research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

α-SrZn5-Type solid solution, BaZn2.6Cu2.4

CROSSMARK_Color_square_no_text.svg

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp

Edited by A. Van der Lee, Université de Montpellier II, France (Received 29 August 2019; accepted 9 September 2019; online 20 September 2019)

Single crystals of the title compound barium zinc copper, BaCu2.6Zn2.4, were obtained from a sample prepared by heating metal chips of Ba, Cu, and Zn in an Ar atmosphere up to 973 K, followed by slow cooling. Single-crystal X-ray structure analysis revealed that BaCu2.6Zn2.4 crystallizes in an ortho­rhom­bic cell [a = 12.9858 (3), b = 5.2162 (1), and c = 6.6804 (2) Å] with an α-SrZn5-type structure (space group Pnma). The three-dimensional framework consists of Cu and Zn atoms, with Ba atoms in the tunnels extending in the b-axis direction. Although the Ba atom is larger than the Sr atom, the cell volume of BaCu2.6Zn2.4 [452.507 (19) Å3] is smaller than that of α-SrZn5 [466.08 Å3]. This decrease in volume can be attributed to the partial substitution of Cu atoms by Zn atoms in the framework because the Cu—Zn and Cu—Cu bonds are shorter than the Zn—Zn bond. The increase in Ba—Zn inter­atomic distances from the Sr—Zn distances is cancelled out by the partial replacement of Zn with Cu atoms, which leads to shorter average Ba—Zn/Cu distances.

1. Chemical context

In AM binary systems (A = Ca, Sr, Ba, M = Zn, Cu), several phases are present such as AM, AM5, AM11, and AM13. AM5 phases appear except for A = Ba with M = Cu. CaZn5 (Häucke, 1940[Häucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17-22.]), CaCu5 (Häucke, 1940[Häucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17-22.]), β-SrZn5 (Bruzzone & Merlo, 1983[Bruzzone, G. & Merlo, F. (1983). J. Less-Common Met. 92, 75-79.]), and SrCu5 (Bruzzone, 1966[Bruzzone, G. (1966). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fs. Mat. Nat. 41, 90-96.], 1971[Bruzzone, G. (1971). J. Less-Common Met. 25, 361-366.]) crystallize in the hexa­gonal space group P6/mmm, and were reported to have the Kagome structure consisting of Zn or Cu atoms (Wendorff & Röhr, 2007[Wendorff, M. & Röhr, C. (2007). Z. Naturforsch. B, 62, 1549-1562.]). In addition to the high-temperature β-SrZn5 phase, there exists a low-temperature polymorph of α-SrZn5 in the ortho­rhom­bic space group Pnma (Baenziger & Conant, 1956[Baenziger, N. C. & Conant, J. W. (1956). Acta Cryst. 9, 361-364.]; Bruzzone & Merlo, 1983[Bruzzone, G. & Merlo, F. (1983). J. Less-Common Met. 92, 75-79.]; Wendorff & Röhr, 2007[Wendorff, M. & Röhr, C. (2007). Z. Naturforsch. B, 62, 1549-1562.]). BaZn5 is in the tetra­gonal space group Cmcm with a structure distorted from P6/mmm-type AM5 (Baenziger and Conant, 1956[Baenziger, N. C. & Conant, J. W. (1956). Acta Cryst. 9, 361-364.]). In the present study, single crystals of a new ternary compound BaCu2.6Zn2.4 were synthesized, and the crystal structure was analyzed by X-ray diffraction.

2. Structural commentary

The volume for the chemical formula unit of the title compound (113.12 Å3 per formula) calculated from the cell volume V = 452.507 (19) Å3 and Z = 4 is smaller than that of BaZn5 (120.43 Å3 per formula). The asymmetric unit contains one Ba site (Ba1), one Cu site (Cu1), and three mixed sites of Zn and Cu (Zn/Cu2, Zn/Cu3, Zn/Cu4). As shown in Fig. 1[link], the Cu1 site is located inside the triangular prism composed of Zn/Cu2, Zn/Cu4, and four Zn/Cu3 sites. The refined occupancy for the Zn/Cu2 site is 0.735 (8)/0.265 (8), while the occupancies of Zn/Cu3 and Zn/Cu4 are almost equivalent at 0.555 (8)/0.445 (8) and 0.555 (4)/0.445 (4), respectively (Table 1[link]). As shown in Table 2[link], the Cu1—Zn/Cu2 and Cu1—Zn/Cu4 bond lengths are 2.5958 (5) and 2.5840 (6) Å, respectively; Cu1—Zn/Cu3 bond lengths are 2.5664 (4) Å × 2 and 2.6001 (4) Å × 2. The average Cu—Zn/Cu distance is 2.5855 Å, which is shorter than the Zn1—Zn2, Zn1—Zn3, and Zn1—Zn4 distances in α-SrZn5 (2.6120 Å; Wendorff & Röhr 2007[Wendorff, M. & Röhr, C. (2007). Z. Naturforsch. B, 62, 1549-1562.]). The Zn/Cu2—Zn/Cu3 bond lengths are 2.5440 (4) Å × 2 and 2.5879 (4) Å × 2; Zn/Cu4—Zn/Cu3 bond lengths are 2.5576 (4) Å × 2 and 2.5756 (4) Å × 2; Zn/Cu3—Zn/Cu3 bond lengths are 2.6075 (5) and 2.6078 (5) Å; and the Zn/Cu4—Zn/Cu4 bond length is 2.8652 (3) Å × 2. These bonds are also shorter than those of SrZn5 [2.5622 (11) Å × 2 and 2.7260 (11) Å × 2; 2.5594 (11) Å × 2 and 2.6665 (11) Å × 2; 2.6452 (10) and 2.6539 (10) Å; 3.0018 (8) Å × 2], respectively. These shorter Cu—Zn/Cu bonds in BaCu2.6Zn2.4 are consistent with the Cu—Cu bond lengths in BaCu13 (2.49–2.68 Å, calculated using the data from Wendorff & Röhr, 2006[Wendorff, M. & Röhr, C. (2006). J. Alloys Compd. 421, 24-34.]), which are shorter than the Zn—Zn lengths for BaZn13 (2.60–2.94 Å, Bruzzone et al. 1985[Bruzzone, G., Ferretti, M. & Merlo, F. (1985). J. Less-Common Met. 114, 305-310.]). The average Zn/Cu—Zn/Cu lengths for Ca(Zn1-xCux)5 (x = 0.97–0.6) decrease with increasing x (Merlo & Fornasini, 1985[Merlo, F. & Fornasini, M. L. (1985). J. Less-Common Met. 109, 135-146.]). In the title compound, the Cu1-centered triangular prisms align in the b- and c-axis directions by sharing the atoms of the Zn/Cu3 site, and form the framework of Cu and Zn atoms shown in Fig. 2[link].

Table 1
Fractional atomic coordinates and equivalent isotropic displacement parameters for BaCu2.6Zn2.4

Atom x y z Ueq Occupancy
Ba1 0.41339 (2) 1/4 0.87119 (3) 0.01724 (6) 1
Cu1 0.21263 (3) 1/4 0.17198 (6) 0.01346 (8) 1
Zn/Cu2 0.21485 (3) 1/4 0.56053 (6) 0.01585 (9) 0.555 (8)/0.445 (8)
Zn/Cu3 0.35265 (2) −0.00006 (5) 0.36005 (4) 0.01279 (7) 0.555 (4)/0.445 (4)
Zn/Cu4 0.01929 (3) 1/4 0.08049 (6) 0.01551 (9) 0.735 (8)/0.265 (8)

Table 2
Selected geometric parameters (Å) for BaCu2.6Zn2.4

Ba1—Cu1i 3.2916 (5) Cu1—Zn/Cu3ix 2.5664 (4)
Ba1—Zn/Cu2 3.3097 (5) Cu1—Zn/Cu3 2.5664 (4)
Ba1—Zn/Cu4ii 3.3160 (5) Cu1—Zn/Cu4 2.5840 (6)
Ba1—Zn/Cu2iii 3.3429 (3) Cu1—Zn/Cu2 2.5958 (5)
Ba1—Zn/Cu2iv 3.3429 (3) Cu1—Zn/Cu3xii 2.6001 (4)
Ba1—Cu1iii 3.3542 (3) Cu1—Zn/Cu3xiii 2.6001 (4)
Ba1—Cu1iv 3.3542 (3) Zn/Cu2—Zn/Cu3viii 2.5440 (4)
Ba1—Zn/Cu4iii 3.3672 (3) Zn/Cu2—Zn/Cu3iii 2.5440 (4)
Ba1—Zn/Cu4iv 3.3672 (3) Zn/Cu2—Zn/Cu3 2.5879 (4)
Ba1—Zn/Cu3v 3.6040 (3) Zn/Cu2—Zn/Cu3ix 2.5879 (4)
Ba1—Zn/Cu3i 3.6040 (3) Zn/Cu3—Zn/Cu3xiv 2.6075 (5)
Ba1—Zn/Cu3vi 3.6492 (3) Zn/Cu3—Zn/Cu3ix 2.6087 (5)
Ba1—Zn/Cu3vii 3.6492 (3) Zn/Cu4—Zn/Cu3xv 2.5576 (4)
Ba1—Zn/Cu3iii 3.6933 (3) Zn/Cu4—Zn/Cu3xvi 2.5576 (4)
Ba1—Zn/Cu3viii 3.6933 (3) Zn/Cu4—Zn/Cu3xii 2.5756 (4)
Ba1—Zn/Cu3 3.7394 (3) Zn/Cu4—Zn/Cu3xiii 2.5756 (4)
Ba1—Zn/Cu3ix 3.7394 (3) Zn/Cu4—Zn/Cu4xvii 2.8652 (3)
Ba1—Ba1x 3.8503 (3) Zn/Cu4—Zn/Cu4xviii 2.8652 (3)
Ba1—Ba1xi 3.8502 (3)    
       
Ba1x—Ba1—Ba1xi 85.279 (9)    
Symmetry codes: (i) x, y, z + 1; (ii) x + [{1\over 2}], y, −z + [{1\over 2}]; (iii) −x + [{1\over 2}], −y, z + [{1\over 2}]; (iv) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (v) x, −y + [{1\over 2}], z + 1; (vi) −x + 1, y + [{1\over 2}], −z + 1; (vii) −x + 1, −y, −z + 1; (viii) −x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (ix) x, −y + [{1\over 2}], z; (x) −x + 1, −y + 1, −z + 2; (xi) −x + 1, −y, −z + 2; (xii) −x + [{1\over 2}], −y, z − [{1\over 2}]; (xiii) −x + [{1\over 2}], y + [{1\over 2}], z − [{1\over 2}]; (xiv) x, −y − [{1\over 2}], z; (xv) x − [{1\over 2}], y, −z + [{1\over 2}]; (xvi) x − [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]; (xvii) −x, −y, −z; (xviii) −x, −y + 1, −z.
[Figure 1]
Figure 1
Arrangement of Cu1-centered Zn/Cu trigonal prisms and the Ba1 atoms. Symmetry codes: (i) x, y, z; (ii) [{1\over 2}] − x, 1 − y, [{1\over 2}] + z; (iii) [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z; (iv) x, y, −1 + z; (v) 1 − x, [{1\over 2}] + y, 1 − z; (vi) x, 1 + y, −1 + z; (vii) −[{1\over 2}] + x, [{1\over 2}] − y, [{3\over 2}] − z; (viii) [{1\over 2}] − x, −y, −[{1\over 2}] + z; (ix) x, [{1\over 2}] − y, z; (x) x, 1 + y, z; (xi) [{1\over 2}] − x, [{1\over 2}] + y, −[{1\over 2}] + z; (xii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] + z; (xiii) x, [{1\over 2}] − y, −1 + z.
[Figure 2]
Figure 2
Crystal structure of BaCu2.6Zn2.4 illustrated with the Cu1-centered Zn/Cu trigonal prisms.

The Ba1 sites are staggered along the array of the triangular prisms in the tunnel extending in the b-axis direction. The inter­atomic distance of Ba1—Ba1 [3.8503 (3) Å] is shorter than that of Sr1—Sr1 [4.0230 (13) Å] of α-SrZn5. The Ba1—Ba1—Ba1 angle [85.279 (9)°] is comparable to the Sr1—Sr1—Sr1 angle of α-SrZn5 [82.39 (3)°]. There are three Cu1 sites, three Zn/Cu2 sites, eight Zn/Cu3 sites, and three Zn/Cu4 sites around the Ba1 site (Table 2[link]). The average distance of inter­atomic distances between these 17 sites and the Ba1 site (3.495 Å) is shorter than that between 17 Zn sites and the Ba site of BaZn5 (3.5832 Å), but is the same as that between 17 Sr sites and the Sr site of α-SrZn5 (3.495 Å).

Comparison between BaCu13 and BaZn13 having an isotypic structure showed that the atomic distance of Ba—Cu (3.42 Å, calculated using the data by Wendorff & Röhr, 2006[Wendorff, M. & Röhr, C. (2006). J. Alloys Compd. 421, 24-34.]) is shorter than that of Ba—Zn (3.59 Å, calculated using the data by Bruzzone et al., 1985[Bruzzone, G., Ferretti, M. & Merlo, F. (1985). J. Less-Common Met. 114, 305-310.]). This result is consistent with the fact that the average distance between the Ba1 site and Cu or Zn/Cu sites becomes shorter than the average atomic distance of Ba—Zn in BaZn5. The lattice size of BaCu2.6Zn2.4 is expected to be larger than that of α-SrZn5 because the inter­atomic distance of Ba—Zn for BaZn13 is longer than that of Sr—Zn for SrZn13, both of which have the same type of structure. However, the cell constants and volume for BaCu2.6Zn2.4 are 0.3–2.0% and 3.0–3.9% smaller than those reported for α-SrZn5 [a = 13.15 (4), b = 5.32 (1), c = 6.72 (2) Å, V = 470.12 Å3 (Baenziger & Conant, 1956[Baenziger, N. C. & Conant, J. W. (1956). Acta Cryst. 9, 361-364.]); a = 13.147 (7), b = 5.312 (2), c = 6.707 (3) Å, V = 468.4 Å3 (Bruzzone & Merlo, 1983[Bruzzone, G. & Merlo, F. (1983). J. Less-Common Met. 92, 75-79.]); and a = 13.133 (3), b = 5.2991 (10), c = 6.6972 (13) Å, V = 466.08 Å3 (Wendorff & Röhr, 2007[Wendorff, M. & Röhr, C. (2007). Z. Naturforsch. B, 62, 1549-1562.])]. The average inter­atomic distance between Ba and the framework forming Zn/Cu atoms in the title compound remains the same as the average Sr—Zn distance of α-SrZn5 by partial substitution of Cu with Zn atoms. Thus, the decrease in cell volume is caused by the introduction of the shorter Cu—Zn and Cu—Cu bonds in the BaCu2.6Zn2.4 framework.

3. Synthesis and crystallization

The title compound was prepared from pieces of Ba (Aldrich Chemicals, 99.9%), Cu (Kojundo Chemical Laboratory Co., Ltd., 99.99%), and Zn (Strem Chemicals Inc., 99.99%) metals with molar ratio of Ba:Cu:Zn = 1:1:1. The metals were placed in a BN crucible (Showa Denko Co., Ltd., purity 99.95%, outer diameter 8.5 mm, inner diameter 6.5 mm, depth 18 mm), which was then put inside a stainless-steel tube (SUS 316: outer diameter 12.7 mm, inner diameter 10.7 mm, height 80 mm) and sealed with a stainless-steel cap in an Ar-filled glove box (MBRAUN; O2 and H2O < 1 ppm). The tube was heated to 933 K at a rate of 330 Kh−1 for 10 h, then slowly cooled at a rate of 10 Kh−1 to below 573 K. Finally, the sample was cooled to room temperature by shutting off the electric power to the heater of the furnace. The stainless-steel tube was cut in the Ar-filled glove box. The resulting product contained silver metallic single crystals of the title compound with size of several hundred µm. The surface color of the single crystals changed to metallic gold in air, but crystal decomposition did not occur. A thin layer formed by oxidation may have prevented the further oxidation of the sample. Single crystal XRD data collection was carried out in air. Another single crystal grain obtained from the same sample was buried in resin and polished with a SiC polishing sheet to verify the composition of the crystal by electron probe microanalysis (EPMA, JEOL JXA-8200). A Ba:Cu:Zn atomic ratio of 1.01 ± 0.01:2.62 ± 0.10:2.37 ± 0.09 was obtained by measurements at seven points with the total weight percent of 94–98%. From the EPMA measurement, the chemical composition of the single crystal was determined to be BaCu2.6Zn2.4.

4. Refinement

Crystal data, data collection, and structural refinement details are summarized in Table 3[link]. The initial structural model was constructed from the α-SrZn5 model by substituting the Ba1 site with the Sr1 site, and the Zn/Cu mixed sites with the four Zn sites. In the first stage of refinement, the sum of the occupancies for Cu and Zn atoms in each Zn/Cu site was constrained to be 1. After several refinement iterations, the Cu occupancy for the Zn/Cu1 site became 0.98 (6), and then this site was set to be fully occupied by Cu only. The substitutional occupations of the other three Zn/Cu mixed sites were refined under the restriction that the total chemical composition should be Zn:Cu = 0.48:0.52, which was determined by EPMA.

Table 3
Experimental details

Crystal data
Chemical formula BaCu2.60Zn2.40
Mr 459.5
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 300
a, b, c (Å) 12.9858 (3), 5.2162 (1), 6.6804 (2)
V3) 452.51 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 32.87
Crystal size (mm) 0.10 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.49, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 9003, 1038, 956
Rint 0.029
(sin θ/λ)max−1) 0.794
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.032, 1.17
No. of reflections 1038
No. of parameters 39
No. of restraints 1
Δρmax, Δρmin (e Å−3) 0.96, −0.98
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Crystal Maker X (CrystalMaker Software, 2003[CrystalMaker Software (2003). CrystalMaker. CrystalMaker Software, Bicester, England.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Crystal Maker X (CrystalMaker Software, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

