research communications
α-SrZn5-Type BaZn2.6Cu2.4
aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp
Single crystals of the title compound barium zinc copper, BaCu2.6Zn2.4, were obtained from a sample prepared by heating metal chips of Ba, Cu, and Zn in an Ar atmosphere up to 973 K, followed by slow cooling. Single-crystal X-ray structure analysis revealed that BaCu2.6Zn2.4 crystallizes in an orthorhombic cell [a = 12.9858 (3), b = 5.2162 (1), and c = 6.6804 (2) Å] with an α-SrZn5-type structure (space group Pnma). The three-dimensional framework consists of Cu and Zn atoms, with Ba atoms in the tunnels extending in the b-axis direction. Although the Ba atom is larger than the Sr atom, the cell volume of BaCu2.6Zn2.4 [452.507 (19) Å3] is smaller than that of α-SrZn5 [466.08 Å3]. This decrease in volume can be attributed to the partial substitution of Cu atoms by Zn atoms in the framework because the Cu—Zn and Cu—Cu bonds are shorter than the Zn—Zn bond. The increase in Ba—Zn interatomic distances from the Sr—Zn distances is cancelled out by the partial replacement of Zn with Cu atoms, which leads to shorter average Ba—Zn/Cu distances.
Keywords: crystal structure; barium zinc copper.
CCDC reference: 1952238
1. Chemical context
In A–M binary systems (A = Ca, Sr, Ba, M = Zn, Cu), several phases are present such as AM, AM5, AM11, and AM13. AM5 phases appear except for A = Ba with M = Cu. CaZn5 (Häucke, 1940), CaCu5 (Häucke, 1940), β-SrZn5 (Bruzzone & Merlo, 1983), and SrCu5 (Bruzzone, 1966, 1971) crystallize in the hexagonal P6/mmm, and were reported to have the Kagome structure consisting of Zn or Cu atoms (Wendorff & Röhr, 2007). In addition to the high-temperature β-SrZn5 phase, there exists a low-temperature polymorph of α-SrZn5 in the orthorhombic Pnma (Baenziger & Conant, 1956; Bruzzone & Merlo, 1983; Wendorff & Röhr, 2007). BaZn5 is in the tetragonal Cmcm with a structure distorted from P6/mmm-type AM5 (Baenziger and Conant, 1956). In the present study, single crystals of a new ternary compound BaCu2.6Zn2.4 were synthesized, and the was analyzed by X-ray diffraction.
2. Structural commentary
The volume for the chemical formula unit of the title compound (113.12 Å3 per formula) calculated from the cell volume V = 452.507 (19) Å3 and Z = 4 is smaller than that of BaZn5 (120.43 Å3 per formula). The contains one Ba site (Ba1), one Cu site (Cu1), and three mixed sites of Zn and Cu (Zn/Cu2, Zn/Cu3, Zn/Cu4). As shown in Fig. 1, the Cu1 site is located inside the triangular prism composed of Zn/Cu2, Zn/Cu4, and four Zn/Cu3 sites. The refined occupancy for the Zn/Cu2 site is 0.735 (8)/0.265 (8), while the occupancies of Zn/Cu3 and Zn/Cu4 are almost equivalent at 0.555 (8)/0.445 (8) and 0.555 (4)/0.445 (4), respectively (Table 1). As shown in Table 2, the Cu1—Zn/Cu2 and Cu1—Zn/Cu4 bond lengths are 2.5958 (5) and 2.5840 (6) Å, respectively; Cu1—Zn/Cu3 bond lengths are 2.5664 (4) Å × 2 and 2.6001 (4) Å × 2. The average Cu—Zn/Cu distance is 2.5855 Å, which is shorter than the Zn1—Zn2, Zn1—Zn3, and Zn1—Zn4 distances in α-SrZn5 (2.6120 Å; Wendorff & Röhr 2007). The Zn/Cu2—Zn/Cu3 bond lengths are 2.5440 (4) Å × 2 and 2.5879 (4) Å × 2; Zn/Cu4—Zn/Cu3 bond lengths are 2.5576 (4) Å × 2 and 2.5756 (4) Å × 2; Zn/Cu3—Zn/Cu3 bond lengths are 2.6075 (5) and 2.6078 (5) Å; and the Zn/Cu4—Zn/Cu4 bond length is 2.8652 (3) Å × 2. These bonds are also shorter than those of SrZn5 [2.5622 (11) Å × 2 and 2.7260 (11) Å × 2; 2.5594 (11) Å × 2 and 2.6665 (11) Å × 2; 2.6452 (10) and 2.6539 (10) Å; 3.0018 (8) Å × 2], respectively. These shorter Cu—Zn/Cu bonds in BaCu2.6Zn2.4 are consistent with the Cu—Cu bond lengths in BaCu13 (2.49–2.68 Å, calculated using the data from Wendorff & Röhr, 2006), which are shorter than the Zn—Zn lengths for BaZn13 (2.60–2.94 Å, Bruzzone et al. 1985). The average Zn/Cu—Zn/Cu lengths for Ca(Zn1-xCux)5 (x = 0.97–0.6) decrease with increasing x (Merlo & Fornasini, 1985). In the title compound, the Cu1-centered triangular prisms align in the b- and c-axis directions by sharing the atoms of the Zn/Cu3 site, and form the framework of Cu and Zn atoms shown in Fig. 2.
