0.0212 (6)0.0249 (6)0.0140 (6)
C10.0132 (7)0.0125 (7)0.0156 (7)0.0004 (5)0.0019 (5)0.0032 (5)
C20.0177 (7)0.0144 (7)0.0152 (7)0.0005 (6)0.0020 (6)0.0025 (6)
C30.0158 (7)0.0123 (6)0.0176 (7)0.0023 (5)0.0005 (6)0.0002 (5)
C40.0142 (7)0.0105 (6)0.0141 (7)0.0008 (5)0.0029 (5)0.0016 (5)
C50.0184 (7)0.0160 (7)0.0168 (7)0.0018 (6)0.0032 (6)0.0032 (6)
C60.0192 (7)0.0147 (7)0.0207 (8)0.0062 (6)0.0028 (6)0.0032 (6)
C70.0482 (13)0.0331 (11)0.0375 (11)0.0098 (10)0.0162 (10)0.0045 (9)
N10.0312 (8)0.0175 (7)0.0373 (9)0.0035 (6)0.0154 (7)0.0030 (6)
C80.0363 (11)0.0374 (12)0.0601 (16)0.0052 (9)0.0091 (11)0.0063 (11)
C90.0353 (11)0.0405 (11)0.0326 (11)0.0034 (9)0.0096 (9)0.0022 (9)
N20.0254 (8)0.0297 (8)0.0202 (7)0.0096 (6)0.0087 (6)0.0050 (6)
C100.0577 (14)0.0300 (10)0.0236 (9)0.0000 (10)0.0052 (9)0.0045 (8)
Geometric parameters (Å, º) top
Zn1—O11.9055 (11)C5—C61.392 (2)
Zn1—O3i1.9671 (11)C5—H5A0.971 (19)
Zn1—O4ii1.9330 (11)C7—N11.480 (3)
Zn1—O5iii1.9543 (10)C7—H7B0.92 (2)
P1—O11.5151 (12)C7—H7C0.91 (2)
P1—O21.5169 (12)C7—H7D0.96 (2)
P1—O31.5337 (11)N1—C81.479 (3)
P1—C11.8150 (14)N1—H1A0.89 (2)
P2—O61.5129 (11)N1—H1B0.89 (2)
P2—O41.5249 (11)C8—H8B1.00 (3)
P2—O51.5301 (11)C8—H8C1.01 (3)
P2—C41.8121 (14)C8—H8D0.98 (3)
O7—C31.3743 (18)C9—N21.473 (3)
O7—H7A0.79 (3)C9—H9A0.92 (2)
O8—C61.3668 (19)C9—H9B1.03 (3)
O8—H8A0.86 (3)C9—H9C0.92 (3)
C1—C21.395 (2)N2—C101.471 (2)
C1—C61.406 (2)N2—H2B0.83 (2)
C2—C31.392 (2)N2—H2C1.02 (3)
C2—H2A0.968 (19)C10—H10A0.92 (4)
C3—C41.408 (2)C10—H10B0.98 (3)
C4—C51.394 (2)C10—H10C0.95 (3)
O1—Zn1—O4ii116.04 (5)O8—C6—C5117.94 (14)
O1—Zn1—O5iii108.06 (5)O8—C6—C1121.95 (13)
O4ii—Zn1—O5iii113.58 (5)C5—C6—C1120.11 (13)
O1—Zn1—O3i114.48 (5)N1—C7—H7B108.8 (17)
O4ii—Zn1—O3i108.30 (5)N1—C7—H7C109.5 (15)
O5iii—Zn1—O3i94.45 (4)H7B—C7—H7C116 (2)
O1—P1—O2114.83 (7)N1—C7—H7D107.5 (14)
O1—P1—O3111.25 (7)H7B—C7—H7D109 (2)
O2—P1—O3111.65 (7)H7C—C7—H7D106 (2)
O1—P1—C1106.03 (7)C8—N1—C7112.97 (17)
O2—P1—C1106.03 (7)C8—N1—H1A106.0 (14)
O3—P1—C1106.38 (6)C7—N1—H1A107.9 (14)
O6—P2—O4112.98 (7)C8—N1—H1B108.3 (14)
O6—P2—O5114.05 (7)C7—N1—H1B111.4 (14)
O4—P2—O5111.20 (7)H1A—N1—H1B110 (2)
O6—P2—C4107.57 (6)N1—C8—H8B107.3 (14)
O4—P2—C4105.95 (6)N1—C8—H8C110.0 (14)
O5—P2—C4104.29 (6)H8B—C8—H8C109 (2)
P1—O1—Zn1145.53 (8)N1—C8—H8D104.0 (15)
P1—O3—Zn1i127.91 (7)H8B—C8—H8D111 (2)
P2—O4—Zn1iv137.62 (7)H8C—C8—H8D115 (2)
P2—O5—Zn1v142.34 (7)N2—C9—H9A104.4 (14)
C3—O7—H7A107.0 (18)N2—C9—H9B105.8 (14)
C6—O8—H8A101.6 (19)H9A—C9—H9B116 (2)
C2—C1—C6118.38 (13)N2—C9—H9C107.6 (14)
C2—C1—P1120.27 (11)H9A—C9—H9C109 (2)
C6—C1—P1121.34 (11)H9B—C9—H9C113 (2)
C3—C2—C1121.54 (14)C10—N2—C9113.51 (16)
C3—C2—H2A118.3 (11)C10—N2—H2B112.3 (17)
C1—C2—H2A120.1 (11)C9—N2—H2B106.7 (16)
O7—C3—C2116.88 (13)C10—N2—H2C110.0 (14)
O7—C3—C4123.19 (13)C9—N2—H2C106.8 (14)
C2—C3—C4119.93 (13)H2B—N2—H2C107 (2)
C5—C4—C3118.52 (13)N2—C10—H10A108 (2)
C5—C4—P2118.11 (11)N2—C10—H10B108.4 (17)
C3—C4—P2123.32 (11)H10A—C10—H10B107 (2)
C6—C5—C4121.45 (14)N2—C10—H10C109.3 (16)
C6—C5—H5A118.1 (11)H10A—C10—H10C110 (3)
C4—C5—H5A120.4 (11)H10B—C10—H10C114 (2)
O2—P1—O1—Zn137.88 (16)C1—C2—C3—O7177.72 (14)
O3—P1—O1—Zn190.15 (14)C1—C2—C3—C42.0 (2)
C1—P1—O1—Zn1154.59 (13)O7—C3—C4—C5176.85 (14)
O1—P1—O3—Zn1i0.87 (10)C2—C3—C4—C52.8 (2)
O2—P1—O3—Zn1i130.59 (8)O7—C3—C4—P25.8 (2)
C1—P1—O3—Zn1i114.17 (8)C2—C3—C4—P2174.51 (11)
O6—P2—O4—Zn1iv63.56 (12)O6—P2—C4—C543.03 (13)
O5—P2—O4—Zn1iv66.18 (12)O4—P2—C4—C578.06 (13)
C4—P2—O4—Zn1iv178.91 (10)O5—P2—C4—C5164.49 (12)
O6—P2—O5—Zn1v43.33 (14)O6—P2—C4—C3139.65 (13)
O4—P2—O5—Zn1v85.85 (13)O4—P2—C4—C399.26 (13)
C4—P2—O5—Zn1v160.39 (11)O5—P2—C4—C318.19 (14)
O1—P1—C1—C271.83 (13)C3—C4—C5—C61.5 (2)
O2—P1—C1—C2165.68 (12)P2—C4—C5—C6175.95 (12)
O3—P1—C1—C246.70 (14)C4—C5—C6—O8179.76 (15)
O1—P1—C1—C6107.45 (13)C4—C5—C6—C10.7 (2)
O2—P1—C1—C615.04 (15)C2—C1—C6—O8179.40 (15)
O3—P1—C1—C6134.02 (13)P1—C1—C6—O81.3 (2)
C6—C1—C2—C30.2 (2)C2—C1—C6—C51.6 (2)
P1—C1—C2—C3179.06 (12)P1—C1—C6—C5177.73 (12)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.79 (2)1.91 (2)2.6510 (17)156 (3)
O8—H8A···O20.87 (3)1.73 (3)2.5846 (18)168 (3)
N1—H1A···O20.89 (2)1.88 (2)2.7168 (19)155.2 (18)
N1—H1B···O6vi0.89 (2)2.02 (2)2.8125 (19)148.3 (18)
N2—H2B···O3vii0.83 (3)2.07 (3)2.8558 (19)158 (2)
N2—H2C···O61.03 (2)1.63 (2)2.6518 (18)173 (2)
C7—H7C···O4ii0.91 (2)2.54 (2)3.443 (3)174 (2)
C9—H9B···O8viii1.03 (3)2.57 (2)3.445 (3)142.6 (19)
C10—H10A···O8viii0.92 (3)2.42 (3)3.236 (3)148 (3)
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1/2, y+3/2, z+1/2; (viii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

We thank St. Mary's University, the School of Science, Engineering and Technology, and the Department of Chemistry and Biochemistry for supporting undergraduate research. Single-crystal X-ray analyses were conducted at the Materials Characterization Facility of the Center of Sustainable Energy at the University of Notre Dame.

Funding information

Funding for this research was provided by: Welch Foundation Departmental Research Grant Program (grant No. U-0047); St. Mary's University Internal Faculty Research Grant Award.

References

First citationAdelani, P. O. & Albrecht-Schmitt, T. E. (2010). Angew. Chem. Int. Ed. 49, 8909–8911.  CSD CrossRef CAS Google Scholar
First citationBrousseau, L. C., Aurentz, D. J., Benesi, A. J. & Mallouk, T. E. (1997). Anal. Chem. 69, 688–694.  CrossRef CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133–o1135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClearfield, A. (1996). Curr. Opin. Solid State Mater. Sci. 1, 268–278.  CrossRef CAS Web of Science Google Scholar
First citationClearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510.  CrossRef CAS Google Scholar
First citationClearfield, A. (2002). Curr. Opin. Solid State Mater. Sci. 6, 495–506.  Web of Science CrossRef CAS Google Scholar
First citationDeria, P., Bury, W., Hod, I., Kung, C.-W., Karagiaridi, O., Hupp, J. T. & Farha, O. K. (2015). Inorg. Chem. 54, 2185–2192.  CrossRef CAS PubMed Google Scholar
First citationGagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHulushe, S. T., Hosten, E. C. & Watkins, G. M. (2016). Acta Cryst. E72, 1521–1525.  CSD CrossRef IUCr Journals Google Scholar
First citationKarpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491–o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKirumakki, S., Samarajeewa, S., Harwell, R., Mukherjee, A., Herber, R. H. & Clearfield, A. (2008). Chem. Commun. pp. 5556–5558.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiang, J. & Shimizu, G. K. H. (2007). Inorg. Chem. 46, 10449–10451.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMao, J.-G. (2007). Coord. Chem. Rev. 251, 1493–1520.  Web of Science CrossRef CAS Google Scholar
First citationRamaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. (2015). J. Am. Chem. Soc. 137, 7640–7643.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778.  CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-Z., Evangelisti, M. & Winpenny, R. E. P. (2011). Chem. Sci. 2, 99–102.  CSD CrossRef CAS Google Scholar
First citationZubieta, J., Zon, J., Brunet, E., Winpenny, R., Wright, P. A., Stock, N., Mao, J. G., Zheng, L.-M., Albrecht-Schmitt, T., Bujoli, B., Cahill, C., Murugavel, R., Rocha, J., Hix, G., Shimizu, G., Clearfield, A. & Demadis, K. (2011). Metal Phosphonate Chemistry: From Synthesis to Applications, 1st ed., edited by A. Clearfield & K. Demadis. UK: Royal Society of Chemistry.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds