research communications
and Hirshfeld surface analysis of 2-hydroxy-7-methoxy-1,8-bis(2,4,6-trichlorobenzoyl)naphthalene
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-trichlorobenzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intramolecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective intermolecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.
Keywords: crystal structure; non-coplanar accumulated aromatic rings structure; twisted aroyl group; intramolecular O—H⋯O hydrogen bond; short contacts involving chloro group; herringbone pattern; Hirshfeld surface analysis; two-dimensional fingerprint plots.
CCDC reference: 1950725
1. Chemical context
o-Hydroxyaryl are generally recognized to be important precursors in the preparation of valuable products such as drugs, cosmetics, dyes and pesticides (Choy & Kwong, 2013; Naeimi et al., 2014; Nimnual et al., 2015). The preparation methods reported include, for example, Fries rearrangement of phenolic (Murashige et al., 2011), acylation of benzoquinone and derivatives (Schiel et al., 2001), coupling reactions of with (Zhou & Larock, 2004), direct C—H bond arylation of 2-hydroxybenzaldehydes (Lee & Yi, 2015; Weng et al., 2010), and microwave-assisted direct benzoylation of under solvent-free or ionic liquid conditions (Tran et al., 2017). The neighbouring carbonyl and hydroxy groups contribute to the regio- and chemoselectivities in these reactions. Conformational studies of hydroxyaryl in the solid state and in solution have attracted considerable interest (Siskos et al., 2015; Nonhebel, 1968). Since the discovery of an effective method for diaroylation at the 1,8(peri)-positions of the naphthalene ring core and the related reactions (Okamoto & Yonezawa, 2009; Okamoto et al., 2011; Okamoto, Mitsui et al., 2012), we have reported on the spatial organization of 1,8-diaroylated naphthalenes and homologous compounds in both the solid state and solution (Okamoto, Watanabe et al., 2012; Yoshiwaka et al., 2015; Okamoto et al., 2015; Ohisa et al., 2018). In the crystal structures of these compounds, which have non-coplanar accumulated aromatic rings, molecules are arranged by weak intermolecular interactions, such as non-classical hydrogen bonds and van der Waals interactions. Thus, the accumulation structures of 1,8-diaroylated naphthalenes are drastically changed by simple molecular modifications. Herein, we report on the and Hirshfeld surface analysis of the title hydroxyaryl ketone, 2-hydroxy-7-methoxy-1,8-bis(2,4,6-trichlorobenzoyl)naphthalene.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. This compound consists of a naphthalene ring core with two 2,4,6-trichlorobenzoyl groups at the 1,8-positions, a hydroxy group at the 2-position, and a methoxy group at the 7-position of the naphthalene ring system, affording an unsymmetrical molecular structure.
Analogous aroylated unsymmetrical naphthalene compounds, for example, 1,8-bis(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene (Mitsui, Nagasawa, Noguchi et al., 2010) and 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), have two aroyl groups at the 1,8-positions of the naphthalene ring system. The two 4-chlorobenzoyl groups have the same orientation with respect to the naphthalene ring core in 1,8-bis(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene, while they are in opposite directions in 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene. In contrast, in the title compound the carbonyl groups and the benzene rings of the 2,4,6-trichlorobenzoyl groups are located in distinct orientations with respect to the naphthalene ring plane: the two carbonyl groups are oriented in the same direction and are located roughly parallel to the naphthalene ring, whereas the two 2,4,6-trichlorobenzene rings are twisted away in opposite directions (Fig. 2). The dihedral angles of the carbonyl C—(C=O)—C plane [C1—(C11=O1)—C12 and C9—(C18=O2)—C19] and the naphthalene ring are 45.54 (15) and 30.02 (15)°, respectively. The carbonyl C—(C=O)—C plane and the 2,4,6-trichlorobenzene ring in the 8-position of the naphthalene ring forms a larger dihedral angle than that in 1-position [C19–C24 ring and C12–C17 ring], 79.78 (16)° versus 46.39 (16)°. The two carbonyl C—(C=O)—C planes make a large dihedral angle, 73.68 (19)°. Furthermore, the naphthalene ring plane is somewhat distorted, the C6—C5—C10—C9 and C4—C5—C10—C1 torsion angles being 10.2 (4) and 6.1 (5)°, respectively.
The intramolecular O—H⋯O=C hydrogen bond forms a six-membered S(6) ring motif (O3—H3A⋯O1; Figs. 1 and 2, Table 1). In addition, one chloro atom of the trichlorobenzoyl group at the 1-position of the naphthalene ring system makes two short intramolecular Cl⋯O=C contacts [Cl1⋯O1 = 3.018 (2) Å and Cl1⋯O2 = 2.969 (2) Å]. 1-Aroyl-2-hydroxynaphthalene homologues often form intramolecular O—H⋯O=C hydrogen bonds whether the second aroyl group is present or not, e.g., 1-benzoyl-2-hydroxy-7-methoxynaphthalene (Nagasawa, Mitsui, Kato et al., 2010), 2-hydroxy-7-methoxy-1-(4-methylbenzoyl)naphthalene (Nagasawa, Mitsui, Okamoto et al., 2010), 1-(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene (Mitsui et al., 2008) and 1,8-bis(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene (Mitsui, Nagasawa, Noguchi et al., 2010). The 2,4,6-trisubstituents in the benzene ring tend to bring about intramolecular short contacts involving the carbonyl oxygen atom: intramolecular C—H⋯O=C hydrogen bonds are observed in 2,7-dimethoxy-1,8-bis(2,4,6-trimethylbenzoyl)naphthalene (Muto et al., 2012a) and 1-(4-chlorobenzoyl)-2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalene (Muto et al., 2012b).
|
3. Supramolecular features
In the crystal, 21 helical molecular assemblies are observed along the b-axis direction (Fig. 3). The chloro groups in the assemblies are aligned in a herringbone pattern. There are no effective hydrogen bonds, instead, two kinds of short contacts involving chlorine atoms are observed; Cl6⋯O3i [3.224 (3) Å] and Cl3⋯C3i [3.370 (3) Å], symmetry code: (i) −x + 1, y + , − z (Fig. 3).
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm in the range −0.0895 to 1.1549 a.u., is shown in Fig. 4. The red points represent close contacts and negative dnorm values on the surface. The largest red point corresponds to the short contact of 3.078 (3) Å involving the carbonyl O atom, O1, and carbon atom C23i [symmetry code: (i) x, −y + , z − ], while the other red points around the naphthalene ring indicate short Cl⋯H interactions.
The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5, revealing the intermolecular contacts and their percentage distributions on the Hirshfeld surface. Not surprisingly the Cl⋯H/H⋯Cl contacts (31.0%) are present as a major contributor, while C⋯H/H⋯C (14.8%), H⋯H (14.0%), O⋯H/H⋯O (12.8%), Cl⋯Cl (11.0%), Cl⋯C/C⋯Cl (8.2%), Cl⋯O/O⋯Cl (3.9%), C⋯C (3.0%) and O⋯C/C⋯O (1.3%) contacts also make significant contributions to the Hirshfeld surface.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, last update November 2018; Groom et al., 2016) of the 2-hydroxy-1-benzoylnaphthalene moiety of the title compound yield 16 hits. These include compounds with a similar aroylnaphthalene unit and other polycyclic aromatic hydrocarbon moieties (CSD refcode ITUXOM: Ji et al., 2016; PIRLUX: Freeman et al., 1994; VUDFAC: Luo & Yu, 2009; VUDFEG: Luo & Yu, 2009). A search with a 1-benzoyl group bonded to the 2-hydroxynaphthalene framework gave 12 hits. Among these, three had bromo group(s) at the 8-position, 3,8-positions, and 3,6-positions of the naphthalene ring core, viz. PUKGIM (Mitsui, Nakaema, Nagasawa et al., 2010), YUNWOP (Mitsui, Watanabe et al., 2010) and YUPWEM (Mitsui, Nagasawa, Watanabe et al., 2010). Four compounds had an 8-benzoyl group, i.e., 1,8-diaroylated naphthalene compounds, viz. CIQBUB (Mohri et al., 2013), LESLOM (Hijikata et al., 2013), YUQBOC (Mitsui, Nagasawa, Noguchi et al., 2010) and YUQBOC1 (Okamoto, Mitsui et al., 2012). The remaining five compounds have a single 1-benzoyl-2-hydroxynaphthalene moiety, viz. KABJUU (Nagasawa, Mitsui, Kato et al., 2010), UCUHAE (Okamoto et al., 2014), VABBEH (Nagasawa, Mitsui, Okamoto et al., 2010), VOJFOQ (Mitsui et al., 2008) and VOJFQ01 (Okamoto, Mitsui et al., 2012). These structures have p-substituted or unsubstituted benzoyl group(s). The structure most similar to the title compound is 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalen-2-ol ethanol solvate, for which there are two reports; refcodes YUQBOC and YUQBOC01.
6. Synthesis and crystallization
To a 10 ml eggplant flask equipped with a nitrogen bulb, 2,4,6-trichlorobenzoyl chloride (0.0938 ml, 0.6 mmol), dichloromethane (0.5 ml), titanium tetrachloride (0.1972 ml, 1.8 mmol), and finally 2,7-dimethoxynaphthalene (37.6 mg, 0.2 mmol) were introduced sequentially. The reaction mixture was stirred at ambient temperature for 6 h, then it was poured into ice–water. The resulting mixture was extracted with chloroform (3 × 20 ml), then the organic layer was washed with saturated aqueous NaCl solution (3 × 20 ml) and dried over granular MgSO4. The solvent was removed by evaporation to yield a crude product of purple viscous liquid, which was crystallized from hot (hexane/CHCl3) to give yellow plate-like crystals (isolated yield 24%; m.p. 493–497 K).
1H NMR δ (300 MHz, DMSO-d6); 3.59 (3H, s), 7.01 (1H, d, J = 8.4 Hz), 7.34 (1H, d, J = 9.3 Hz), 7.66 (2H, s), 7.70 (2H, s), 8.04 (1H, d, J = 8.7 Hz), 8.09 (1H, d, J = 9.0 Hz) ppm.
1H NMR δ (300 MHz, CDCl3); 3.45 (3H, s), 6.95 (1H, br), 7.02 (1H, d, J = 8.7 Hz), 7.20 (2H, br), 7.21 (1H, d, J = 9.0 Hz), 7.42 (1H, br), 7.90 (1H, d, J = 8.4 Hz), 8.01 (1H, d, J = 9.0 Hz) ppm.
13C NMR δ (100 MHz, CDCl3); 56.64, 110.35, 114.82, 117.67, 119.13, 119.38, 124.45, 127.37, 133.42, 133.68, 134.14, 135.42, 135.51, 136.69, 136.80, 139.15, 140.88, 165.60, 166.21, 185.98, 191.21 ppm.
IR (KBr); 1629 (C=O), 1600, 1510, 1442 (Ar, naphthalene), 1289 (=C—O—C) cm−1.
7. Refinement
Crystal data, data collection and structure . All of the H atoms were found in a difference-Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.96 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1950725
https://doi.org/10.1107/S2056989019012118/su5512sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012118/su5512Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019012118/su5512Isup3.cdx
1H NMR spectrum (in CDCl3, from -0.5 ppm to 12.5 ppm). DOI: https://doi.org/10.1107/S2056989019012118/su5512sup4.pdf
1H NMR spectrum (in CDCl3, from 6.5 ppm to 8.5 ppm). DOI: https://doi.org/10.1107/S2056989019012118/su5512sup5.pdf
13C NMR spectrum (in CDCl3). DOI: https://doi.org/10.1107/S2056989019012118/su5512sup6.pdf
IR spectrum. DOI: https://doi.org/10.1107/S2056989019012118/su5512sup7.pdf
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C25H12Cl6O4 | F(000) = 1184 |
Mr = 589.05 | Dx = 1.661 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ybc | Cell parameters from 28116 reflections |
a = 17.9667 (4) Å | θ = 3.0–68.3° |
b = 7.9150 (1) Å | µ = 6.95 mm−1 |
c = 17.6995 (5) Å | T = 193 K |
β = 110.673 (1)° | Platelet, yellow |
V = 2354.91 (9) Å3 | 0.40 × 0.40 × 0.20 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 4300 independent reflections |
Radiation source: rotaing anode | 3737 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.110 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.3°, θmin = 5.1° |
ω scans | h = −21→21 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.168, Tmax = 0.337 | l = −21→21 |
41619 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0625P)2 + 1.5934P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4300 reflections | Δρmax = 0.50 e Å−3 |
319 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00166 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13592 (4) | 0.62787 (10) | 0.05084 (5) | 0.0543 (2) | |
Cl2 | 0.00708 (5) | 0.06020 (13) | 0.10904 (5) | 0.0645 (3) | |
Cl3 | 0.32240 (4) | 0.09099 (9) | 0.20159 (4) | 0.0477 (2) | |
Cl4 | 0.09824 (5) | 0.59970 (12) | 0.24340 (5) | 0.0634 (3) | |
Cl5 | 0.10530 (6) | 1.19664 (13) | 0.39062 (6) | 0.0703 (3) | |
Cl6 | 0.37761 (4) | 0.90853 (10) | 0.39693 (4) | 0.0512 (2) | |
O1 | 0.30235 (12) | 0.5154 (3) | 0.07105 (12) | 0.0517 (5) | |
O2 | 0.26606 (11) | 0.6928 (3) | 0.20713 (11) | 0.0422 (5) | |
O3 | 0.44648 (13) | 0.4173 (3) | 0.11247 (14) | 0.0589 (6) | |
H3A | 0.4035 | 0.4583 | 0.0812 | 0.071* | |
O4 | 0.26290 (15) | 0.5184 (3) | 0.41656 (12) | 0.0613 (6) | |
C1 | 0.37736 (16) | 0.4494 (4) | 0.20717 (17) | 0.0413 (6) | |
C2 | 0.44482 (17) | 0.4097 (4) | 0.1885 (2) | 0.0492 (7) | |
C3 | 0.51384 (17) | 0.3460 (4) | 0.2480 (2) | 0.0571 (9) | |
H3 | 0.5593 | 0.3195 | 0.2347 | 0.069* | |
C4 | 0.51548 (18) | 0.3226 (4) | 0.3237 (2) | 0.0584 (9) | |
H4 | 0.5612 | 0.2728 | 0.3625 | 0.070* | |
C5 | 0.45068 (18) | 0.3702 (4) | 0.34747 (19) | 0.0509 (8) | |
C6 | 0.4532 (2) | 0.3417 (4) | 0.42678 (19) | 0.0604 (9) | |
H6 | 0.4992 | 0.2905 | 0.4644 | 0.072* | |
C7 | 0.3920 (2) | 0.3850 (4) | 0.45164 (19) | 0.0583 (9) | |
H7 | 0.3938 | 0.3581 | 0.5046 | 0.070* | |
C8 | 0.3262 (2) | 0.4701 (4) | 0.39744 (17) | 0.0511 (8) | |
C9 | 0.32242 (16) | 0.5103 (4) | 0.31878 (16) | 0.0409 (6) | |
C10 | 0.38174 (16) | 0.4428 (4) | 0.28935 (17) | 0.0418 (6) | |
C11 | 0.30243 (16) | 0.4589 (4) | 0.13587 (16) | 0.0403 (6) | |
C12 | 0.22876 (15) | 0.3656 (4) | 0.13489 (15) | 0.0379 (6) | |
C13 | 0.15151 (17) | 0.4292 (4) | 0.09543 (16) | 0.0431 (7) | |
C14 | 0.08428 (16) | 0.3378 (4) | 0.08818 (16) | 0.0464 (7) | |
H14 | 0.0331 | 0.3860 | 0.0625 | 0.056* | |
C15 | 0.09164 (16) | 0.1760 (4) | 0.11843 (17) | 0.0458 (7) | |
C16 | 0.16576 (17) | 0.1018 (4) | 0.15470 (16) | 0.0457 (7) | |
H16 | 0.1706 | −0.0115 | 0.1736 | 0.055* | |
C17 | 0.23220 (15) | 0.1976 (4) | 0.16237 (15) | 0.0386 (6) | |
C18 | 0.27267 (15) | 0.6515 (4) | 0.27587 (16) | 0.0395 (6) | |
C19 | 0.23318 (16) | 0.7726 (4) | 0.31692 (15) | 0.0398 (6) | |
C20 | 0.15062 (16) | 0.7704 (4) | 0.29719 (16) | 0.0452 (7) | |
C21 | 0.11036 (18) | 0.8971 (4) | 0.31971 (18) | 0.0500 (7) | |
H21 | 0.0543 | 0.8925 | 0.3057 | 0.060* | |
C22 | 0.15427 (18) | 1.0321 (4) | 0.36357 (18) | 0.0503 (7) | |
C23 | 0.23617 (18) | 1.0364 (4) | 0.38688 (17) | 0.0480 (7) | |
H23 | 0.2656 | 1.1279 | 0.4180 | 0.058* | |
C24 | 0.27431 (16) | 0.9059 (4) | 0.36436 (16) | 0.0424 (6) | |
C25 | 0.2684 (3) | 0.5207 (6) | 0.4997 (2) | 0.0862 (14) | |
H25A | 0.2202 | 0.5722 | 0.5036 | 0.103* | |
H25B | 0.3150 | 0.5868 | 0.5317 | 0.103* | |
H25C | 0.2736 | 0.4048 | 0.5205 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0419 (4) | 0.0540 (5) | 0.0572 (4) | 0.0039 (3) | 0.0054 (3) | 0.0116 (3) |
Cl2 | 0.0421 (4) | 0.0769 (6) | 0.0739 (5) | −0.0167 (4) | 0.0198 (4) | 0.0057 (4) |
Cl3 | 0.0375 (4) | 0.0437 (4) | 0.0543 (4) | 0.0019 (3) | 0.0067 (3) | 0.0027 (3) |
Cl4 | 0.0434 (4) | 0.0766 (6) | 0.0739 (5) | −0.0202 (4) | 0.0255 (4) | −0.0219 (4) |
Cl5 | 0.0680 (6) | 0.0673 (6) | 0.0806 (6) | 0.0184 (5) | 0.0324 (5) | −0.0061 (4) |
Cl6 | 0.0357 (4) | 0.0568 (5) | 0.0525 (4) | −0.0032 (3) | 0.0049 (3) | −0.0037 (3) |
O1 | 0.0434 (11) | 0.0682 (15) | 0.0466 (11) | −0.0015 (10) | 0.0198 (9) | 0.0071 (10) |
O2 | 0.0418 (10) | 0.0444 (11) | 0.0401 (10) | 0.0018 (9) | 0.0139 (8) | 0.0033 (8) |
O3 | 0.0461 (12) | 0.0644 (16) | 0.0731 (15) | 0.0009 (11) | 0.0297 (11) | −0.0043 (12) |
O4 | 0.0764 (16) | 0.0679 (16) | 0.0452 (12) | −0.0017 (13) | 0.0284 (11) | 0.0088 (11) |
C1 | 0.0307 (13) | 0.0372 (15) | 0.0531 (16) | −0.0021 (11) | 0.0111 (12) | −0.0008 (12) |
C2 | 0.0356 (15) | 0.0438 (18) | 0.0666 (19) | −0.0069 (13) | 0.0161 (14) | −0.0040 (14) |
C3 | 0.0312 (15) | 0.0483 (19) | 0.086 (2) | −0.0005 (13) | 0.0137 (15) | −0.0100 (17) |
C4 | 0.0330 (15) | 0.0430 (18) | 0.079 (2) | 0.0006 (13) | −0.0053 (15) | −0.0020 (16) |
C5 | 0.0391 (16) | 0.0430 (18) | 0.0542 (17) | −0.0043 (13) | −0.0037 (13) | −0.0053 (13) |
C6 | 0.057 (2) | 0.0471 (19) | 0.0503 (18) | −0.0023 (16) | −0.0145 (15) | 0.0031 (14) |
C7 | 0.069 (2) | 0.052 (2) | 0.0395 (16) | −0.0097 (17) | 0.0013 (15) | 0.0044 (14) |
C8 | 0.0587 (19) | 0.0451 (18) | 0.0425 (15) | −0.0083 (15) | 0.0093 (14) | 0.0011 (13) |
C9 | 0.0370 (14) | 0.0414 (16) | 0.0382 (14) | −0.0050 (12) | 0.0057 (11) | 0.0009 (12) |
C10 | 0.0332 (14) | 0.0337 (15) | 0.0497 (15) | −0.0041 (11) | 0.0036 (11) | 0.0001 (12) |
C11 | 0.0361 (14) | 0.0421 (16) | 0.0414 (14) | 0.0020 (12) | 0.0123 (11) | −0.0003 (12) |
C12 | 0.0336 (13) | 0.0445 (16) | 0.0332 (13) | −0.0010 (12) | 0.0090 (10) | −0.0010 (11) |
C13 | 0.0384 (14) | 0.0486 (17) | 0.0371 (14) | 0.0000 (13) | 0.0068 (11) | 0.0021 (12) |
C14 | 0.0324 (14) | 0.061 (2) | 0.0421 (15) | 0.0021 (13) | 0.0085 (11) | −0.0004 (13) |
C15 | 0.0350 (14) | 0.059 (2) | 0.0423 (15) | −0.0096 (13) | 0.0124 (11) | −0.0020 (13) |
C16 | 0.0418 (16) | 0.0502 (19) | 0.0429 (15) | −0.0053 (13) | 0.0121 (12) | 0.0032 (13) |
C17 | 0.0329 (13) | 0.0451 (16) | 0.0351 (13) | 0.0006 (12) | 0.0088 (10) | −0.0021 (11) |
C18 | 0.0312 (13) | 0.0440 (16) | 0.0398 (14) | −0.0047 (12) | 0.0080 (11) | 0.0000 (12) |
C19 | 0.0358 (13) | 0.0473 (17) | 0.0367 (13) | −0.0022 (12) | 0.0132 (11) | 0.0027 (12) |
C20 | 0.0366 (14) | 0.0576 (19) | 0.0413 (14) | −0.0087 (13) | 0.0138 (11) | −0.0023 (13) |
C21 | 0.0383 (15) | 0.067 (2) | 0.0480 (16) | 0.0024 (14) | 0.0186 (13) | 0.0005 (15) |
C22 | 0.0510 (17) | 0.055 (2) | 0.0489 (16) | 0.0111 (15) | 0.0225 (14) | 0.0034 (14) |
C23 | 0.0494 (17) | 0.0501 (18) | 0.0421 (15) | 0.0006 (14) | 0.0132 (13) | −0.0025 (13) |
C24 | 0.0339 (14) | 0.0523 (18) | 0.0383 (14) | −0.0010 (12) | 0.0096 (11) | 0.0015 (12) |
C25 | 0.127 (4) | 0.090 (3) | 0.049 (2) | −0.016 (3) | 0.040 (2) | −0.003 (2) |
Cl1—C13 | 1.737 (3) | C7—H7 | 0.9500 |
Cl2—C15 | 1.731 (3) | C8—C9 | 1.406 (4) |
Cl3—C17 | 1.740 (3) | C9—C10 | 1.444 (4) |
Cl4—C20 | 1.728 (3) | C9—C18 | 1.465 (4) |
Cl5—C22 | 1.731 (3) | C11—C12 | 1.511 (4) |
Cl6—C24 | 1.738 (3) | C12—C13 | 1.408 (4) |
O1—C11 | 1.231 (3) | C12—C17 | 1.409 (4) |
O2—C18 | 1.224 (3) | C13—C14 | 1.374 (4) |
O3—C2 | 1.358 (4) | C14—C15 | 1.376 (5) |
O3—H3A | 0.8400 | C14—H14 | 0.9500 |
O4—C8 | 1.351 (4) | C15—C16 | 1.388 (4) |
O4—C25 | 1.441 (4) | C16—C17 | 1.380 (4) |
C1—C2 | 1.400 (4) | C16—H16 | 0.9500 |
C1—C10 | 1.430 (4) | C18—C19 | 1.522 (4) |
C1—C11 | 1.487 (4) | C19—C24 | 1.388 (4) |
C2—C3 | 1.407 (4) | C19—C20 | 1.399 (4) |
C3—C4 | 1.342 (5) | C20—C21 | 1.375 (4) |
C3—H3 | 0.9500 | C21—C22 | 1.391 (5) |
C4—C5 | 1.421 (5) | C21—H21 | 0.9500 |
C4—H4 | 0.9500 | C22—C23 | 1.381 (4) |
C5—C6 | 1.407 (5) | C23—C24 | 1.374 (4) |
C5—C10 | 1.422 (4) | C23—H23 | 0.9500 |
C6—C7 | 1.365 (5) | C25—H25A | 0.9800 |
C6—H6 | 0.9500 | C25—H25B | 0.9800 |
C7—C8 | 1.403 (5) | C25—H25C | 0.9800 |
C2—O3—H3A | 109.5 | C12—C13—Cl1 | 121.4 (2) |
C8—O4—C25 | 120.0 (3) | C13—C14—C15 | 119.5 (3) |
C2—C1—C10 | 119.4 (3) | C13—C14—H14 | 120.2 |
C2—C1—C11 | 114.3 (3) | C15—C14—H14 | 120.2 |
C10—C1—C11 | 125.0 (2) | C14—C15—C16 | 121.2 (3) |
O3—C2—C1 | 123.2 (3) | C14—C15—Cl2 | 119.6 (2) |
O3—C2—C3 | 115.8 (3) | C16—C15—Cl2 | 119.1 (3) |
C1—C2—C3 | 120.8 (3) | C17—C16—C15 | 117.9 (3) |
C4—C3—C2 | 120.0 (3) | C17—C16—H16 | 121.0 |
C4—C3—H3 | 120.0 | C15—C16—H16 | 121.0 |
C2—C3—H3 | 120.0 | C16—C17—C12 | 123.6 (3) |
C3—C4—C5 | 121.8 (3) | C16—C17—Cl3 | 115.1 (2) |
C3—C4—H4 | 119.1 | C12—C17—Cl3 | 121.1 (2) |
C5—C4—H4 | 119.1 | O2—C18—C9 | 123.1 (3) |
C6—C5—C4 | 120.7 (3) | O2—C18—C19 | 114.1 (2) |
C6—C5—C10 | 120.0 (3) | C9—C18—C19 | 122.4 (2) |
C4—C5—C10 | 119.2 (3) | C24—C19—C20 | 116.9 (3) |
C7—C6—C5 | 122.4 (3) | C24—C19—C18 | 122.0 (2) |
C7—C6—H6 | 118.8 | C20—C19—C18 | 120.3 (2) |
C5—C6—H6 | 118.8 | C21—C20—C19 | 122.6 (3) |
C6—C7—C8 | 118.7 (3) | C21—C20—Cl4 | 119.3 (2) |
C6—C7—H7 | 120.7 | C19—C20—Cl4 | 118.1 (2) |
C8—C7—H7 | 120.7 | C20—C21—C22 | 118.0 (3) |
O4—C8—C7 | 123.0 (3) | C20—C21—H21 | 121.0 |
O4—C8—C9 | 115.7 (3) | C22—C21—H21 | 121.0 |
C7—C8—C9 | 121.3 (3) | C23—C22—C21 | 121.3 (3) |
C8—C9—C10 | 119.3 (3) | C23—C22—Cl5 | 119.4 (3) |
C8—C9—C18 | 119.6 (3) | C21—C22—Cl5 | 119.3 (2) |
C10—C9—C18 | 119.2 (2) | C24—C23—C22 | 118.9 (3) |
C5—C10—C1 | 118.1 (3) | C24—C23—H23 | 120.6 |
C5—C10—C9 | 117.0 (3) | C22—C23—H23 | 120.6 |
C1—C10—C9 | 124.8 (2) | C23—C24—C19 | 122.2 (3) |
O1—C11—C1 | 120.8 (3) | C23—C24—Cl6 | 118.6 (2) |
O1—C11—C12 | 117.0 (2) | C19—C24—Cl6 | 119.2 (2) |
C1—C11—C12 | 120.8 (2) | O4—C25—H25A | 109.5 |
C13—C12—C17 | 115.1 (3) | O4—C25—H25B | 109.5 |
C13—C12—C11 | 122.5 (3) | H25A—C25—H25B | 109.5 |
C17—C12—C11 | 121.7 (2) | O4—C25—H25C | 109.5 |
C14—C13—C12 | 122.6 (3) | H25A—C25—H25C | 109.5 |
C14—C13—Cl1 | 116.0 (2) | H25B—C25—H25C | 109.5 |
C10—C1—C2—O3 | −178.1 (3) | C17—C12—C13—C14 | 3.5 (4) |
C11—C1—C2—O3 | 14.5 (4) | C11—C12—C13—C14 | 174.0 (3) |
C10—C1—C2—C3 | 7.0 (4) | C17—C12—C13—Cl1 | −175.0 (2) |
C11—C1—C2—C3 | −160.4 (3) | C11—C12—C13—Cl1 | −4.6 (4) |
O3—C2—C3—C4 | −175.3 (3) | C12—C13—C14—C15 | −1.8 (4) |
C1—C2—C3—C4 | 0.0 (5) | Cl1—C13—C14—C15 | 176.8 (2) |
C2—C3—C4—C5 | −3.9 (5) | C13—C14—C15—C16 | −1.4 (4) |
C3—C4—C5—C6 | 178.9 (3) | C13—C14—C15—Cl2 | −179.7 (2) |
C3—C4—C5—C10 | 0.8 (5) | C14—C15—C16—C17 | 2.5 (4) |
C4—C5—C6—C7 | −179.7 (3) | Cl2—C15—C16—C17 | −179.2 (2) |
C10—C5—C6—C7 | −1.6 (5) | C15—C16—C17—C12 | −0.5 (4) |
C5—C6—C7—C8 | −3.9 (5) | C15—C16—C17—Cl3 | −175.5 (2) |
C25—O4—C8—C7 | 15.0 (5) | C13—C12—C17—C16 | −2.3 (4) |
C25—O4—C8—C9 | −165.1 (3) | C11—C12—C17—C16 | −172.9 (3) |
C6—C7—C8—O4 | −179.8 (3) | C13—C12—C17—Cl3 | 172.3 (2) |
C6—C7—C8—C9 | 0.2 (5) | C11—C12—C17—Cl3 | 1.8 (4) |
O4—C8—C9—C10 | −171.3 (3) | C8—C9—C18—O2 | −179.4 (3) |
C7—C8—C9—C10 | 8.7 (4) | C10—C9—C18—O2 | 16.3 (4) |
O4—C8—C9—C18 | 24.5 (4) | C8—C9—C18—C19 | 8.5 (4) |
C7—C8—C9—C18 | −155.6 (3) | C10—C9—C18—C19 | −155.8 (3) |
C6—C5—C10—C1 | −172.0 (3) | O2—C18—C19—C24 | −91.9 (3) |
C4—C5—C10—C1 | 6.1 (4) | C9—C18—C19—C24 | 80.8 (4) |
C6—C5—C10—C9 | 10.2 (4) | O2—C18—C19—C20 | 77.3 (3) |
C4—C5—C10—C9 | −171.7 (3) | C9—C18—C19—C20 | −109.9 (3) |
C2—C1—C10—C5 | −9.9 (4) | C24—C19—C20—C21 | 3.1 (4) |
C11—C1—C10—C5 | 156.1 (3) | C18—C19—C20—C21 | −166.7 (3) |
C2—C1—C10—C9 | 167.7 (3) | C24—C19—C20—Cl4 | −176.2 (2) |
C11—C1—C10—C9 | −26.3 (4) | C18—C19—C20—Cl4 | 14.1 (4) |
C8—C9—C10—C5 | −13.6 (4) | C19—C20—C21—C22 | 0.2 (4) |
C18—C9—C10—C5 | 150.6 (3) | Cl4—C20—C21—C22 | 179.5 (2) |
C8—C9—C10—C1 | 168.7 (3) | C20—C21—C22—C23 | −2.6 (4) |
C18—C9—C10—C1 | −27.0 (4) | C20—C21—C22—Cl5 | 178.3 (2) |
C2—C1—C11—O1 | −36.1 (4) | C21—C22—C23—C24 | 1.6 (4) |
C10—C1—C11—O1 | 157.3 (3) | Cl5—C22—C23—C24 | −179.3 (2) |
C2—C1—C11—C12 | 130.2 (3) | C22—C23—C24—C19 | 2.0 (4) |
C10—C1—C11—C12 | −36.4 (4) | C22—C23—C24—Cl6 | −177.8 (2) |
O1—C11—C12—C13 | −47.0 (4) | C20—C19—C24—C23 | −4.2 (4) |
C1—C11—C12—C13 | 146.3 (3) | C18—C19—C24—C23 | 165.4 (3) |
O1—C11—C12—C17 | 122.9 (3) | C20—C19—C24—Cl6 | 175.5 (2) |
C1—C11—C12—C17 | −43.9 (4) | C18—C19—C24—Cl6 | −14.9 (4) |
Funding information
This work was partially supported by a Tokyo Ohka Foundation for The Promotion of Science and Technology Research Promotion Grant.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Choy, P. Y. & Kwong, F. Y. (2013). Org. Lett. 15, 270–273. Web of Science CrossRef CAS PubMed Google Scholar
Freeman, D., Frolow, F., Kapinus, E., Lavie, D., Lavie, G., Meruelo, D. & Mazur, Y. (1994). J. Chem. Soc. Chem. Commun. pp. 891–892. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o208–o209. CSD CrossRef IUCr Journals Google Scholar
Ji, K., Yang, F., Gao, S., Tang, J.-J. & Gao, J. (2016). Chem. Eur. J. 22, 10225–10229. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lee, H. & Yi, C. S. (2015). Eur. J. Org. Chem. pp. 1899–1904. Web of Science CSD CrossRef Google Scholar
Luo, N. & Yu, Z. (2009). J. Organomet. Chem. 694, 3058–3067. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1761. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1304. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohri, S., Yoshiwaka, S., Isozaki, K., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. C69, 1541–1544. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murashige, R., Hayashi, Y., Ohmori, S., Torii, A., Aizu, Y., Muto, Y., Murai, Y., Oda, Y. & Hashimoto, M. (2011). Tetrahedron, 67, 641–649. Web of Science CrossRef CAS Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012a). Acta Cryst. E68, o23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012b). Acta Cryst. E68, o906. CSD CrossRef IUCr Journals Google Scholar
Naeimi, H., Amini, A. & Moradian, M. (2014). Org. Chem. Front. 1, 415–421. Web of Science CrossRef CAS Google Scholar
Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2677. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820–o2821. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nimnual, P., Tummatorn, J., Thongsornkleeb, C. & Ruchirawat, S. (2015). J. Org. Chem. 80, 8657–8667. Web of Science CrossRef CAS PubMed Google Scholar
Nonhebel, D. C. (1968). Tetrahedron, 24, 1869–1874. CrossRef CAS Web of Science Google Scholar
Ohisa, S., Saeki, M., Shiomichi, H., Yonezawa, N. & Okamoto, A. (2018). Eur. Chem. Bull. 7, 1–9. CrossRef CAS Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A., Mitsui, R., Watanabe, S., Tsubouchi, T. & Yonezawa, N. (2012). Int. J. Org. Chem. 02, 194–201. CSD CrossRef CAS Google Scholar
Okamoto, A., Nagasawa, A. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 263–268. Google Scholar
Okamoto, A., Watanabe, S., Nakaema, K. & Yonezawa, N. (2012). Cryst. Struc. Theo. Appl. 1, 121–127. Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2015). J. Syn. Org. Chem. Jpn. 73, 339–360. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schiel, C., Oelgemoller, M. & Mattay, J. (2001). Synthesis, pp. 1275–1279. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siskos, M. G., Tzakos, A. G. & Gerothanassis, I. P. (2015). Org. Biomol. Chem. 13, 8852–8868. Web of Science CrossRef CAS PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tran, P. H., Phung, H. Q., Duong, M. N. & Pham-Tran, N.-N. (2017). Tetrahedron Lett. 58, 1588–1563. Web of Science CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Weng, F., Wang, C. & Xu, B. (2010). Tetrahedron Lett. 51, 2593–2596. Web of Science CrossRef CAS Google Scholar
Yoshiwaka, S., Ogata, K., Yonezawa, N. & Okamoto, A. (2015). Eur. Chem. Bull. 4(4), 195–201. Google Scholar
Zhou, C. & Larock, R. C. (2004). J. Am. Chem. Soc. 126, 2302–2303. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.