barium zinc copper top
Crystal data top
BaCu2.60Zn2.40Dx = 6.744 Mg m3
Mr = 459.5Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 198 reflections
a = 12.9858 (3) Åθ = 3.3–27.3°
b = 5.2162 (1) ŵ = 32.87 mm1
c = 6.6804 (2) ÅT = 300 K
V = 452.51 (2) Å3Chip, metallic light silver
Z = 40.10 × 0.07 × 0.06 mm
F(000) = 813.6
Data collection top
Bruker D8 QUEST
diffractometer
956 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.029
ω and σcansθmax = 34.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2020
Tmin = 0.49, Tmax = 0.75k = 87
9003 measured reflectionsl = 1010
1038 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0069P)2 + 0.6738P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.003
wR(F2) = 0.032Δρmax = 0.96 e Å3
S = 1.17Δρmin = 0.98 e Å3
1038 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015b, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
39 parametersExtinction coefficient: 0.00318 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.41339 (2)0.25000.87119 (3)0.01724 (6)
Cu10.21263 (3)0.25000.17198 (6)0.01346 (8)
Zn20.21485 (3)0.25000.56053 (6)0.01585 (9)0.555 (8)
Cu20.21485 (3)0.25000.56053 (6)0.01585 (9)0.445 (8)
Zn30.35265 (2)0.00006 (5)0.36005 (4)0.01279 (7)0.555 (4)
Cu30.35265 (2)0.00006 (5)0.36005 (4)0.01279 (7)0.445 (4)
Zn40.01929 (3)0.25000.08049 (6)0.01551 (9)0.735 (8)
Cu40.01929 (3)0.25000.08049 (6)0.01551 (9)0.265 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01853 (10)0.01541 (10)0.01779 (10)0.0000.00248 (7)0.000
Cu10.01259 (17)0.01619 (19)0.01161 (16)0.0000.00309 (13)0.000
Zn20.01913 (19)0.01558 (19)0.01283 (17)0.0000.00354 (14)0.000
Cu20.01913 (19)0.01558 (19)0.01283 (17)0.0000.00354 (14)0.000
Zn30.01308 (12)0.01109 (13)0.01420 (13)0.00054 (9)0.00154 (9)0.00036 (9)
Cu30.01308 (12)0.01109 (13)0.01420 (13)0.00054 (9)0.00154 (9)0.00036 (9)
Zn40.01137 (16)0.01599 (19)0.01916 (19)0.0000.00157 (13)0.000
Cu40.01137 (16)0.01599 (19)0.01916 (19)0.0000.00157 (13)0.000
Geometric parameters (Å, º) top
Ba1—Cu1i3.2916 (5)Cu1—Zn3vii2.6001 (4)
Ba1—Zn23.3097 (5)Cu1—Zn3viii2.6001 (4)
Ba1—Zn4ii3.3160 (5)Cu1—Zn2ix2.8711 (2)
Ba1—Zn2iii3.3429 (3)Cu1—Zn2vii2.8711 (3)
Ba1—Zn2iv3.3429 (3)Zn2—Zn3x2.5440 (4)
Ba1—Cu1iii3.3542 (3)Zn2—Zn3iii2.5440 (4)
Ba1—Cu1iv3.3542 (3)Zn2—Zn32.5879 (4)
Ba1—Zn4iii3.3672 (3)Zn2—Zn3vi2.5879 (4)
Ba1—Zn4iv3.3672 (3)Zn3—Zn4ii2.5576 (4)
Ba1—Zn3v3.6040 (3)Zn3—Zn4iii2.5756 (4)
Ba1—Zn3i3.6040 (3)Zn3—Zn3xi2.6075 (5)
Cu1—Zn3vi2.5664 (4)Zn3—Zn3vi2.6087 (5)
Cu1—Zn32.5664 (4)Zn4—Zn4xii2.8652 (3)
Cu1—Zn42.5840 (6)Zn4—Zn4xiii2.8652 (3)
Cu1—Zn22.5958 (5)
Cu1i—Ba1—Zn276.456 (11)Zn3iii—Zn2—Ba1ix121.722 (15)
Cu1i—Ba1—Zn4ii152.125 (12)Zn3—Zn2—Ba1ix122.810 (14)
Zn2—Ba1—Zn4ii75.669 (11)Zn3vi—Zn2—Ba1ix75.843 (9)
Cu1i—Ba1—Zn2iii51.279 (6)Cu1—Zn2—Ba1ix67.425 (9)
Zn2—Ba1—Zn2iii81.327 (5)Cu1iv—Zn2—Ba1ix63.436 (8)
Zn4ii—Ba1—Zn2iii123.428 (7)Cu1iii—Zn2—Ba1ix165.984 (15)
Cu1i—Ba1—Zn2iv51.279 (6)Ba1—Zn2—Ba1ix128.704 (6)
Zn2—Ba1—Zn2iv81.327 (5)Ba1vii—Zn2—Ba1ix102.556 (13)
Zn4ii—Ba1—Zn2iv123.428 (7)Zn3x—Zn2—Ba1xv64.323 (11)
Zn2iii—Ba1—Zn2iv102.555 (13)Zn3iii—Zn2—Ba1xv64.323 (11)
Cu1i—Ba1—Cu1iii81.710 (5)Zn3—Zn2—Ba1xv138.309 (12)
Zn2—Ba1—Cu1iii51.038 (6)Zn3vi—Zn2—Ba1xv138.309 (12)
Zn4ii—Ba1—Cu1iii80.868 (9)Cu1—Zn2—Ba1xv96.009 (15)
Zn2iii—Ba1—Cu1iii45.610 (9)Cu1iv—Zn2—Ba1xv107.206 (11)
Zn2iv—Ba1—Cu1iii120.913 (11)Cu1iii—Zn2—Ba1xv107.206 (11)
Cu1i—Ba1—Cu1iv81.710 (5)Ba1—Zn2—Ba1xv134.520 (11)
Zn2—Ba1—Cu1iv51.038 (6)Ba1vii—Zn2—Ba1xv63.193 (8)
Zn4ii—Ba1—Cu1iv80.868 (9)Ba1ix—Zn2—Ba1xv63.193 (8)
Zn2iii—Ba1—Cu1iv120.913 (11)Zn2vii—Zn3—Zn4ii132.457 (17)
Zn2iv—Ba1—Cu1iv45.610 (9)Zn2vii—Zn3—Cu168.362 (11)
Cu1iii—Ba1—Cu1iv102.074 (12)Zn4ii—Zn3—Cu1114.601 (13)
Cu1i—Ba1—Zn4iii123.899 (7)Zn2vii—Zn3—Zn4iii114.379 (13)
Zn2—Ba1—Zn4iii80.829 (9)Zn4ii—Zn3—Zn4iii67.858 (9)
Zn4ii—Ba1—Zn4iii50.766 (6)Cu1—Zn3—Zn4iii174.066 (17)
Zn2iii—Ba1—Zn4iii75.123 (8)Zn2vii—Zn3—Zn2115.282 (11)
Zn2iv—Ba1—Zn4iii162.151 (12)Zn4ii—Zn3—Zn2104.336 (14)
Cu1iii—Ba1—Zn4iii45.217 (9)Cu1—Zn3—Zn260.479 (14)
Cu1iv—Ba1—Zn4iii120.008 (10)Zn4iii—Zn3—Zn2113.935 (15)
Cu1i—Ba1—Zn4iv123.899 (7)Zn2vii—Zn3—Cu1iii105.132 (14)
Zn2—Ba1—Zn4iv80.829 (9)Zn4ii—Zn3—Cu1iii114.021 (16)
Zn4ii—Ba1—Zn4iv50.766 (6)Cu1—Zn3—Cu1iii114.595 (11)
Zn2iii—Ba1—Zn4iv162.151 (12)Zn4iii—Zn3—Cu1iii59.898 (13)
Zn2iv—Ba1—Zn4iv75.123 (8)Zn2—Zn3—Cu1iii67.204 (10)
Cu1iii—Ba1—Zn4iv120.008 (10)Zn2vii—Zn3—Zn3xi59.170 (7)
Cu1iv—Ba1—Zn4iv45.217 (9)Zn4ii—Zn3—Zn3xi120.663 (8)
Zn4iii—Ba1—Zn4iv101.532 (12)Cu1—Zn3—Zn3xi120.547 (7)
Cu1i—Ba1—Zn3v43.406 (7)Zn4iii—Zn3—Zn3xi59.590 (7)
Zn2—Ba1—Zn3v113.437 (9)Zn2—Zn3—Zn3xi120.266 (7)
Zn4ii—Ba1—Zn3v156.251 (6)Cu1iii—Zn3—Zn3xi59.906 (7)
Zn2iii—Ba1—Zn3v80.241 (8)Zn2vii—Zn3—Zn3vi120.829 (7)
Zn2iv—Ba1—Zn3v42.758 (8)Zn4ii—Zn3—Zn3vi59.337 (8)
Cu1iii—Ba1—Zn3v122.288 (9)Cu1—Zn3—Zn3vi59.453 (7)
Cu1iv—Ba1—Zn3v88.359 (8)Zn4iii—Zn3—Zn3vi120.410 (7)
Zn4iii—Ba1—Zn3v149.290 (8)Zn2—Zn3—Zn3vi59.734 (7)
Zn4iv—Ba1—Zn3v107.404 (7)Cu1iii—Zn3—Zn3vi120.095 (7)
Cu1i—Ba1—Zn3i43.406 (7)Zn3xi—Zn3—Zn3vi180.0
Zn2—Ba1—Zn3i113.437 (10)Zn2vii—Zn3—Ba1xiv63.138 (9)
Zn4ii—Ba1—Zn3i156.251 (6)Zn4ii—Zn3—Ba1xiv76.764 (11)
Zn2iii—Ba1—Zn3i42.758 (8)Cu1—Zn3—Ba1xiv61.802 (11)
Zn2iv—Ba1—Zn3i80.241 (8)Zn4iii—Zn3—Ba1xiv124.057 (13)
Cu1iii—Ba1—Zn3i88.359 (8)Zn2—Zn3—Ba1xiv115.967 (11)
Cu1iv—Ba1—Zn3i122.288 (9)Cu1iii—Zn3—Ba1xiv168.248 (12)
Zn4iii—Ba1—Zn3i107.404 (7)Zn3xi—Zn3—Ba1xiv111.218 (4)
Zn4iv—Ba1—Zn3i149.290 (8)Zn3vi—Zn3—Ba1xiv68.782 (4)
Zn3v—Ba1—Zn3i42.436 (9)Zn2vii—Zn3—Ba1xvi76.752 (12)
Zn3vi—Cu1—Zn361.093 (15)Zn4ii—Zn3—Ba1xvi62.842 (9)
Zn3vi—Cu1—Zn4143.536 (12)Cu1—Zn3—Ba1xvi124.350 (13)
Zn3—Cu1—Zn4143.535 (12)Zn4iii—Zn3—Ba1xvi61.552 (11)
Zn3vi—Cu1—Zn260.171 (12)Zn2—Zn3—Ba1xvi167.121 (13)
Zn3—Cu1—Zn260.171 (12)Cu1iii—Zn3—Ba1xvi115.565 (11)
Zn4—Cu1—Zn2104.319 (19)Zn3xi—Zn3—Ba1xvi69.067 (4)
Zn3vi—Cu1—Zn3vii151.424 (19)Zn3vi—Zn3—Ba1xvi110.932 (4)
Zn3—Cu1—Zn3vii111.623 (8)Ba1xiv—Zn3—Ba1xvi64.121 (6)
Zn4—Cu1—Zn3vii59.580 (12)Zn2vii—Zn3—Ba1vii60.831 (11)
Zn2—Cu1—Zn3vii143.610 (13)Zn4ii—Zn3—Ba1vii165.534 (13)
Zn3vi—Cu1—Zn3viii111.623 (8)Cu1—Zn3—Ba1vii61.739 (9)
Zn3—Cu1—Zn3viii151.425 (19)Zn4iii—Zn3—Ba1vii114.440 (11)
Zn4—Cu1—Zn3viii59.580 (12)Zn2—Zn3—Ba1vii61.359 (9)
Zn2—Cu1—Zn3viii143.610 (13)Cu1iii—Zn3—Ba1vii60.125 (11)
Zn3vii—Cu1—Zn3viii60.188 (14)Zn3xi—Zn3—Ba1vii69.329 (4)
Zn3vi—Cu1—Zn2ix55.449 (11)Zn3vi—Zn3—Ba1vii110.672 (4)
Zn3—Cu1—Zn2ix110.868 (16)Ba1xiv—Zn3—Ba1vii110.530 (8)
Zn4—Cu1—Zn2ix104.914 (12)Ba1xvi—Zn3—Ba1vii131.391 (8)
Zn2—Cu1—Zn2ix104.812 (11)Zn3xvii—Zn4—Zn3xviii61.325 (15)
Zn3vii—Cu1—Zn2ix110.769 (15)Zn3xvii—Zn4—Zn3viii153.278 (18)
Zn3viii—Cu1—Zn2ix56.195 (11)Zn3xviii—Zn4—Zn3viii112.142 (9)
Zn3vi—Cu1—Zn2vii110.868 (16)Zn3xvii—Zn4—Zn3vii112.142 (9)
Zn3—Cu1—Zn2vii55.449 (11)Zn3xviii—Zn4—Zn3vii153.278 (18)
Zn4—Cu1—Zn2vii104.914 (12)Zn3viii—Zn4—Zn3vii60.821 (15)
Zn2—Cu1—Zn2vii104.812 (11)Zn3xvii—Zn4—Cu1141.749 (13)
Zn3vii—Cu1—Zn2vii56.195 (11)Zn3xviii—Zn4—Cu1141.749 (13)
Zn3viii—Cu1—Zn2vii110.769 (15)Zn3viii—Zn4—Cu160.522 (12)
Zn2ix—Cu1—Zn2vii130.57 (2)Zn3vii—Zn4—Cu160.522 (12)
Zn3vi—Cu1—Ba1xiv74.792 (12)Zn3xvii—Zn4—Zn4xii56.370 (13)
Zn3—Cu1—Ba1xiv74.792 (12)Zn3xviii—Zn4—Zn4xii112.00 (2)
Zn4—Cu1—Ba1xiv128.695 (16)Zn3viii—Zn4—Zn4xii111.04 (2)
Zn2—Cu1—Ba1xiv126.987 (17)Zn3vii—Zn4—Zn4xii55.772 (13)
Zn3vii—Cu1—Ba1xiv76.642 (12)Cu1—Zn4—Zn4xii104.989 (16)
Zn3viii—Cu1—Ba1xiv76.642 (12)Zn3xvii—Zn4—Zn4xiii112.00 (2)
Zn2ix—Cu1—Ba1xiv65.285 (11)Zn3xviii—Zn4—Zn4xiii56.370 (13)
Zn2vii—Cu1—Ba1xiv65.285 (11)Zn3viii—Zn4—Zn4xiii55.772 (13)
Zn3x—Zn2—Zn3iii61.660 (15)Zn3vii—Zn4—Zn4xiii111.04 (2)
Zn3x—Zn2—Zn3154.64 (2)Cu1—Zn4—Zn4xiii104.989 (16)
Zn3iii—Zn2—Zn3112.768 (8)Zn4xii—Zn4—Zn4xiii131.08 (3)
Zn3x—Zn2—Zn3vi112.768 (8)Zn3xvii—Zn4—Ba1xvii77.904 (12)
Zn3iii—Zn2—Zn3vi154.64 (2)Zn3xviii—Zn4—Ba1xvii77.904 (12)
Zn3—Zn2—Zn3vi60.531 (15)Zn3viii—Zn4—Ba1xvii75.374 (12)
Zn3x—Zn2—Cu1141.503 (14)Zn3vii—Zn4—Ba1xvii75.374 (12)
Zn3iii—Zn2—Cu1141.503 (14)Cu1—Zn4—Ba1xvii128.184 (17)
Zn3—Zn2—Cu159.350 (12)Zn4xii—Zn4—Ba1xvii65.542 (15)
Zn3vi—Zn2—Cu159.350 (12)Zn4xiii—Zn4—Ba1xvii65.542 (15)
Zn3x—Zn2—Cu1iv56.189 (10)Zn3xvii—Zn4—Ba1ix121.676 (15)
Zn3iii—Zn2—Cu1iv112.000 (16)Zn3xviii—Zn4—Ba1ix74.638 (9)
Zn3—Zn2—Cu1iv111.420 (16)Zn3viii—Zn4—Ba1ix76.705 (9)
Zn3vi—Zn2—Cu1iv56.601 (10)Zn3vii—Zn4—Ba1ix123.655 (15)
Cu1—Zn2—Cu1iv105.245 (11)Cu1—Zn4—Ba1ix67.126 (9)
Zn3x—Zn2—Cu1iii112.000 (16)Zn4xii—Zn4—Ba1ix165.22 (2)
Zn3iii—Zn2—Cu1iii56.189 (10)Zn4xiii—Zn4—Ba1ix63.692 (10)
Zn3—Zn2—Cu1iii56.601 (10)Ba1xvii—Zn4—Ba1ix129.234 (6)
Zn3vi—Zn2—Cu1iii111.420 (16)Zn3xvii—Zn4—Ba1vii74.638 (9)
Cu1—Zn2—Cu1iii105.245 (11)Zn3xviii—Zn4—Ba1vii121.676 (15)
Cu1iv—Zn2—Cu1iii130.57 (2)Zn3viii—Zn4—Ba1vii123.655 (15)
Zn3x—Zn2—Ba177.010 (12)Zn3vii—Zn4—Ba1vii76.705 (9)
Zn3iii—Zn2—Ba177.010 (12)Cu1—Zn4—Ba1vii67.126 (9)
Zn3—Zn2—Ba177.635 (12)Zn4xii—Zn4—Ba1vii63.692 (10)
Zn3vi—Zn2—Ba177.635 (12)Zn4xiii—Zn4—Ba1vii165.22 (2)
Cu1—Zn2—Ba1129.470 (17)Ba1xvii—Zn4—Ba1vii129.234 (6)
Cu1iv—Zn2—Ba165.284 (11)Ba1ix—Zn4—Ba1vii101.532 (12)
Cu1iii—Zn2—Ba165.284 (11)Zn3xvii—Zn4—Ba1xv63.718 (10)
Zn3x—Zn2—Ba1vii121.722 (15)Zn3xviii—Zn4—Ba1xv63.718 (11)
Zn3iii—Zn2—Ba1vii74.105 (9)Zn3viii—Zn4—Ba1xv139.660 (11)
Zn3—Zn2—Ba1vii75.842 (9)Zn3vii—Zn4—Ba1xv139.660 (11)
Zn3vi—Zn2—Ba1vii122.810 (14)Cu1—Zn4—Ba1xv96.897 (15)
Cu1—Zn2—Ba1vii67.425 (9)Zn4xii—Zn4—Ba1xv106.854 (15)
Cu1iv—Zn2—Ba1vii165.984 (15)Zn4xiii—Zn4—Ba1xv106.854 (15)
Cu1iii—Zn2—Ba1vii63.436 (8)Ba1xvii—Zn4—Ba1xv134.919 (13)
Ba1—Zn2—Ba1vii128.704 (6)Ba1ix—Zn4—Ba1xv63.342 (8)
Zn3x—Zn2—Ba1ix74.105 (9)Ba1vii—Zn4—Ba1xv63.342 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1, z+1/2; (v) x, y+1/2, z+1; (vi) x, y+1/2, z; (vii) x+1/2, y, z1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x+1/2, y+1, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x, y1/2, z; (xii) x, y, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1/2, y, z+3/2; (xvi) x+1, y, z+1; (xvii) x1/2, y, z+1/2; (xviii) x1/2, y+1/2, z+1/2.
Fractional atomic coordinates and equivalent isotropic displacement parameters for BaCu2.6Zn2.4 top
AtomxyzUeqOccupancy
Ba10.41339 (2)1/40.87119 (3)0.01724 (6)1
Cu10.21263 (3)1/40.17198 (6)0.01346 (8)1
Zn/Cu20.21485 (3)1/40.56053 (6)0.01585 (9)0.555 (8)/0.445 (8)
Zn/Cu30.35265 (2)-0.00006 (5)0.36005 (4)0.01279 (7)0.555 (4)/0.445 (4)
Zn/Cu40.01929 (3)1/40.08049 (6)0.01551 (9)0.735 (8)/0.265 (8)
Selected geometric parameters (Å) for BaCu2.6Zn2.4 top
Ba1—Cu1i3.2916 (5)Cu1—Zn/Cu3ix2.5664 (4)
Ba1—Zn/Cu23.3097 (5)Cu1—Zn/Cu32.5664 (4)
Ba1—Zn/Cu4ii3.3160 (5)Cu1—Zn/Cu42.5840 (6)
Ba1—Zn/Cu2iii3.3429 (3)Cu1—Zn/Cu22.5958 (5)
Ba1—Zn/Cu2iv3.3429 (3)Cu1—Zn/Cu3xii2.6001 (4)
Ba1—Cu1iii3.3542 (3)Cu1—Zn/Cu3xiii2.6001 (4)
Ba1—Cu1iv3.3542 (3)Zn/Cu2—Zn/Cu3viii2.5440 (4)
Ba1—Zn/Cu4iii3.3672 (3)Zn/Cu2—Zn/Cu3iii2.5440 (4)
Ba1—Zn/Cu4iv3.3672 (3)Zn/Cu2—Zn/Cu32.5879 (4)
Ba1—Zn/Cu3v3.6040 (3)Zn/Cu2—Zn/Cu3ix2.5879 (4)
Ba1—Zn/Cu3i3.6040 (3)Zn/Cu3—Zn/Cu3xiv2.6075 (5)
Ba1—Zn/Cu3vi3.6492 (3)Zn/Cu3—Zn/Cu3ix2.6087 (5)
Ba1—Zn/Cu3vii3.6492 (3)Zn/Cu4—Zn/Cu3xv2.5576 (4)
Ba1—Zn/Cu3iii3.6933 (3)Zn/Cu4—Zn/Cu3xvi2.5576 (4)
Ba1—Zn/Cu3viii3.6933 (3)Zn/Cu4—Zn/Cu3xii2.5756 (4)
Ba1—Zn/Cu33.7394 (3)Zn/Cu4—Zn/Cu3xiii2.5756 (4)
Ba1—Zn/Cu3ix3.7394 (3)Zn/Cu4—Zn/Cu4xvii2.8652 (3)
Ba1—Ba1x3.8503 (3)Zn/Cu4—Zn/Cu4xviii2.8652 (3)
Ba1—Ba1xi3.8502 (3)
Ba1x—Ba1—Ba1xi85.279 (9)
Symmetry codes: (i) x, y, z + 1; (ii) x + 1/2, y, -z + 1/2; (iii) -x + 1/2, -y, z + 1/2; (iv) -x + 1/2, -y + 1, z + 1/2; (v) x, -y + 1/2, z + 1; (vi) -x + 1, y + 1/2, -z + 1; (vii) -x + 1, -y, -z + 1; (viii) -x + 1/2, y + 1/2, z + 1/2; (ix) x, -y + 1/2, z; (x) -x + 1, -y + 1, -z + 2; (xi) -x + 1, -y, -z + 2; (xii) -x + 1/2, -y, z - 1/2; (xiii) -x + 1/2, y + 1/2, z - 1/2; (xiv) x, -y - 1/2, z; (xv) x - 1/2, y, -z + 1/2; (xvi) x - 1/2, -y + 1/2, -z + 1/2; (xvii) -x, -y, -z; (xviii) -x, -y + 1, -z.
 

Acknowledgements

The authors wish to thank Mr T. Kamaya at the Central Analytical Facility (CAF), Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University for performing the EPMA analysis.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP18H05347).

References

First citationBaenziger, N. C. & Conant, J. W. (1956). Acta Cryst. 9, 361–364.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruzzone, G. (1966). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fs. Mat. Nat. 41, 90–96.  CAS Google Scholar
First citationBruzzone, G. (1971). J. Less-Common Met. 25, 361–366.  CrossRef ICSD CAS Google Scholar
First citationBruzzone, G., Ferretti, M. & Merlo, F. (1985). J. Less-Common Met. 114, 305–310.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBruzzone, G. & Merlo, F. (1983). J. Less-Common Met. 92, 75–79.  CrossRef ICSD CAS Google Scholar
First citationCrystalMaker Software (2003). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationHäucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17–22.  Google Scholar
First citationMerlo, F. & Fornasini, M. L. (1985). J. Less-Common Met. 109, 135–146.  CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWendorff, M. & Röhr, C. (2006). J. Alloys Compd. 421, 24–34.  CrossRef ICSD CAS Google Scholar
First citationWendorff, M. & Röhr, C. (2007). Z. Naturforsch. B, 62, 1549–1562.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds