research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-hy­dr­oxy-7-meth­­oxy-1,8-bis­­(2,4,6-tri­chloro­benzo­yl)naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 August 2019; accepted 2 September 2019; online 10 September 2019)

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.

1. Chemical context

o-Hydroxyaryl ketones are generally recognized to be important precursors in the preparation of valuable products such as drugs, cosmetics, dyes and pesticides (Choy & Kwong, 2013[Choy, P. Y. & Kwong, F. Y. (2013). Org. Lett. 15, 270-273.]; Naeimi et al., 2014[Naeimi, H., Amini, A. & Moradian, M. (2014). Org. Chem. Front. 1, 415-421.]; Nimnual et al., 2015[Nimnual, P., Tummatorn, J., Thongsornkleeb, C. & Ruchirawat, S. (2015). J. Org. Chem. 80, 8657-8667.]). The preparation methods reported include, for example, Fries rearrangement of phenolic esters (Murashige et al., 2011[Murashige, R., Hayashi, Y., Ohmori, S., Torii, A., Aizu, Y., Muto, Y., Murai, Y., Oda, Y. & Hashimoto, M. (2011). Tetrahedron, 67, 641-649.]), acyl­ation of benzo­quinone and derivatives (Schiel et al., 2001[Schiel, C., Oelgemoller, M. & Mattay, J. (2001). Synthesis, pp. 1275-1279.]), coupling reactions of nitriles with boronic acids (Zhou & Larock, 2004[Zhou, C. & Larock, R. C. (2004). J. Am. Chem. Soc. 126, 2302-2303.]), direct C—H bond aryl­ation of 2-hy­droxy­benzaldehydes (Lee & Yi, 2015[Lee, H. & Yi, C. S. (2015). Eur. J. Org. Chem. pp. 1899-1904.]; Weng et al., 2010[Weng, F., Wang, C. & Xu, B. (2010). Tetrahedron Lett. 51, 2593-2596.]), and microwave-assisted direct benzoyl­ation of phenols under solvent-free or ionic liquid conditions (Tran et al., 2017[Tran, P. H., Phung, H. Q., Duong, M. N. & Pham-Tran, N.-N. (2017). Tetrahedron Lett. 58, 1588-1563.]). The neighbouring carbonyl and hy­droxy groups contribute to the regio- and chemoselectivities in these reactions. Conformational studies of hydroxyaryl ketones in the solid state and in solution have attracted considerable inter­est (Siskos et al., 2015[Siskos, M. G., Tzakos, A. G. & Gerothanassis, I. P. (2015). Org. Biomol. Chem. 13, 8852-8868.]; Nonhebel, 1968[Nonhebel, D. C. (1968). Tetrahedron, 24, 1869-1874.]). Since the discovery of an effective method for diaroylation at the 1,8(peri)-positions of the naphthalene ring core and the related reactions (Okamoto & Yonezawa, 2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]; Okamoto et al., 2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]; Okamoto, Mitsui et al., 2012[Okamoto, A., Mitsui, R., Watanabe, S., Tsubouchi, T. & Yonezawa, N. (2012). Int. J. Org. Chem. 02, 194-201.]), we have reported on the spatial organization of 1,8-diaroylated naphthalenes and homologous compounds in both the solid state and solution (Okamoto, Watanabe et al., 2012[Okamoto, A., Watanabe, S., Nakaema, K. & Yonezawa, N. (2012). Cryst. Struc. Theo. Appl. 1, 121-127.]; Yoshiwaka et al., 2015[Yoshiwaka, S., Ogata, K., Yonezawa, N. & Okamoto, A. (2015). Eur. Chem. Bull. 4(4), 195-201.]; Okamoto et al., 2015[Okamoto, A. & Yonezawa, N. (2015). J. Syn. Org. Chem. Jpn. 73, 339-360.]; Ohisa et al., 2018[Ohisa, S., Saeki, M., Shiomichi, H., Yonezawa, N. & Okamoto, A. (2018). Eur. Chem. Bull. 7, 1-9.]). In the crystal structures of these compounds, which have non-coplanar accumulated aromatic rings, mol­ecules are arranged by weak inter­molecular inter­actions, such as non-classical hydrogen bonds and van der Waals inter­actions. Thus, the accumulation structures of 1,8-diaroylated naphthalenes are drastically changed by simple mol­ecular modifications. Herein, we report on the crystal structure and Hirshfeld surface analysis of the title hydroxyaryl ketone, 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. This compound consists of a naphthalene ring core with two 2,4,6-tri­chloro­benzoyl groups at the 1,8-positions, a hy­droxy group at the 2-position, and a meth­oxy group at the 7-position of the naphthalene ring system, affording an unsymmetrical mol­ecular structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Analogous aroylated unsymmetrical naphthalene compounds, for example, 1,8-bis­(4-chlorobenzo­yl)-2-hy­droxy-7-meth­oxy­naphthalene (Mitsui, Nagasawa, Noguchi et al., 2010[Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.]) and 1,8-bis­(4-chlorobenzo­yl)-2,7-dimeth­oxynaphthalene (Nakaema et al., 2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]), have two aroyl groups at the 1,8-positions of the naphthalene ring system. The two 4-chloro­benzoyl groups have the same orientation with respect to the naphthalene ring core in 1,8-bis­(4-chlorobenzo­yl)-2-hy­droxy-7-meth­oxy­naphthalene, while they are in opposite directions in 1,8-bis­(4-chlorobenzo­yl)-2,7-dimeth­oxynaphthalene. In contrast, in the title compound the carbonyl groups and the benzene rings of the 2,4,6-tri­chloro­benzoyl groups are located in distinct orientations with respect to the naphthalene ring plane: the two carbonyl groups are oriented in the same direction and are located roughly parallel to the naphthalene ring, whereas the two 2,4,6-tri­chloro­benzene rings are twisted away in opposite directions (Fig. 2[link]). The dihedral angles of the carbonyl C—(C=O)—C plane [C1—(C11=O1)—C12 and C9—(C18=O2)—C19] and the naphthalene ring are 45.54 (15) and 30.02 (15)°, respectively. The carbonyl C—(C=O)—C plane and the 2,4,6-tri­chloro­benzene ring in the 8-position of the naphthalene ring forms a larger dihedral angle than that in 1-position [C19–C24 ring and C12–C17 ring], 79.78 (16)° versus 46.39 (16)°. The two carbonyl C—(C=O)—C planes make a large dihedral angle, 73.68 (19)°. Furthermore, the naphthalene ring plane is somewhat distorted, the C6—C5—C10—C9 and C4—C5—C10—C1 torsion angles being 10.2 (4) and 6.1 (5)°, respectively.

[Figure 2]
Figure 2
View of the title compound showing the intra­molecular contacts; top view (left) and side view (right).

The intra­molecular O—H⋯O=C hydrogen bond forms a six-membered S(6) ring motif (O3—H3A⋯O1; Figs. 1[link] and 2[link], Table 1[link]). In addition, one chloro atom of the tri­chloro­benzoyl group at the 1-position of the naphthalene ring system makes two short intra­molecular Cl⋯O=C contacts [Cl1⋯O1 = 3.018 (2) Å and Cl1⋯O2 = 2.969 (2) Å]. 1-Aroyl-2-hy­droxy­naphthalene homologues often form intra­molecular O—H⋯O=C hydrogen bonds whether the second aroyl group is present or not, e.g., 1-benzoyl-2-hy­droxy-7-meth­oxy­naph­thalene (Nagasawa, Mitsui, Kato et al., 2010[Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2677.]), 2-hy­droxy-7-­meth­oxy-1-(4-methyl­benzo­yl)­naphthalene (Nagasawa, Mitsui, Okamoto et al., 2010[Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820-o2821.]), 1-(4-chloro­benzo­yl)-2-hy­droxy-7-­meth­oxynaphthalene (Mitsui et al., 2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]) and 1,8-bis­(4-chlorobenzo­yl)-2-hy­droxy-7-meth­oxy­naphthalene (Mitsui, Nagasawa, Noguchi et al., 2010[Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.]). The 2,4,6-trisubstituents in the benzene ring tend to bring about intra­molecular short contacts involving the carbonyl oxygen atom: intra­molecular C—H⋯O=C hydrogen bonds are observed in 2,7-dimeth­oxy-1,8-bis­(2,4,6-tri­methyl­benzo­yl)naphthalene (Muto et al., 2012a[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012a). Acta Cryst. E68, o23.]) and 1-(4-chloro­benzo­yl)-2,7-dimeth­oxy-8-(2,4,6-tri­methyl­benzo­yl)naphthalene (Muto et al., 2012b[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012b). Acta Cryst. E68, o906.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.84 1.82 2.551 (3) 145

3. Supra­molecular features

In the crystal, 21 helical mol­ecular assemblies are observed along the b-axis direction (Fig. 3[link]). The chloro groups in the assemblies are aligned in a herringbone pattern. There are no effective hydrogen bonds, instead, two kinds of short contacts involving chlorine atoms are observed; Cl6⋯O3i [3.224 (3) Å] and Cl3⋯C3i [3.370 (3) Å], symmetry code: (i) −x + 1, y + [{1\over 2}], [{1\over 2}] − z (Fig. 3[link]).