|
The Ba1 sites are staggered along the array of the triangular prisms in the tunnel extending in the b-axis direction. The interatomic distance of Ba1—Ba1 [3.8503 (3) Å] is shorter than that of Sr1—Sr1 [4.0230 (13) Å] of α-SrZn5. The Ba1—Ba1—Ba1 angle [85.279 (9)°] is comparable to the Sr1—Sr1—Sr1 angle of α-SrZn5 [82.39 (3)°]. There are three Cu1 sites, three Zn/Cu2 sites, eight Zn/Cu3 sites, and three Zn/Cu4 sites around the Ba1 site (Table 2). The average distance of interatomic distances between these 17 sites and the Ba1 site (3.495 Å) is shorter than that between 17 Zn sites and the Ba site of BaZn5 (3.5832 Å), but is the same as that between 17 Sr sites and the Sr site of α-SrZn5 (3.495 Å).
Comparison between BaCu13 and BaZn13 having an isotypic structure showed that the atomic distance of Ba—Cu (3.42 Å, calculated using the data by Wendorff & Röhr, 2006) is shorter than that of Ba—Zn (3.59 Å, calculated using the data by Bruzzone et al., 1985). This result is consistent with the fact that the average distance between the Ba1 site and Cu or Zn/Cu sites becomes shorter than the average atomic distance of Ba—Zn in BaZn5. The lattice size of BaCu2.6Zn2.4 is expected to be larger than that of α-SrZn5 because the interatomic distance of Ba—Zn for BaZn13 is longer than that of Sr—Zn for SrZn13, both of which have the same type of structure. However, the cell constants and volume for BaCu2.6Zn2.4 are 0.3–2.0% and 3.0–3.9% smaller than those reported for α-SrZn5 [a = 13.15 (4), b = 5.32 (1), c = 6.72 (2) Å, V = 470.12 Å3 (Baenziger & Conant, 1956); a = 13.147 (7), b = 5.312 (2), c = 6.707 (3) Å, V = 468.4 Å3 (Bruzzone & Merlo, 1983); and a = 13.133 (3), b = 5.2991 (10), c = 6.6972 (13) Å, V = 466.08 Å3 (Wendorff & Röhr, 2007)]. The average interatomic distance between Ba and the framework forming Zn/Cu atoms in the title compound remains the same as the average Sr—Zn distance of α-SrZn5 by partial substitution of Cu with Zn atoms. Thus, the decrease in cell volume is caused by the introduction of the shorter Cu—Zn and Cu—Cu bonds in the BaCu2.6Zn2.4 framework.
3. Synthesis and crystallization
The title compound was prepared from pieces of Ba (Aldrich Chemicals, 99.9%), Cu (Kojundo Chemical Laboratory Co., Ltd., 99.99%), and Zn (Strem Chemicals Inc., 99.99%) metals with molar ratio of Ba:Cu:Zn = 1:1:1. The metals were placed in a BN crucible (Showa Denko Co., Ltd., purity 99.95%, outer diameter 8.5 mm, inner diameter 6.5 mm, depth 18 mm), which was then put inside a stainless-steel tube (SUS 316: outer diameter 12.7 mm, inner diameter 10.7 mm, height 80 mm) and sealed with a stainless-steel cap in an Ar-filled 2 and H2O < 1 ppm). The tube was heated to 933 K at a rate of 330 Kh−1 for 10 h, then slowly cooled at a rate of 10 Kh−1 to below 573 K. Finally, the sample was cooled to room temperature by shutting off the electric power to the heater of the furnace. The stainless-steel tube was cut in the Ar-filled The resulting product contained silver metallic single crystals of the title compound with size of several hundred µm. The surface color of the single crystals changed to metallic gold in air, but crystal decomposition did not occur. A thin layer formed by oxidation may have prevented the further oxidation of the sample. Single crystal XRD data collection was carried out in air. Another single crystal grain obtained from the same sample was buried in resin and polished with a SiC polishing sheet to verify the composition of the crystal by (EPMA, JEOL JXA-8200). A Ba:Cu:Zn atomic ratio of 1.01 ± 0.01:2.62 ± 0.10:2.37 ± 0.09 was obtained by measurements at seven points with the total weight percent of 94–98%. From the EPMA measurement, the chemical composition of the single crystal was determined to be BaCu2.6Zn2.4.
(MBRAUN; O4. Refinement
Crystal data, data collection, and structural . The initial structural model was constructed from the α-SrZn5 model by substituting the Ba1 site with the Sr1 site, and the Zn/Cu mixed sites with the four Zn sites. In the first stage of the sum of the occupancies for Cu and Zn atoms in each Zn/Cu site was constrained to be 1. After several iterations, the Cu occupancy for the Zn/Cu1 site became 0.98 (6), and then this site was set to be fully occupied by Cu only. The substitutional occupations of the other three Zn/Cu mixed sites were refined under the restriction that the total chemical composition should be Zn:Cu = 0.48:0.52, which was determined by EPMA.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1952238
https://doi.org/10.1107/S2056989019012532/vn2152sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012532/vn2152Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Crystal Maker X (CrystalMaker Software, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).BaCu2.60Zn2.40 | Dx = 6.744 Mg m−3 |
Mr = 459.5 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 198 reflections |
a = 12.9858 (3) Å | θ = 3.3–27.3° |
b = 5.2162 (1) Å | µ = 32.87 mm−1 |
c = 6.6804 (2) Å | T = 300 K |
V = 452.51 (2) Å3 | Chip, metallic light silver |
Z = 4 | 0.10 × 0.07 × 0.06 mm |
F(000) = 813.6 |
Bruker D8 QUEST diffractometer | 956 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.029 |
ω and σcans | θmax = 34.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −20→20 |
Tmin = 0.49, Tmax = 0.75 | k = −8→7 |
9003 measured reflections | l = −10→10 |
1038 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0069P)2 + 0.6738P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.017 | (Δ/σ)max = 0.003 |
wR(F2) = 0.032 | Δρmax = 0.96 e Å−3 |
S = 1.17 | Δρmin = −0.98 e Å−3 |
1038 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2015b, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
39 parameters | Extinction coefficient: 0.00318 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.41339 (2) | 0.2500 | 0.87119 (3) | 0.01724 (6) | |
Cu1 | 0.21263 (3) | 0.2500 | 0.17198 (6) | 0.01346 (8) | |
Zn2 | 0.21485 (3) | 0.2500 | 0.56053 (6) | 0.01585 (9) | 0.555 (8) |
Cu2 | 0.21485 (3) | 0.2500 | 0.56053 (6) | 0.01585 (9) | 0.445 (8) |
Zn3 | 0.35265 (2) | −0.00006 (5) | 0.36005 (4) | 0.01279 (7) | 0.555 (4) |
Cu3 | 0.35265 (2) | −0.00006 (5) | 0.36005 (4) | 0.01279 (7) | 0.445 (4) |
Zn4 | 0.01929 (3) | 0.2500 | 0.08049 (6) | 0.01551 (9) | 0.735 (8) |
Cu4 | 0.01929 (3) | 0.2500 | 0.08049 (6) | 0.01551 (9) | 0.265 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.01853 (10) | 0.01541 (10) | 0.01779 (10) | 0.000 | 0.00248 (7) | 0.000 |
Cu1 | 0.01259 (17) | 0.01619 (19) | 0.01161 (16) | 0.000 | −0.00309 (13) | 0.000 |
Zn2 | 0.01913 (19) | 0.01558 (19) | 0.01283 (17) | 0.000 | 0.00354 (14) | 0.000 |
Cu2 | 0.01913 (19) | 0.01558 (19) | 0.01283 (17) | 0.000 | 0.00354 (14) | 0.000 |
Zn3 | 0.01308 (12) | 0.01109 (13) | 0.01420 (13) | 0.00054 (9) | −0.00154 (9) | 0.00036 (9) |
Cu3 | 0.01308 (12) | 0.01109 (13) | 0.01420 (13) | 0.00054 (9) | −0.00154 (9) | 0.00036 (9) |
Zn4 | 0.01137 (16) | 0.01599 (19) | 0.01916 (19) | 0.000 | 0.00157 (13) | 0.000 |
Cu4 | 0.01137 (16) | 0.01599 (19) | 0.01916 (19) | 0.000 | 0.00157 (13) | 0.000 |
Ba1—Cu1i | 3.2916 (5) | Cu1—Zn3vii | 2.6001 (4) |
Ba1—Zn2 | 3.3097 (5) | Cu1—Zn3viii | 2.6001 (4) |
Ba1—Zn4ii | 3.3160 (5) | Cu1—Zn2ix | 2.8711 (2) |
Ba1—Zn2iii | 3.3429 (3) | Cu1—Zn2vii | 2.8711 (3) |
Ba1—Zn2iv | 3.3429 (3) | Zn2—Zn3x | 2.5440 (4) |
Ba1—Cu1iii | 3.3542 (3) | Zn2—Zn3iii | 2.5440 (4) |
Ba1—Cu1iv | 3.3542 (3) | Zn2—Zn3 | 2.5879 (4) |
Ba1—Zn4iii | 3.3672 (3) | Zn2—Zn3vi | 2.5879 (4) |
Ba1—Zn4iv | 3.3672 (3) | Zn3—Zn4ii | 2.5576 (4) |
Ba1—Zn3v | 3.6040 (3) | Zn3—Zn4iii | 2.5756 (4) |
Ba1—Zn3i | 3.6040 (3) | Zn3—Zn3xi | 2.6075 (5) |
Cu1—Zn3vi | 2.5664 (4) | Zn3—Zn3vi | 2.6087 (5) |
Cu1—Zn3 | 2.5664 (4) | Zn4—Zn4xii | 2.8652 (3) |
Cu1—Zn4 | 2.5840 (6) | Zn4—Zn4xiii | 2.8652 (3) |
Cu1—Zn2 | 2.5958 (5) | ||
Cu1i—Ba1—Zn2 | 76.456 (11) | Zn3iii—Zn2—Ba1ix | 121.722 (15) |
Cu1i—Ba1—Zn4ii | 152.125 (12) | Zn3—Zn2—Ba1ix | 122.810 (14) |
Zn2—Ba1—Zn4ii | 75.669 (11) | Zn3vi—Zn2—Ba1ix | 75.843 (9) |
Cu1i—Ba1—Zn2iii | 51.279 (6) | Cu1—Zn2—Ba1ix | 67.425 (9) |
Zn2—Ba1—Zn2iii | 81.327 (5) | Cu1iv—Zn2—Ba1ix | 63.436 (8) |
Zn4ii—Ba1—Zn2iii | 123.428 (7) | Cu1iii—Zn2—Ba1ix | 165.984 (15) |
Cu1i—Ba1—Zn2iv | 51.279 (6) | Ba1—Zn2—Ba1ix | 128.704 (6) |
Zn2—Ba1—Zn2iv | 81.327 (5) | Ba1vii—Zn2—Ba1ix | 102.556 (13) |
Zn4ii—Ba1—Zn2iv | 123.428 (7) | Zn3x—Zn2—Ba1xv | 64.323 (11) |
Zn2iii—Ba1—Zn2iv | 102.555 (13) | Zn3iii—Zn2—Ba1xv | 64.323 (11) |
Cu1i—Ba1—Cu1iii | 81.710 (5) | Zn3—Zn2—Ba1xv | 138.309 (12) |
Zn2—Ba1—Cu1iii | 51.038 (6) | Zn3vi—Zn2—Ba1xv | 138.309 (12) |
Zn4ii—Ba1—Cu1iii | 80.868 (9) | Cu1—Zn2—Ba1xv | 96.009 (15) |
Zn2iii—Ba1—Cu1iii | 45.610 (9) | Cu1iv—Zn2—Ba1xv | 107.206 (11) |
Zn2iv—Ba1—Cu1iii | 120.913 (11) | Cu1iii—Zn2—Ba1xv | 107.206 (11) |
Cu1i—Ba1—Cu1iv | 81.710 (5) | Ba1—Zn2—Ba1xv | 134.520 (11) |
Zn2—Ba1—Cu1iv | 51.038 (6) | Ba1vii—Zn2—Ba1xv | 63.193 (8) |
Zn4ii—Ba1—Cu1iv | 80.868 (9) | Ba1ix—Zn2—Ba1xv | 63.193 (8) |
Zn2iii—Ba1—Cu1iv | 120.913 (11) | Zn2vii—Zn3—Zn4ii | 132.457 (17) |
Zn2iv—Ba1—Cu1iv | 45.610 (9) | Zn2vii—Zn3—Cu1 | 68.362 (11) |
Cu1iii—Ba1—Cu1iv | 102.074 (12) | Zn4ii—Zn3—Cu1 | 114.601 (13) |
Cu1i—Ba1—Zn4iii | 123.899 (7) | Zn2vii—Zn3—Zn4iii | 114.379 (13) |
Zn2—Ba1—Zn4iii | 80.829 (9) | Zn4ii—Zn3—Zn4iii | 67.858 (9) |
Zn4ii—Ba1—Zn4iii | 50.766 (6) | Cu1—Zn3—Zn4iii | 174.066 (17) |
Zn2iii—Ba1—Zn4iii | 75.123 (8) | Zn2vii—Zn3—Zn2 | 115.282 (11) |
Zn2iv—Ba1—Zn4iii | 162.151 (12) | Zn4ii—Zn3—Zn2 | 104.336 (14) |
Cu1iii—Ba1—Zn4iii | 45.217 (9) | Cu1—Zn3—Zn2 | 60.479 (14) |
Cu1iv—Ba1—Zn4iii | 120.008 (10) | Zn4iii—Zn3—Zn2 | 113.935 (15) |
Cu1i—Ba1—Zn4iv | 123.899 (7) | Zn2vii—Zn3—Cu1iii | 105.132 (14) |
Zn2—Ba1—Zn4iv | 80.829 (9) | Zn4ii—Zn3—Cu1iii | 114.021 (16) |
Zn4ii—Ba1—Zn4iv | 50.766 (6) | Cu1—Zn3—Cu1iii | 114.595 (11) |
Zn2iii—Ba1—Zn4iv | 162.151 (12) | Zn4iii—Zn3—Cu1iii | 59.898 (13) |
Zn2iv—Ba1—Zn4iv | 75.123 (8) | Zn2—Zn3—Cu1iii | 67.204 (10) |
Cu1iii—Ba1—Zn4iv | 120.008 (10) | Zn2vii—Zn3—Zn3xi | 59.170 (7) |
Cu1iv—Ba1—Zn4iv | 45.217 (9) | Zn4ii—Zn3—Zn3xi | 120.663 (8) |
Zn4iii—Ba1—Zn4iv | 101.532 (12) | Cu1—Zn3—Zn3xi | 120.547 (7) |
Cu1i—Ba1—Zn3v | 43.406 (7) | Zn4iii—Zn3—Zn3xi | 59.590 (7) |
Zn2—Ba1—Zn3v | 113.437 (9) | Zn2—Zn3—Zn3xi | 120.266 (7) |
Zn4ii—Ba1—Zn3v | 156.251 (6) | Cu1iii—Zn3—Zn3xi | 59.906 (7) |
Zn2iii—Ba1—Zn3v | 80.241 (8) | Zn2vii—Zn3—Zn3vi | 120.829 (7) |
Zn2iv—Ba1—Zn3v | 42.758 (8) | Zn4ii—Zn3—Zn3vi | 59.337 (8) |
Cu1iii—Ba1—Zn3v | 122.288 (9) | Cu1—Zn3—Zn3vi | 59.453 (7) |
Cu1iv—Ba1—Zn3v | 88.359 (8) | Zn4iii—Zn3—Zn3vi | 120.410 (7) |
Zn4iii—Ba1—Zn3v | 149.290 (8) | Zn2—Zn3—Zn3vi | 59.734 (7) |
Zn4iv—Ba1—Zn3v | 107.404 (7) | Cu1iii—Zn3—Zn3vi | 120.095 (7) |
Cu1i—Ba1—Zn3i | 43.406 (7) | Zn3xi—Zn3—Zn3vi | 180.0 |
Zn2—Ba1—Zn3i | 113.437 (10) | Zn2vii—Zn3—Ba1xiv | 63.138 (9) |
Zn4ii—Ba1—Zn3i | 156.251 (6) | Zn4ii—Zn3—Ba1xiv | 76.764 (11) |
Zn2iii—Ba1—Zn3i | 42.758 (8) | Cu1—Zn3—Ba1xiv | 61.802 (11) |
Zn2iv—Ba1—Zn3i | 80.241 (8) | Zn4iii—Zn3—Ba1xiv | 124.057 (13) |
Cu1iii—Ba1—Zn3i | 88.359 (8) | Zn2—Zn3—Ba1xiv | 115.967 (11) |
Cu1iv—Ba1—Zn3i | 122.288 (9) | Cu1iii—Zn3—Ba1xiv | 168.248 (12) |
Zn4iii—Ba1—Zn3i | 107.404 (7) | Zn3xi—Zn3—Ba1xiv | 111.218 (4) |
Zn4iv—Ba1—Zn3i | 149.290 (8) | Zn3vi—Zn3—Ba1xiv | 68.782 (4) |
Zn3v—Ba1—Zn3i | 42.436 (9) | Zn2vii—Zn3—Ba1xvi | 76.752 (12) |
Zn3vi—Cu1—Zn3 | 61.093 (15) | Zn4ii—Zn3—Ba1xvi | 62.842 (9) |
Zn3vi—Cu1—Zn4 | 143.536 (12) | Cu1—Zn3—Ba1xvi | 124.350 (13) |
Zn3—Cu1—Zn4 | 143.535 (12) | Zn4iii—Zn3—Ba1xvi | 61.552 (11) |
Zn3vi—Cu1—Zn2 | 60.171 (12) | Zn2—Zn3—Ba1xvi | 167.121 (13) |
Zn3—Cu1—Zn2 | 60.171 (12) | Cu1iii—Zn3—Ba1xvi | 115.565 (11) |
Zn4—Cu1—Zn2 | 104.319 (19) | Zn3xi—Zn3—Ba1xvi | 69.067 (4) |
Zn3vi—Cu1—Zn3vii | 151.424 (19) | Zn3vi—Zn3—Ba1xvi | 110.932 (4) |
Zn3—Cu1—Zn3vii | 111.623 (8) | Ba1xiv—Zn3—Ba1xvi | 64.121 (6) |
Zn4—Cu1—Zn3vii | 59.580 (12) | Zn2vii—Zn3—Ba1vii | 60.831 (11) |
Zn2—Cu1—Zn3vii | 143.610 (13) | Zn4ii—Zn3—Ba1vii | 165.534 (13) |
Zn3vi—Cu1—Zn3viii | 111.623 (8) | Cu1—Zn3—Ba1vii | 61.739 (9) |
Zn3—Cu1—Zn3viii | 151.425 (19) | Zn4iii—Zn3—Ba1vii | 114.440 (11) |
Zn4—Cu1—Zn3viii | 59.580 (12) | Zn2—Zn3—Ba1vii | 61.359 (9) |
Zn2—Cu1—Zn3viii | 143.610 (13) | Cu1iii—Zn3—Ba1vii | 60.125 (11) |
Zn3vii—Cu1—Zn3viii | 60.188 (14) | Zn3xi—Zn3—Ba1vii | 69.329 (4) |
Zn3vi—Cu1—Zn2ix | 55.449 (11) | Zn3vi—Zn3—Ba1vii | 110.672 (4) |
Zn3—Cu1—Zn2ix | 110.868 (16) | Ba1xiv—Zn3—Ba1vii | 110.530 (8) |
Zn4—Cu1—Zn2ix | 104.914 (12) | Ba1xvi—Zn3—Ba1vii | 131.391 (8) |
Zn2—Cu1—Zn2ix | 104.812 (11) | Zn3xvii—Zn4—Zn3xviii | 61.325 (15) |
Zn3vii—Cu1—Zn2ix | 110.769 (15) | Zn3xvii—Zn4—Zn3viii | 153.278 (18) |
Zn3viii—Cu1—Zn2ix | 56.195 (11) | Zn3xviii—Zn4—Zn3viii | 112.142 (9) |
Zn3vi—Cu1—Zn2vii | 110.868 (16) | Zn3xvii—Zn4—Zn3vii | 112.142 (9) |
Zn3—Cu1—Zn2vii | 55.449 (11) | Zn3xviii—Zn4—Zn3vii | 153.278 (18) |
Zn4—Cu1—Zn2vii | 104.914 (12) | Zn3viii—Zn4—Zn3vii | 60.821 (15) |
Zn2—Cu1—Zn2vii | 104.812 (11) | Zn3xvii—Zn4—Cu1 | 141.749 (13) |
Zn3vii—Cu1—Zn2vii | 56.195 (11) | Zn3xviii—Zn4—Cu1 | 141.749 (13) |
Zn3viii—Cu1—Zn2vii | 110.769 (15) | Zn3viii—Zn4—Cu1 | 60.522 (12) |
Zn2ix—Cu1—Zn2vii | 130.57 (2) | Zn3vii—Zn4—Cu1 | 60.522 (12) |
Zn3vi—Cu1—Ba1xiv | 74.792 (12) | Zn3xvii—Zn4—Zn4xii | 56.370 (13) |
Zn3—Cu1—Ba1xiv | 74.792 (12) | Zn3xviii—Zn4—Zn4xii | 112.00 (2) |
Zn4—Cu1—Ba1xiv | 128.695 (16) | Zn3viii—Zn4—Zn4xii | 111.04 (2) |
Zn2—Cu1—Ba1xiv | 126.987 (17) | Zn3vii—Zn4—Zn4xii | 55.772 (13) |
Zn3vii—Cu1—Ba1xiv | 76.642 (12) | Cu1—Zn4—Zn4xii | 104.989 (16) |
Zn3viii—Cu1—Ba1xiv | 76.642 (12) | Zn3xvii—Zn4—Zn4xiii | 112.00 (2) |
Zn2ix—Cu1—Ba1xiv | 65.285 (11) | Zn3xviii—Zn4—Zn4xiii | 56.370 (13) |
Zn2vii—Cu1—Ba1xiv | 65.285 (11) | Zn3viii—Zn4—Zn4xiii | 55.772 (13) |
Zn3x—Zn2—Zn3iii | 61.660 (15) | Zn3vii—Zn4—Zn4xiii | 111.04 (2) |
Zn3x—Zn2—Zn3 | 154.64 (2) | Cu1—Zn4—Zn4xiii | 104.989 (16) |
Zn3iii—Zn2—Zn3 | 112.768 (8) | Zn4xii—Zn4—Zn4xiii | 131.08 (3) |
Zn3x—Zn2—Zn3vi | 112.768 (8) | Zn3xvii—Zn4—Ba1xvii | 77.904 (12) |
Zn3iii—Zn2—Zn3vi | 154.64 (2) | Zn3xviii—Zn4—Ba1xvii | 77.904 (12) |
Zn3—Zn2—Zn3vi | 60.531 (15) | Zn3viii—Zn4—Ba1xvii | 75.374 (12) |
Zn3x—Zn2—Cu1 | 141.503 (14) | Zn3vii—Zn4—Ba1xvii | 75.374 (12) |
Zn3iii—Zn2—Cu1 | 141.503 (14) | Cu1—Zn4—Ba1xvii | 128.184 (17) |
Zn3—Zn2—Cu1 | 59.350 (12) | Zn4xii—Zn4—Ba1xvii | 65.542 (15) |
Zn3vi—Zn2—Cu1 | 59.350 (12) | Zn4xiii—Zn4—Ba1xvii | 65.542 (15) |
Zn3x—Zn2—Cu1iv | 56.189 (10) | Zn3xvii—Zn4—Ba1ix | 121.676 (15) |
Zn3iii—Zn2—Cu1iv | 112.000 (16) | Zn3xviii—Zn4—Ba1ix | 74.638 (9) |
Zn3—Zn2—Cu1iv | 111.420 (16) | Zn3viii—Zn4—Ba1ix | 76.705 (9) |
Zn3vi—Zn2—Cu1iv | 56.601 (10) | Zn3vii—Zn4—Ba1ix | 123.655 (15) |
Cu1—Zn2—Cu1iv | 105.245 (11) | Cu1—Zn4—Ba1ix | 67.126 (9) |
Zn3x—Zn2—Cu1iii | 112.000 (16) | Zn4xii—Zn4—Ba1ix | 165.22 (2) |
Zn3iii—Zn2—Cu1iii | 56.189 (10) | Zn4xiii—Zn4—Ba1ix | 63.692 (10) |
Zn3—Zn2—Cu1iii | 56.601 (10) | Ba1xvii—Zn4—Ba1ix | 129.234 (6) |
Zn3vi—Zn2—Cu1iii | 111.420 (16) | Zn3xvii—Zn4—Ba1vii | 74.638 (9) |
Cu1—Zn2—Cu1iii | 105.245 (11) | Zn3xviii—Zn4—Ba1vii | 121.676 (15) |
Cu1iv—Zn2—Cu1iii | 130.57 (2) | Zn3viii—Zn4—Ba1vii | 123.655 (15) |
Zn3x—Zn2—Ba1 | 77.010 (12) | Zn3vii—Zn4—Ba1vii | 76.705 (9) |
Zn3iii—Zn2—Ba1 | 77.010 (12) | Cu1—Zn4—Ba1vii | 67.126 (9) |
Zn3—Zn2—Ba1 | 77.635 (12) | Zn4xii—Zn4—Ba1vii | 63.692 (10) |
Zn3vi—Zn2—Ba1 | 77.635 (12) | Zn4xiii—Zn4—Ba1vii | 165.22 (2) |
Cu1—Zn2—Ba1 | 129.470 (17) | Ba1xvii—Zn4—Ba1vii | 129.234 (6) |
Cu1iv—Zn2—Ba1 | 65.284 (11) | Ba1ix—Zn4—Ba1vii | 101.532 (12) |
Cu1iii—Zn2—Ba1 | 65.284 (11) | Zn3xvii—Zn4—Ba1xv | 63.718 (10) |
Zn3x—Zn2—Ba1vii | 121.722 (15) | Zn3xviii—Zn4—Ba1xv | 63.718 (11) |
Zn3iii—Zn2—Ba1vii | 74.105 (9) | Zn3viii—Zn4—Ba1xv | 139.660 (11) |
Zn3—Zn2—Ba1vii | 75.842 (9) | Zn3vii—Zn4—Ba1xv | 139.660 (11) |
Zn3vi—Zn2—Ba1vii | 122.810 (14) | Cu1—Zn4—Ba1xv | 96.897 (15) |
Cu1—Zn2—Ba1vii | 67.425 (9) | Zn4xii—Zn4—Ba1xv | 106.854 (15) |
Cu1iv—Zn2—Ba1vii | 165.984 (15) | Zn4xiii—Zn4—Ba1xv | 106.854 (15) |
Cu1iii—Zn2—Ba1vii | 63.436 (8) | Ba1xvii—Zn4—Ba1xv | 134.919 (13) |
Ba1—Zn2—Ba1vii | 128.704 (6) | Ba1ix—Zn4—Ba1xv | 63.342 (8) |
Zn3x—Zn2—Ba1ix | 74.105 (9) | Ba1vii—Zn4—Ba1xv | 63.342 (8) |
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, −y, z+1/2; (iv) −x+1/2, −y+1, z+1/2; (v) x, −y+1/2, z+1; (vi) x, −y+1/2, z; (vii) −x+1/2, −y, z−1/2; (viii) −x+1/2, y+1/2, z−1/2; (ix) −x+1/2, −y+1, z−1/2; (x) −x+1/2, y+1/2, z+1/2; (xi) x, −y−1/2, z; (xii) −x, −y, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1/2, y, −z+3/2; (xvi) −x+1, −y, −z+1; (xvii) x−1/2, y, −z+1/2; (xviii) x−1/2, −y+1/2, −z+1/2. |
Atom | x | y | z | Ueq | Occupancy |
Ba1 | 0.41339 (2) | 1/4 | 0.87119 (3) | 0.01724 (6) | 1 |
Cu1 | 0.21263 (3) | 1/4 | 0.17198 (6) | 0.01346 (8) | 1 |
Zn/Cu2 | 0.21485 (3) | 1/4 | 0.56053 (6) | 0.01585 (9) | 0.555 (8)/0.445 (8) |
Zn/Cu3 | 0.35265 (2) | -0.00006 (5) | 0.36005 (4) | 0.01279 (7) | 0.555 (4)/0.445 (4) |
Zn/Cu4 | 0.01929 (3) | 1/4 | 0.08049 (6) | 0.01551 (9) | 0.735 (8)/0.265 (8) |
Ba1—Cu1i | 3.2916 (5) | Cu1—Zn/Cu3ix | 2.5664 (4) |
Ba1—Zn/Cu2 | 3.3097 (5) | Cu1—Zn/Cu3 | 2.5664 (4) |
Ba1—Zn/Cu4ii | 3.3160 (5) | Cu1—Zn/Cu4 | 2.5840 (6) |
Ba1—Zn/Cu2iii | 3.3429 (3) | Cu1—Zn/Cu2 | 2.5958 (5) |
Ba1—Zn/Cu2iv | 3.3429 (3) | Cu1—Zn/Cu3xii | 2.6001 (4) |
Ba1—Cu1iii | 3.3542 (3) | Cu1—Zn/Cu3xiii | 2.6001 (4) |
Ba1—Cu1iv | 3.3542 (3) | Zn/Cu2—Zn/Cu3viii | 2.5440 (4) |
Ba1—Zn/Cu4iii | 3.3672 (3) | Zn/Cu2—Zn/Cu3iii | 2.5440 (4) |
Ba1—Zn/Cu4iv | 3.3672 (3) | Zn/Cu2—Zn/Cu3 | 2.5879 (4) |
Ba1—Zn/Cu3v | 3.6040 (3) | Zn/Cu2—Zn/Cu3ix | 2.5879 (4) |
Ba1—Zn/Cu3i | 3.6040 (3) | Zn/Cu3—Zn/Cu3xiv | 2.6075 (5) |
Ba1—Zn/Cu3vi | 3.6492 (3) | Zn/Cu3—Zn/Cu3ix | 2.6087 (5) |
Ba1—Zn/Cu3vii | 3.6492 (3) | Zn/Cu4—Zn/Cu3xv | 2.5576 (4) |
Ba1—Zn/Cu3iii | 3.6933 (3) | Zn/Cu4—Zn/Cu3xvi | 2.5576 (4) |
Ba1—Zn/Cu3viii | 3.6933 (3) | Zn/Cu4—Zn/Cu3xii | 2.5756 (4) |
Ba1—Zn/Cu3 | 3.7394 (3) | Zn/Cu4—Zn/Cu3xiii | 2.5756 (4) |
Ba1—Zn/Cu3ix | 3.7394 (3) | Zn/Cu4—Zn/Cu4xvii | 2.8652 (3) |
Ba1—Ba1x | 3.8503 (3) | Zn/Cu4—Zn/Cu4xviii | 2.8652 (3) |
Ba1—Ba1xi | 3.8502 (3) | ||
Ba1x—Ba1—Ba1xi | 85.279 (9) |
Symmetry codes: (i) x, y, z + 1; (ii) x + 1/2, y, -z + 1/2; (iii) -x + 1/2, -y, z + 1/2; (iv) -x + 1/2, -y + 1, z + 1/2; (v) x, -y + 1/2, z + 1; (vi) -x + 1, y + 1/2, -z + 1; (vii) -x + 1, -y, -z + 1; (viii) -x + 1/2, y + 1/2, z + 1/2; (ix) x, -y + 1/2, z; (x) -x + 1, -y + 1, -z + 2; (xi) -x + 1, -y, -z + 2; (xii) -x + 1/2, -y, z - 1/2; (xiii) -x + 1/2, y + 1/2, z - 1/2; (xiv) x, -y - 1/2, z; (xv) x - 1/2, y, -z + 1/2; (xvi) x - 1/2, -y + 1/2, -z + 1/2; (xvii) -x, -y, -z; (xviii) -x, -y + 1, -z. |
Acknowledgements
The authors wish to thank Mr T. Kamaya at the Central Analytical Facility (CAF), Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University for performing the EPMA analysis.
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP18H05347).
References
Baenziger, N. C. & Conant, J. W. (1956). Acta Cryst. 9, 361–364. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruzzone, G. (1966). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fs. Mat. Nat. 41, 90–96. CAS Google Scholar
Bruzzone, G. (1971). J. Less-Common Met. 25, 361–366. CrossRef ICSD CAS Google Scholar
Bruzzone, G., Ferretti, M. & Merlo, F. (1985). J. Less-Common Met. 114, 305–310. CrossRef ICSD CAS Web of Science Google Scholar
Bruzzone, G. & Merlo, F. (1983). J. Less-Common Met. 92, 75–79. CrossRef ICSD CAS Google Scholar
CrystalMaker Software (2003). CrystalMaker. CrystalMaker Software, Bicester, England. Google Scholar
Häucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17–22. Google Scholar
Merlo, F. & Fornasini, M. L. (1985). J. Less-Common Met. 109, 135–146. CrossRef ICSD CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wendorff, M. & Röhr, C. (2006). J. Alloys Compd. 421, 24–34. CrossRef ICSD CAS Google Scholar
Wendorff, M. & Röhr, C. (2007). Z. Naturforsch. B, 62, 1549–1562. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.