[Figure 3]
Figure 3
A view of the crystal packing of the title compound, showing the Cl⋯O and Cl⋯C short contacts. H atoms have been omitted for clarity.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm in the range −0.0895 to 1.1549 a.u., is shown in Fig. 4[link]. The red points represent close contacts and negative dnorm values on the surface. The largest red point corresponds to the short contact of 3.078 (3) Å involving the carbonyl O atom, O1, and carbon atom C23i [symmetry code: (i) x, −y + [3\over2], z − [1\over2]], while the other red points around the naphthalene ring indicate short Cl⋯H inter­actions.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm, in the range −0.0895 to 1.1549 a.u.

The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5[link], revealing the inter­molecular contacts and their percentage distributions on the Hirshfeld surface. Not surprisingly the Cl⋯H/H⋯Cl contacts (31.0%) are present as a major contributor, while C⋯H/H⋯C (14.8%), H⋯H (14.0%), O⋯H/H⋯O (12.8%), Cl⋯Cl (11.0%), Cl⋯C/C⋯Cl (8.2%), Cl⋯O/O⋯Cl (3.9%), C⋯C (3.0%) and O⋯C/C⋯O (1.3%) contacts also make significant contributions to the Hirshfeld surface.

[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for the title compound, and those delineated into (b) Cl⋯H/H⋯Cl, (c) C⋯H/H⋯C, (d) H⋯H, (e) O⋯H/H⋯O, (f) Cl⋯Cl, (g) Cl⋯C, (h) Cl⋯O, (i) C⋯C and (j) O⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of the 2-hy­droxy-1-benzoyl­naphthalene moiety of the title compound yield 16 hits. These include compounds with a similar aroyl­naphthalene unit and other polycyclic aromatic hydro­carbon moieties (CSD refcode ITUXOM: Ji et al., 2016[Ji, K., Yang, F., Gao, S., Tang, J.-J. & Gao, J. (2016). Chem. Eur. J. 22, 10225-10229.]; PIRLUX: Freeman et al., 1994[Freeman, D., Frolow, F., Kapinus, E., Lavie, D., Lavie, G., Meruelo, D. & Mazur, Y. (1994). J. Chem. Soc. Chem. Commun. pp. 891-892.]; VUDFAC: Luo & Yu, 2009[Luo, N. & Yu, Z. (2009). J. Organomet. Chem. 694, 3058-3067.]; VUDFEG: Luo & Yu, 2009[Luo, N. & Yu, Z. (2009). J. Organomet. Chem. 694, 3058-3067.]). A search with a 1-benzoyl group bonded to the 2-hy­droxy­naphthalene framework gave 12 hits. Among these, three had bromo group(s) at the 8-position, 3,8-positions, and 3,6-positions of the naphthalene ring core, viz. PUKGIM (Mitsui, Nakaema, Nagasawa et al., 2010[Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676.]), YUNWOP (Mitsui, Watanabe et al., 2010[Mitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1304.]) and YUPWEM (Mitsui, Nagasawa, Watanabe et al., 2010[Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1761.]). Four compounds had an 8-benzoyl group, i.e., 1,8-diaroylated naphthalene compounds, viz. CIQBUB (Mohri et al., 2013[Mohri, S., Yoshiwaka, S., Isozaki, K., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. C69, 1541-1544.]), LESLOM (Hijikata et al., 2013[Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o208-o209.]), YUQBOC (Mitsui, Nagasawa, Noguchi et al., 2010[Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.]) and YUQBOC1 (Okamoto, Mitsui et al., 2012[Okamoto, A., Mitsui, R., Watanabe, S., Tsubouchi, T. & Yonezawa, N. (2012). Int. J. Org. Chem. 02, 194-201.]). The remaining five compounds have a single 1-benzoyl-2-hy­droxy­naphthalene moiety, viz. KABJUU (Nagasawa, Mitsui, Kato et al., 2010[Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2677.]), UCUHAE (Okamoto et al., 2014[Okamoto, A., Nagasawa, A. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 263-268.]), VABBEH (Nagasawa, Mitsui, Okamoto et al., 2010[Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820-o2821.]), VOJFOQ (Mitsui et al., 2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]) and VOJFQ01 (Okamoto, Mitsui et al., 2012[Okamoto, A., Mitsui, R., Watanabe, S., Tsubouchi, T. & Yonezawa, N. (2012). Int. J. Org. Chem. 02, 194-201.]). These structures have p-substituted or unsubstituted benzoyl group(s). The structure most similar to the title compound is 1,8-bis­(4-chloro­benzo­yl)-7-meth­oxy­naphthalen-2-ol ethanol solvate, for which there are two reports; refcodes YUQBOC and YUQBOC01.

6. Synthesis and crystallization

To a 10 ml eggplant flask equipped with a nitro­gen bulb, 2,4,6-tri­chloro­benzoyl chloride (0.0938 ml, 0.6 mmol), di­chloro­methane (0.5 ml), titanium tetra­chloride (0.1972 ml, 1.8 mmol), and finally 2,7-di­meth­oxy­naphthalene (37.6 mg, 0.2 mmol) were introduced sequentially. The reaction mixture was stirred at ambient temperature for 6 h, then it was poured into ice–water. The resulting mixture was extracted with chloro­form (3 × 20 ml), then the organic layer was washed with saturated aqueous NaCl solution (3 × 20 ml) and dried over granular MgSO4. The solvent was removed by evaporation to yield a crude product of purple viscous liquid, which was crystallized from hot (hexa­ne/CHCl3) to give yellow plate-like crystals (isolated yield 24%; m.p. 493–497 K).

1H NMR δ (300 MHz, DMSO-d6); 3.59 (3H, s), 7.01 (1H, d, J = 8.4 Hz), 7.34 (1H, d, J = 9.3 Hz), 7.66 (2H, s), 7.70 (2H, s), 8.04 (1H, d, J = 8.7 Hz), 8.09 (1H, d, J = 9.0 Hz) ppm.

1H NMR δ (300 MHz, CDCl3); 3.45 (3H, s), 6.95 (1H, br), 7.02 (1H, d, J = 8.7 Hz), 7.20 (2H, br), 7.21 (1H, d, J = 9.0 Hz), 7.42 (1H, br), 7.90 (1H, d, J = 8.4 Hz), 8.01 (1H, d, J = 9.0 Hz) ppm.

13C NMR δ (100 MHz, CDCl3); 56.64, 110.35, 114.82, 117.67, 119.13, 119.38, 124.45, 127.37, 133.42, 133.68, 134.14, 135.42, 135.51, 136.69, 136.80, 139.15, 140.88, 165.60, 166.21, 185.98, 191.21 ppm.

IR (KBr); 1629 (C=O), 1600, 1510, 1442 (Ar, naphthalene), 1289 (=C—O—C) cm−1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All of the H atoms were found in a difference-Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.96 (meth­yl) Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C25H12Cl6O4
Mr 589.05
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 17.9667 (4), 7.9150 (1), 17.6995 (5)
β (°) 110.673 (1)
V3) 2354.91 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.95
Crystal size (mm) 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.168, 0.337
No. of measured, independent and observed [I > 2σ(I)] reflections 41619, 4300, 3737
Rint 0.110
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.06
No. of reflections 4300
No. of parameters 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.26
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

7-Methoxy-1,8-bis[(2,4,6-trichlorophenyl)carbonyl]naphthalen-2-ol top
Crystal data top
C25H12Cl6O4F(000) = 1184
Mr = 589.05Dx = 1.661 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 28116 reflections
a = 17.9667 (4) Åθ = 3.0–68.3°
b = 7.9150 (1) ŵ = 6.95 mm1
c = 17.6995 (5) ÅT = 193 K
β = 110.673 (1)°Platelet, yellow
V = 2354.91 (9) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4300 independent reflections
Radiation source: rotaing anode3737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 10.000 pixels mm-1θmax = 68.3°, θmin = 5.1°
ω scansh = 2121
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.168, Tmax = 0.337l = 2121
41619 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0625P)2 + 1.5934P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4300 reflectionsΔρmax = 0.50 e Å3
319 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00166 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13592 (4)0.62787 (10)0.05084 (5)0.0543 (2)
Cl20.00708 (5)0.06020 (13)0.10904 (5)0.0645 (3)
Cl30.32240 (4)0.09099 (9)0.20159 (4)0.0477 (2)
Cl40.09824 (5)0.59970 (12)0.24340 (5)0.0634 (3)
Cl50.10530 (6)1.19664 (13)0.39062 (6)0.0703 (3)
Cl60.37761 (4)0.90853 (10)0.39693 (4)0.0512 (2)
O10.30235 (12)0.5154 (3)0.07105 (12)0.0517 (5)
O20.26606 (11)0.6928 (3)0.20713 (11)0.0422 (5)
O30.44648 (13)0.4173 (3)0.11247 (14)0.0589 (6)
H3A0.40350.45830.08120.071*
O40.26290 (15)0.5184 (3)0.41656 (12)0.0613 (6)
C10.37736 (16)0.4494 (4)0.20717 (17)0.0413 (6)
C20.44482 (17)0.4097 (4)0.1885 (2)0.0492 (7)
C30.51384 (17)0.3460 (4)0.2480 (2)0.0571 (9)
H30.55930.31950.23470.069*
C40.51548 (18)0.3226 (4)0.3237 (2)0.0584 (9)
H40.56120.27280.36250.070*
C50.45068 (18)0.3702 (4)0.34747 (19)0.0509 (8)
C60.4532 (2)0.3417 (4)0.42678 (19)0.0604 (9)
H60.49920.29050.46440.072*
C70.3920 (2)0.3850 (4)0.45164 (19)0.0583 (9)
H70.39380.35810.50460.070*
C80.3262 (2)0.4701 (4)0.39744 (17)0.0511 (8)
C90.32242 (16)0.5103 (4)0.31878 (16)0.0409 (6)
C100.38174 (16)0.4428 (4)0.28935 (17)0.0418 (6)
C110.30243 (16)0.4589 (4)0.13587 (16)0.0403 (6)
C120.22876 (15)0.3656 (4)0.13489 (15)0.0379 (6)
C130.15151 (17)0.4292 (4)0.09543 (16)0.0431 (7)
C140.08428 (16)0.3378 (4)0.08818 (16)0.0464 (7)
H140.03310.38600.06250.056*
C150.09164 (16)0.1760 (4)0.11843 (17)0.0458 (7)
C160.16576 (17)0.1018 (4)0.15470 (16)0.0457 (7)
H160.17060.01150.17360.055*
C170.23220 (15)0.1976 (4)0.16237 (15)0.0386 (6)
C180.27267 (15)0.6515 (4)0.27587 (16)0.0395 (6)
C190.23318 (16)0.7726 (4)0.31692 (15)0.0398 (6)
C200.15062 (16)0.7704 (4)0.29719 (16)0.0452 (7)
C210.11036 (18)0.8971 (4)0.31971 (18)0.0500 (7)
H210.05430.89250.30570.060*
C220.15427 (18)1.0321 (4)0.36357 (18)0.0503 (7)
C230.23617 (18)1.0364 (4)0.38688 (17)0.0480 (7)
H230.26561.12790.41800.058*
C240.27431 (16)0.9059 (4)0.36436 (16)0.0424 (6)
C250.2684 (3)0.5207 (6)0.4997 (2)0.0862 (14)
H25A0.22020.57220.50360.103*
H25B0.31500.58680.53170.103*
H25C0.27360.40480.52050.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0419 (4)0.0540 (5)0.0572 (4)0.0039 (3)0.0054 (3)0.0116 (3)
Cl20.0421 (4)0.0769 (6)0.0739 (5)0.0167 (4)0.0198 (4)0.0057 (4)
Cl30.0375 (4)0.0437 (4)0.0543 (4)0.0019 (3)0.0067 (3)0.0027 (3)
Cl40.0434 (4)0.0766 (6)0.0739 (5)0.0202 (4)0.0255 (4)0.0219 (4)
Cl50.0680 (6)0.0673 (6)0.0806 (6)0.0184 (5)0.0324 (5)0.0061 (4)
Cl60.0357 (4)0.0568 (5)0.0525 (4)0.0032 (3)0.0049 (3)0.0037 (3)
O10.0434 (11)0.0682 (15)0.0466 (11)0.0015 (10)0.0198 (9)0.0071 (10)
O20.0418 (10)0.0444 (11)0.0401 (10)0.0018 (9)0.0139 (8)0.0033 (8)
O30.0461 (12)0.0644 (16)0.0731 (15)0.0009 (11)0.0297 (11)0.0043 (12)
O40.0764 (16)0.0679 (16)0.0452 (12)0.0017 (13)0.0284 (11)0.0088 (11)
C10.0307 (13)0.0372 (15)0.0531 (16)0.0021 (11)0.0111 (12)0.0008 (12)
C20.0356 (15)0.0438 (18)0.0666 (19)0.0069 (13)0.0161 (14)0.0040 (14)
C30.0312 (15)0.0483 (19)0.086 (2)0.0005 (13)0.0137 (15)0.0100 (17)
C40.0330 (15)0.0430 (18)0.079 (2)0.0006 (13)0.0053 (15)0.0020 (16)
C50.0391 (16)0.0430 (18)0.0542 (17)0.0043 (13)0.0037 (13)0.0053 (13)
C60.057 (2)0.0471 (19)0.0503 (18)0.0023 (16)0.0145 (15)0.0031 (14)
C70.069 (2)0.052 (2)0.0395 (16)0.0097 (17)0.0013 (15)0.0044 (14)
C80.0587 (19)0.0451 (18)0.0425 (15)0.0083 (15)0.0093 (14)0.0011 (13)
C90.0370 (14)0.0414 (16)0.0382 (14)0.0050 (12)0.0057 (11)0.0009 (12)
C100.0332 (14)0.0337 (15)0.0497 (15)0.0041 (11)0.0036 (11)0.0001 (12)
C110.0361 (14)0.0421 (16)0.0414 (14)0.0020 (12)0.0123 (11)0.0003 (12)
C120.0336 (13)0.0445 (16)0.0332 (13)0.0010 (12)0.0090 (10)0.0010 (11)
C130.0384 (14)0.0486 (17)0.0371 (14)0.0000 (13)0.0068 (11)0.0021 (12)
C140.0324 (14)0.061 (2)0.0421 (15)0.0021 (13)0.0085 (11)0.0004 (13)
C150.0350 (14)0.059 (2)0.0423 (15)0.0096 (13)0.0124 (11)0.0020 (13)
C160.0418 (16)0.0502 (19)0.0429 (15)0.0053 (13)0.0121 (12)0.0032 (13)
C170.0329 (13)0.0451 (16)0.0351 (13)0.0006 (12)0.0088 (10)0.0021 (11)
C180.0312 (13)0.0440 (16)0.0398 (14)0.0047 (12)0.0080 (11)0.0000 (12)
C190.0358 (13)0.0473 (17)0.0367 (13)0.0022 (12)0.0132 (11)0.0027 (12)
C200.0366 (14)0.0576 (19)0.0413 (14)0.0087 (13)0.0138 (11)0.0023 (13)
C210.0383 (15)0.067 (2)0.0480 (16)0.0024 (14)0.0186 (13)0.0005 (15)
C220.0510 (17)0.055 (2)0.0489 (16)0.0111 (15)0.0225 (14)0.0034 (14)
C230.0494 (17)0.0501 (18)0.0421 (15)0.0006 (14)0.0132 (13)0.0025 (13)
C240.0339 (14)0.0523 (18)0.0383 (14)0.0010 (12)0.0096 (11)0.0015 (12)
C250.127 (4)0.090 (3)0.049 (2)0.016 (3)0.040 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C131.737 (3)C7—H70.9500
Cl2—C151.731 (3)C8—C91.406 (4)
Cl3—C171.740 (3)C9—C101.444 (4)
Cl4—C201.728 (3)C9—C181.465 (4)
Cl5—C221.731 (3)C11—C121.511 (4)
Cl6—C241.738 (3)C12—C131.408 (4)
O1—C111.231 (3)C12—C171.409 (4)
O2—C181.224 (3)C13—C141.374 (4)
O3—C21.358 (4)C14—C151.376 (5)
O3—H3A0.8400C14—H140.9500
O4—C81.351 (4)C15—C161.388 (4)
O4—C251.441 (4)C16—C171.380 (4)
C1—C21.400 (4)C16—H160.9500
C1—C101.430 (4)C18—C191.522 (4)
C1—C111.487 (4)C19—C241.388 (4)
C2—C31.407 (4)C19—C201.399 (4)
C3—C41.342 (5)C20—C211.375 (4)
C3—H30.9500C21—C221.391 (5)
C4—C51.421 (5)C21—H210.9500
C4—H40.9500C22—C231.381 (4)
C5—C61.407 (5)C23—C241.374 (4)
C5—C101.422 (4)C23—H230.9500
C6—C71.365 (5)C25—H25A0.9800
C6—H60.9500C25—H25B0.9800
C7—C81.403 (5)C25—H25C0.9800
C2—O3—H3A109.5C12—C13—Cl1121.4 (2)
C8—O4—C25120.0 (3)C13—C14—C15119.5 (3)
C2—C1—C10119.4 (3)C13—C14—H14120.2
C2—C1—C11114.3 (3)C15—C14—H14120.2
C10—C1—C11125.0 (2)C14—C15—C16121.2 (3)
O3—C2—C1123.2 (3)C14—C15—Cl2119.6 (2)
O3—C2—C3115.8 (3)C16—C15—Cl2119.1 (3)
C1—C2—C3120.8 (3)C17—C16—C15117.9 (3)
C4—C3—C2120.0 (3)C17—C16—H16121.0
C4—C3—H3120.0C15—C16—H16121.0
C2—C3—H3120.0C16—C17—C12123.6 (3)
C3—C4—C5121.8 (3)C16—C17—Cl3115.1 (2)
C3—C4—H4119.1C12—C17—Cl3121.1 (2)
C5—C4—H4119.1O2—C18—C9123.1 (3)
C6—C5—C4120.7 (3)O2—C18—C19114.1 (2)
C6—C5—C10120.0 (3)C9—C18—C19122.4 (2)
C4—C5—C10119.2 (3)C24—C19—C20116.9 (3)
C7—C6—C5122.4 (3)C24—C19—C18122.0 (2)
C7—C6—H6118.8C20—C19—C18120.3 (2)
C5—C6—H6118.8C21—C20—C19122.6 (3)
C6—C7—C8118.7 (3)C21—C20—Cl4119.3 (2)
C6—C7—H7120.7C19—C20—Cl4118.1 (2)
C8—C7—H7120.7C20—C21—C22118.0 (3)
O4—C8—C7123.0 (3)C20—C21—H21121.0
O4—C8—C9115.7 (3)C22—C21—H21121.0
C7—C8—C9121.3 (3)C23—C22—C21121.3 (3)
C8—C9—C10119.3 (3)C23—C22—Cl5119.4 (3)
C8—C9—C18119.6 (3)C21—C22—Cl5119.3 (2)
C10—C9—C18119.2 (2)C24—C23—C22118.9 (3)
C5—C10—C1118.1 (3)C24—C23—H23120.6
C5—C10—C9117.0 (3)C22—C23—H23120.6
C1—C10—C9124.8 (2)C23—C24—C19122.2 (3)
O1—C11—C1120.8 (3)C23—C24—Cl6118.6 (2)
O1—C11—C12117.0 (2)C19—C24—Cl6119.2 (2)
C1—C11—C12120.8 (2)O4—C25—H25A109.5
C13—C12—C17115.1 (3)O4—C25—H25B109.5
C13—C12—C11122.5 (3)H25A—C25—H25B109.5
C17—C12—C11121.7 (2)O4—C25—H25C109.5
C14—C13—C12122.6 (3)H25A—C25—H25C109.5
C14—C13—Cl1116.0 (2)H25B—C25—H25C109.5
C10—C1—C2—O3178.1 (3)C17—C12—C13—C143.5 (4)
C11—C1—C2—O314.5 (4)C11—C12—C13—C14174.0 (3)
C10—C1—C2—C37.0 (4)C17—C12—C13—Cl1175.0 (2)
C11—C1—C2—C3160.4 (3)C11—C12—C13—Cl14.6 (4)
O3—C2—C3—C4175.3 (3)C12—C13—C14—C151.8 (4)
C1—C2—C3—C40.0 (5)Cl1—C13—C14—C15176.8 (2)
C2—C3—C4—C53.9 (5)C13—C14—C15—C161.4 (4)
C3—C4—C5—C6178.9 (3)C13—C14—C15—Cl2179.7 (2)
C3—C4—C5—C100.8 (5)C14—C15—C16—C172.5 (4)
C4—C5—C6—C7179.7 (3)Cl2—C15—C16—C17179.2 (2)
C10—C5—C6—C71.6 (5)C15—C16—C17—C120.5 (4)
C5—C6—C7—C83.9 (5)C15—C16—C17—Cl3175.5 (2)
C25—O4—C8—C715.0 (5)C13—C12—C17—C162.3 (4)
C25—O4—C8—C9165.1 (3)C11—C12—C17—C16172.9 (3)
C6—C7—C8—O4179.8 (3)C13—C12—C17—Cl3172.3 (2)
C6—C7—C8—C90.2 (5)C11—C12—C17—Cl31.8 (4)
O4—C8—C9—C10171.3 (3)C8—C9—C18—O2179.4 (3)
C7—C8—C9—C108.7 (4)C10—C9—C18—O216.3 (4)
O4—C8—C9—C1824.5 (4)C8—C9—C18—C198.5 (4)
C7—C8—C9—C18155.6 (3)C10—C9—C18—C19155.8 (3)
C6—C5—C10—C1172.0 (3)O2—C18—C19—C2491.9 (3)
C4—C5—C10—C16.1 (4)C9—C18—C19—C2480.8 (4)
C6—C5—C10—C910.2 (4)O2—C18—C19—C2077.3 (3)
C4—C5—C10—C9171.7 (3)C9—C18—C19—C20109.9 (3)
C2—C1—C10—C59.9 (4)C24—C19—C20—C213.1 (4)
C11—C1—C10—C5156.1 (3)C18—C19—C20—C21166.7 (3)
C2—C1—C10—C9167.7 (3)C24—C19—C20—Cl4176.2 (2)
C11—C1—C10—C926.3 (4)C18—C19—C20—Cl414.1 (4)
C8—C9—C10—C513.6 (4)C19—C20—C21—C220.2 (4)
C18—C9—C10—C5150.6 (3)Cl4—C20—C21—C22179.5 (2)
C8—C9—C10—C1168.7 (3)C20—C21—C22—C232.6 (4)
C18—C9—C10—C127.0 (4)C20—C21—C22—Cl5178.3 (2)
C2—C1—C11—O136.1 (4)C21—C22—C23—C241.6 (4)
C10—C1—C11—O1157.3 (3)Cl5—C22—C23—C24179.3 (2)
C2—C1—C11—C12130.2 (3)C22—C23—C24—C192.0 (4)
C10—C1—C11—C1236.4 (4)C22—C23—C24—Cl6177.8 (2)
O1—C11—C12—C1347.0 (4)C20—C19—C24—C234.2 (4)
C1—C11—C12—C13146.3 (3)C18—C19—C24—C23165.4 (3)
O1—C11—C12—C17122.9 (3)C20—C19—C24—Cl6175.5 (2)
C1—C11—C12—C1743.9 (4)C18—C19—C24—Cl614.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.841.822.551 (3)145
 

Funding information

This work was partially supported by a Tokyo Ohka Foundation for The Promotion of Science and Technology Research Promotion Grant.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationChoy, P. Y. & Kwong, F. Y. (2013). Org. Lett. 15, 270–273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFreeman, D., Frolow, F., Kapinus, E., Lavie, D., Lavie, G., Meruelo, D. & Mazur, Y. (1994). J. Chem. Soc. Chem. Commun. pp. 891–892.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o208–o209.  CSD CrossRef IUCr Journals Google Scholar
First citationJi, K., Yang, F., Gao, S., Tang, J.-J. & Gao, J. (2016). Chem. Eur. J. 22, 10225–10229.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, H. & Yi, C. S. (2015). Eur. J. Org. Chem. pp. 1899–1904.  Web of Science CSD CrossRef Google Scholar
First citationLuo, N. & Yu, Z. (2009). J. Organomet. Chem. 694, 3058–3067.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohri, S., Yoshiwaka, S., Isozaki, K., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. C69, 1541–1544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurashige, R., Hayashi, Y., Ohmori, S., Torii, A., Aizu, Y., Muto, Y., Murai, Y., Oda, Y. & Hashimoto, M. (2011). Tetrahedron, 67, 641–649.  Web of Science CrossRef CAS Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012a). Acta Cryst. E68, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012b). Acta Cryst. E68, o906.  CSD CrossRef IUCr Journals Google Scholar
First citationNaeimi, H., Amini, A. & Moradian, M. (2014). Org. Chem. Front. 1, 415–421.  Web of Science CrossRef CAS Google Scholar
First citationNagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820–o2821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimnual, P., Tummatorn, J., Thongsornkleeb, C. & Ruchirawat, S. (2015). J. Org. Chem. 80, 8657–8667.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonhebel, D. C. (1968). Tetrahedron, 24, 1869–1874.  CrossRef CAS Web of Science Google Scholar
First citationOhisa, S., Saeki, M., Shiomichi, H., Yonezawa, N. & Okamoto, A. (2018). Eur. Chem. Bull. 7, 1–9.  CrossRef CAS Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A., Mitsui, R., Watanabe, S., Tsubouchi, T. & Yonezawa, N. (2012). Int. J. Org. Chem. 02, 194–201.  CSD CrossRef CAS Google Scholar
First citationOkamoto, A., Nagasawa, A. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 263–268.  Google Scholar
First citationOkamoto, A., Watanabe, S., Nakaema, K. & Yonezawa, N. (2012). Cryst. Struc. Theo. Appl. 1, 121–127.  Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2015). J. Syn. Org. Chem. Jpn. 73, 339–360.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchiel, C., Oelgemoller, M. & Mattay, J. (2001). Synthesis, pp. 1275–1279.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiskos, M. G., Tzakos, A. G. & Gerothanassis, I. P. (2015). Org. Biomol. Chem. 13, 8852–8868.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTran, P. H., Phung, H. Q., Duong, M. N. & Pham-Tran, N.-N. (2017). Tetrahedron Lett. 58, 1588–1563.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationWeng, F., Wang, C. & Xu, B. (2010). Tetrahedron Lett. 51, 2593–2596.  Web of Science CrossRef CAS Google Scholar
First citationYoshiwaka, S., Ogata, K., Yonezawa, N. & Okamoto, A. (2015). Eur. Chem. Bull. 4(4), 195–201.  Google Scholar
First citationZhou, C. & Larock, R. C. (2004). J. Am. Chem. Soc. 126, 2302–2303.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds