research communications
κO)bis(trifluoromethanesulfonato-κO)iron(II)
of tetrakis(tetrahydrofuran-aOrganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, and bBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: m.lutz@uu.nl
The title compound, [Fe(CF3SO3)2(C4H8O)4], is octahedral with two trifluoromethanesulfonate ligands in trans positions and four tetrahydrofurane molecules in the equatorial plane. By the conformation of the ligands the complex is chiral in the crystal packing. The compound crystallizes in the Sohncke P212121 and is enantiomerically pure. The packing of the molecules is determined by weak C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component inversion twin.
Keywords: crystal structure; high-spin iron(II); split-mosaic model.
CCDC reference: 1955192
1. Chemical context
The trifluoromethanesulfonato anion is usually weakly coordinating to metals, and the salts thereof are consequently important starting compounds for the exchange with other ligands. In an attempt of such a synthesis on iron(II) we obtained the starting material back with tetrahydrofuran (THF) molecules from the solvent completing the sixfold coordination environment. The overall composition of the title compound (I) is then [Fe(CF3SO3)2(C4H8O)4].
2. Structural commentary
A molecular plot of (I) is shown in Fig. 1 with selected bond lengths and bond angles given in Table 1. The present Fe compound is isostructural to the corresponding Co, Ni and Zn compounds known from the literature (Amel'chenkova et al., 2006). An isostructural Cu compound is mentioned in the same publication but no further details are given. An overlay of the isostructural compounds is presented in Fig. 2. The comparison of metal–oxygen distances in Table 2 follows the trend of effective ionic radii (Shannon, 1976) with 0.92 Å for octahedral Fe2+ (high-spin), 0.885 Å for Co2+ (high-spin), 0.83 Å for Ni2+ and 0.88 Å for Zn2+. From this comparison we can conclude that the Fe ion in (I) has a high-spin It should also be noted that there are no significant differences in metal–oxygen distances between the partially negative triflate and the neutral THF.
|
|
In the octahedral compound (I), the triflate ligands are in trans positions and the equatorial plane is formed by O atoms of THF. The Fe atom is approximately in the equatorial plane at a distance of 0.0079 (3) Å from the least-squares plane of the THF oxygen atoms. The FeO6 octahedron is nearly undistorted with a quadratic elongation of 1.001 and an angle variance of 2.79°2 (Robinson et al., 1971). To the best of our knowledge, the of compound (I) is the first of a trans triflate Fe complex with an FeO6 chromophore. Similar complexes with N atoms in the equatorial plane are known from the literature. In the acetonitrile complex [Fe(CF3SO3)2(CH3CN)4], the core octahedron is similarly undistorted (Hagen, 2000), while the pyridine complex [Fe(CF3SO3)2(C5H5N)4] is slightly tetragonally compressed (Haynes et al., 1986).
As expected, all four coordinated THF molecules are puckered. The rings at O7 and O8 are best described as having an
the rings at O9 and O10 as being in a twist conformation. The O atoms are coordinated to the metal in a trigonal geometry with angle sums of 358.7 (2)–360.0 (2)°.The two triflate ligands adopt a ). A search in the Cambridge Structural Database (update May 2019; Groom et al., 2016) shows a large variation between 99.3 and 178.2° in S—O—metal bond angles for the weakly coordinating triflate ligand (1501 observations, non-disordered structures). The angles of 135.31 (9) and 142.51 (9)° in compound (I) are well within this range.
with O—S—C—F torsion angles between 56.6 (2) and 64.11 (19)°. The S—O distances to the coordinating oxygen atoms are significantly longer than to the non-coordinating oxygen atoms (Table 1The octahedral symmetry of the inner-sphere coordination environment (see above) is reduced to approximate C2 symmetry by the arrangement of the triflate anion (Fig. 3). If the THF molecules are considered as well, the overall symmetry reduces to C1. Despite the achiral ligands, the metal complex is thus chiral in the crystal.
3. Supramolecular features
The has a packing index (Kitajgorodskij, 1973) of only 68.7%, which is at the lower end of the 65–75% range expected for organic solids (Dunitz, 1995). Indeed, the packing is determined by only weak C—H⋯O interactions with the THF atoms as donors and the non-coordinated triflate oxygen atoms as acceptors (Table 3). Every molecule of (I) is the donor and acceptor of three intermolecular C—H⋯O hydrogen bonds and has thus a of six. This results in a three-dimensional network.
of (I)4. Synthesis and crystallization
The title compound was obtained from an experiment aimed at synthesizing an iron coordination compound based on an oxazine ligand. In a glovebox under a dinitrogen atmosphere, 4a,8a-dimethyloctahydro-[1,4]oxazino[3,2-b][1,4]oxazine (159 mg, 0.923 mmol) and Fe(OTf)2·2MeCN (400 mg, 0.917 mmol) were placed in separate vials. The ligand was dissolved in THF (about 12 mL) and added to the vial containing Fe(OTf)2·2MeCN under gentle stirring. The color of the solution turned from black to dark red and stirring was maintained overnight at room temperature. The resulting compound was precipitated twice by dropwise addition of a concentrated THF solution into hexane. The slightly pink-colored supernatants were removed by decantation. The precipitated solids were washed with hexanes and dried under vacuum. The decanted solutions were stored in a freezer at 238 K and over a month light-pink crystals slowly grew.
A second crystallization starting from the isolated precipitate in an 1:1 THF:hexane solution grew similar crystals over several months at 238 K. 1H-NMR in d3-MeCN showed no paramagnetic peaks but small diamagnetic peaks of THF (3.64, 1.79 ppm) and hexane (1.28, 0.89 ppm). 19F-NMR showed a single sharp peak at −79.36 ppm.
5. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 4The reflection profiles in Eval15 (Schreurs et al., 2010) were based on a split-mosaic model. Two fragments were rotated by 0.56° with respect to each other. An example for a reflection profile is shown in Fig. 4.
Because (I) crystallizes in the Sohncke P212121 without second kind symmetry operations, it is susceptible for an determination. A full-matrix as results in a of x = −0.001 (10) (Flack, 1983). Within standard uncertainties, the can consequently be considered as enantiomerically pure. The is corrected for the different number of observations in the versus the Laue group symmetry (Sheldrick, 2015). If this correction is not applied (program SHELXL97, Sheldrick, 2008), the is x = −0.001 (8). Analysis of 2590 intensity quotients (Parsons et al. 2013) results in an parameter of z = −0.001 (2). Similarly, a likelihood analysis on Bijvoet differences (Hooft et al., 2008) gives an parameter y = −0.000 (1). This analysis uses a t-value of 99, resulting in a slope of 0.885 and an intercept of −0.037. The student-t probability plot is linear with a of 1.000. All of these different methods give a consistent result for the present crystal. The measurement of a second crystal results in x = 0.015 (11) from an but very low standard uncertainties in the values of z = 0.015 (2) and y = 0.0012 (1) leave reasons for doubt concerning its enantiopurity, although the Bijvoet difference related probabilities P2/P3 (true) are 1.000 and the probability P3 (false) is 0.000 in both crystals, suggesting that both crystals are enantiopure.
Supporting information
CCDC reference: 1955192
https://doi.org/10.1107/S2056989019013094/vn2153sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013094/vn2153Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
PEAKREF (Schreurs, 2016); data reduction: Eval15 (Schreurs et al., 2010); program(s) used to solve structure: initial coordinates from isostructural Zn complex (Amel'chenkova et al., 2006); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007).[Fe(CF3O3S)2(C4H8O)4] | Dx = 1.590 Mg m−3 |
Mr = 642.40 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 40729 reflections |
a = 8.6618 (3) Å | θ = 1.6–27.5° |
b = 16.2610 (6) Å | µ = 0.81 mm−1 |
c = 19.0572 (4) Å | T = 150 K |
V = 2684.20 (14) Å3 | Block, light pink |
Z = 4 | 0.43 × 0.32 × 0.18 mm |
F(000) = 1328 |
Bruker Kappa APEXII CCD diffractometer | 6027 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.020 |
φ and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.652, Tmax = 0.746 | k = −21→21 |
43720 measured reflections | l = −24→24 |
6166 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0277P)2 + 0.6586P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
6166 reflections | Δρmax = 0.33 e Å−3 |
335 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.001 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.50772 (3) | 0.48861 (2) | 0.86831 (2) | 0.01643 (6) | |
S1 | 0.81595 (5) | 0.57825 (3) | 0.93928 (2) | 0.02277 (10) | |
S2 | 0.32496 (6) | 0.31474 (3) | 0.81507 (2) | 0.02265 (10) | |
F1 | 0.9574 (2) | 0.68741 (12) | 1.01554 (11) | 0.0680 (6) | |
F2 | 0.7121 (2) | 0.68477 (9) | 1.03052 (7) | 0.0470 (4) | |
F3 | 0.8062 (3) | 0.73954 (9) | 0.93805 (9) | 0.0590 (5) | |
F4 | 0.06455 (18) | 0.35905 (12) | 0.75689 (10) | 0.0558 (4) | |
F5 | 0.14957 (18) | 0.24184 (9) | 0.72262 (9) | 0.0480 (4) | |
F6 | 0.2551 (2) | 0.35272 (10) | 0.68562 (7) | 0.0508 (4) | |
O1 | 0.65973 (16) | 0.57880 (9) | 0.91040 (7) | 0.0240 (3) | |
O2 | 0.93533 (19) | 0.58245 (12) | 0.88737 (9) | 0.0406 (4) | |
O3 | 0.83890 (17) | 0.52029 (9) | 0.99506 (8) | 0.0324 (3) | |
O4 | 0.34877 (17) | 0.40267 (8) | 0.82643 (8) | 0.0274 (3) | |
O5 | 0.45752 (17) | 0.27184 (10) | 0.78893 (9) | 0.0353 (4) | |
O6 | 0.2398 (2) | 0.27486 (11) | 0.86955 (9) | 0.0428 (4) | |
O7 | 0.38706 (15) | 0.48776 (10) | 0.96533 (6) | 0.0238 (3) | |
O8 | 0.35941 (17) | 0.58263 (8) | 0.83381 (7) | 0.0256 (3) | |
O9 | 0.62129 (17) | 0.49769 (8) | 0.77015 (7) | 0.0264 (3) | |
O10 | 0.64976 (15) | 0.39087 (8) | 0.90293 (7) | 0.0235 (3) | |
C1 | 0.8230 (3) | 0.67820 (14) | 0.98276 (12) | 0.0350 (5) | |
C2 | 0.1914 (3) | 0.31710 (13) | 0.74133 (11) | 0.0296 (4) | |
C3 | 0.2234 (2) | 0.46794 (15) | 0.97287 (10) | 0.0305 (5) | |
H3A | 0.203548 | 0.410133 | 0.959313 | 0.037* | |
H3B | 0.159680 | 0.504403 | 0.943011 | 0.037* | |
C4 | 0.1865 (2) | 0.48144 (16) | 1.05024 (11) | 0.0354 (5) | |
H4A | 0.115020 | 0.438696 | 1.067968 | 0.042* | |
H4B | 0.139912 | 0.536288 | 1.058032 | 0.042* | |
C5 | 0.3443 (2) | 0.47496 (15) | 1.08559 (10) | 0.0308 (4) | |
H5A | 0.346138 | 0.504546 | 1.130987 | 0.037* | |
H5B | 0.374432 | 0.416917 | 1.093207 | 0.037* | |
C6 | 0.4466 (2) | 0.51605 (14) | 1.03204 (9) | 0.0272 (4) | |
H6A | 0.439699 | 0.576664 | 1.035736 | 0.033* | |
H6B | 0.555633 | 0.499216 | 1.038254 | 0.033* | |
C7 | 0.2531 (3) | 0.57493 (15) | 0.77512 (11) | 0.0349 (5) | |
H7A | 0.159543 | 0.544020 | 0.789144 | 0.042* | |
H7B | 0.302789 | 0.546152 | 0.735315 | 0.042* | |
C8 | 0.2128 (3) | 0.66148 (15) | 0.75551 (12) | 0.0358 (5) | |
H8A | 0.107456 | 0.664582 | 0.735575 | 0.043* | |
H8B | 0.287162 | 0.683703 | 0.720896 | 0.043* | |
C9 | 0.2226 (3) | 0.70770 (13) | 0.82393 (12) | 0.0318 (5) | |
H9A | 0.250509 | 0.765977 | 0.815906 | 0.038* | |
H9B | 0.123089 | 0.705398 | 0.849438 | 0.038* | |
C10 | 0.3467 (3) | 0.66399 (13) | 0.86392 (13) | 0.0417 (6) | |
H10A | 0.445941 | 0.693786 | 0.859551 | 0.050* | |
H10B | 0.319250 | 0.660390 | 0.914247 | 0.050* | |
C11 | 0.6152 (3) | 0.44132 (13) | 0.71141 (10) | 0.0274 (4) | |
H11A | 0.518112 | 0.448247 | 0.684649 | 0.033* | |
H11B | 0.622800 | 0.383601 | 0.727581 | 0.033* | |
C12 | 0.7528 (3) | 0.46439 (15) | 0.66738 (12) | 0.0393 (5) | |
H12A | 0.738428 | 0.447800 | 0.617830 | 0.047* | |
H12B | 0.848683 | 0.439136 | 0.685716 | 0.047* | |
C13 | 0.7560 (4) | 0.55698 (18) | 0.67491 (16) | 0.0593 (9) | |
H13A | 0.863015 | 0.577957 | 0.671068 | 0.071* | |
H13B | 0.692138 | 0.583316 | 0.638162 | 0.071* | |
C14 | 0.6920 (4) | 0.57395 (14) | 0.74568 (11) | 0.0407 (6) | |
H14A | 0.775102 | 0.591301 | 0.778098 | 0.049* | |
H14B | 0.613879 | 0.618318 | 0.743218 | 0.049* | |
C15 | 0.6119 (3) | 0.33496 (14) | 0.95980 (11) | 0.0316 (4) | |
H15A | 0.502945 | 0.317000 | 0.956510 | 0.038* | |
H15B | 0.628145 | 0.361845 | 1.005821 | 0.038* | |
C16 | 0.7192 (3) | 0.26300 (15) | 0.95120 (13) | 0.0376 (5) | |
H16A | 0.677552 | 0.222297 | 0.917507 | 0.045* | |
H16B | 0.739603 | 0.235545 | 0.996623 | 0.045* | |
C17 | 0.8638 (3) | 0.30493 (17) | 0.92264 (14) | 0.0417 (6) | |
H17A | 0.922310 | 0.332764 | 0.960436 | 0.050* | |
H17B | 0.932237 | 0.265169 | 0.898545 | 0.050* | |
C18 | 0.7963 (2) | 0.36611 (13) | 0.87176 (12) | 0.0292 (4) | |
H18A | 0.865616 | 0.414073 | 0.866134 | 0.035* | |
H18B | 0.779706 | 0.340471 | 0.825253 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01825 (11) | 0.01659 (11) | 0.01444 (10) | 0.00166 (10) | 0.00053 (9) | −0.00065 (8) |
S1 | 0.0182 (2) | 0.0244 (2) | 0.0257 (2) | −0.00151 (17) | 0.00011 (18) | −0.00155 (17) |
S2 | 0.0229 (2) | 0.0189 (2) | 0.0261 (2) | −0.00106 (17) | −0.00181 (18) | −0.00144 (16) |
F1 | 0.0548 (10) | 0.0586 (11) | 0.0907 (14) | −0.0162 (8) | −0.0327 (10) | −0.0222 (10) |
F2 | 0.0648 (10) | 0.0402 (8) | 0.0360 (7) | 0.0033 (7) | 0.0047 (7) | −0.0135 (6) |
F3 | 0.0976 (14) | 0.0258 (7) | 0.0536 (9) | −0.0106 (8) | −0.0009 (10) | 0.0063 (7) |
F4 | 0.0342 (7) | 0.0635 (11) | 0.0697 (11) | 0.0195 (7) | −0.0173 (7) | −0.0151 (9) |
F5 | 0.0478 (9) | 0.0322 (7) | 0.0640 (9) | −0.0105 (6) | −0.0218 (7) | −0.0118 (7) |
F6 | 0.0648 (10) | 0.0564 (9) | 0.0311 (7) | −0.0160 (8) | −0.0116 (7) | 0.0056 (7) |
O1 | 0.0226 (6) | 0.0237 (7) | 0.0256 (6) | −0.0001 (5) | −0.0033 (5) | −0.0029 (5) |
O2 | 0.0279 (7) | 0.0495 (10) | 0.0443 (10) | −0.0002 (7) | 0.0124 (7) | −0.0004 (8) |
O3 | 0.0293 (7) | 0.0315 (7) | 0.0364 (7) | 0.0018 (6) | −0.0072 (6) | 0.0046 (6) |
O4 | 0.0284 (7) | 0.0211 (7) | 0.0326 (7) | 0.0000 (5) | −0.0059 (6) | −0.0067 (6) |
O5 | 0.0274 (7) | 0.0271 (8) | 0.0514 (9) | 0.0054 (6) | −0.0033 (7) | −0.0092 (7) |
O6 | 0.0478 (10) | 0.0439 (9) | 0.0368 (8) | −0.0087 (8) | 0.0054 (8) | 0.0099 (8) |
O7 | 0.0173 (6) | 0.0382 (8) | 0.0160 (5) | −0.0010 (6) | 0.0006 (4) | −0.0031 (6) |
O8 | 0.0334 (8) | 0.0201 (6) | 0.0233 (6) | 0.0088 (6) | −0.0091 (6) | −0.0057 (5) |
O9 | 0.0397 (7) | 0.0196 (7) | 0.0199 (6) | −0.0031 (6) | 0.0099 (5) | −0.0025 (5) |
O10 | 0.0199 (7) | 0.0233 (6) | 0.0273 (6) | 0.0039 (5) | 0.0045 (5) | 0.0053 (5) |
C1 | 0.0411 (12) | 0.0290 (10) | 0.0351 (11) | −0.0086 (10) | −0.0066 (10) | −0.0027 (9) |
C2 | 0.0285 (10) | 0.0247 (9) | 0.0356 (10) | −0.0027 (8) | −0.0070 (9) | −0.0049 (8) |
C3 | 0.0171 (9) | 0.0492 (13) | 0.0253 (9) | −0.0037 (8) | 0.0017 (7) | 0.0003 (9) |
C4 | 0.0244 (9) | 0.0533 (14) | 0.0284 (9) | 0.0015 (10) | 0.0073 (8) | 0.0001 (10) |
C5 | 0.0309 (10) | 0.0433 (12) | 0.0183 (8) | −0.0017 (9) | 0.0034 (7) | 0.0006 (8) |
C6 | 0.0274 (9) | 0.0374 (11) | 0.0169 (8) | −0.0044 (8) | 0.0002 (7) | −0.0043 (8) |
C7 | 0.0416 (12) | 0.0330 (11) | 0.0301 (10) | 0.0088 (10) | −0.0163 (9) | −0.0054 (9) |
C8 | 0.0390 (12) | 0.0357 (12) | 0.0325 (11) | 0.0092 (10) | −0.0090 (9) | 0.0042 (9) |
C9 | 0.0362 (11) | 0.0213 (9) | 0.0379 (11) | 0.0063 (8) | −0.0023 (9) | 0.0022 (8) |
C10 | 0.0577 (15) | 0.0241 (10) | 0.0432 (12) | 0.0170 (10) | −0.0213 (12) | −0.0150 (10) |
C11 | 0.0372 (10) | 0.0255 (10) | 0.0195 (8) | −0.0029 (8) | 0.0047 (8) | −0.0057 (7) |
C12 | 0.0488 (14) | 0.0415 (13) | 0.0275 (10) | −0.0022 (10) | 0.0154 (10) | −0.0072 (9) |
C13 | 0.084 (2) | 0.0427 (15) | 0.0515 (16) | −0.0202 (15) | 0.0368 (16) | −0.0027 (12) |
C14 | 0.0679 (17) | 0.0247 (10) | 0.0295 (10) | −0.0127 (11) | 0.0150 (11) | 0.0011 (8) |
C15 | 0.0301 (10) | 0.0353 (11) | 0.0294 (10) | 0.0062 (9) | 0.0039 (8) | 0.0126 (8) |
C16 | 0.0424 (12) | 0.0317 (11) | 0.0386 (11) | 0.0109 (10) | 0.0024 (10) | 0.0136 (9) |
C17 | 0.0284 (11) | 0.0489 (14) | 0.0479 (13) | 0.0154 (10) | 0.0012 (10) | 0.0088 (11) |
C18 | 0.0245 (9) | 0.0269 (9) | 0.0363 (10) | 0.0057 (7) | 0.0080 (9) | 0.0020 (9) |
Fe1—O8 | 2.1024 (13) | C5—H5B | 0.9900 |
Fe1—O10 | 2.1153 (13) | C6—H6A | 0.9900 |
Fe1—O4 | 2.1179 (14) | C6—H6B | 0.9900 |
Fe1—O9 | 2.1187 (13) | C7—C8 | 1.497 (3) |
Fe1—O7 | 2.1239 (12) | C7—H7A | 0.9900 |
Fe1—O1 | 2.1279 (14) | C7—H7B | 0.9900 |
S1—O2 | 1.4325 (16) | C8—C9 | 1.507 (3) |
S1—O3 | 1.4346 (15) | C8—H8A | 0.9900 |
S1—O1 | 1.4608 (14) | C8—H8B | 0.9900 |
S1—C1 | 1.825 (2) | C9—C10 | 1.497 (3) |
S2—O6 | 1.4290 (17) | C9—H9A | 0.9900 |
S2—O5 | 1.4329 (16) | C9—H9B | 0.9900 |
S2—O4 | 1.4608 (14) | C10—H10A | 0.9900 |
S2—C2 | 1.821 (2) | C10—H10B | 0.9900 |
F1—C1 | 1.329 (3) | C11—C12 | 1.505 (3) |
F2—C1 | 1.328 (3) | C11—H11A | 0.9900 |
F3—C1 | 1.320 (3) | C11—H11B | 0.9900 |
F4—C2 | 1.327 (3) | C12—C13 | 1.513 (4) |
F5—C2 | 1.325 (2) | C12—H12A | 0.9900 |
F6—C2 | 1.330 (3) | C12—H12B | 0.9900 |
O7—C6 | 1.447 (2) | C13—C14 | 1.484 (3) |
O7—C3 | 1.461 (2) | C13—H13A | 0.9900 |
O8—C10 | 1.446 (2) | C13—H13B | 0.9900 |
O8—C7 | 1.454 (2) | C14—H14A | 0.9900 |
O9—C11 | 1.448 (2) | C14—H14B | 0.9900 |
O9—C14 | 1.459 (3) | C15—C16 | 1.503 (3) |
O10—C15 | 1.452 (2) | C15—H15A | 0.9900 |
O10—C18 | 1.458 (2) | C15—H15B | 0.9900 |
C3—C4 | 1.525 (3) | C16—C17 | 1.527 (3) |
C3—H3A | 0.9900 | C16—H16A | 0.9900 |
C3—H3B | 0.9900 | C16—H16B | 0.9900 |
C4—C5 | 1.528 (3) | C17—C18 | 1.507 (3) |
C4—H4A | 0.9900 | C17—H17A | 0.9900 |
C4—H4B | 0.9900 | C17—H17B | 0.9900 |
C5—C6 | 1.508 (3) | C18—H18A | 0.9900 |
C5—H5A | 0.9900 | C18—H18B | 0.9900 |
O8—Fe1—O10 | 177.82 (6) | C5—C6—H6B | 110.9 |
O8—Fe1—O4 | 87.98 (5) | H6A—C6—H6B | 109.0 |
O10—Fe1—O4 | 89.99 (6) | O8—C7—C8 | 104.97 (17) |
O8—Fe1—O9 | 87.53 (6) | O8—C7—H7A | 110.8 |
O10—Fe1—O9 | 93.31 (5) | C8—C7—H7A | 110.8 |
O4—Fe1—O9 | 90.86 (6) | O8—C7—H7B | 110.8 |
O8—Fe1—O7 | 88.64 (6) | C8—C7—H7B | 110.8 |
O10—Fe1—O7 | 90.57 (5) | H7A—C7—H7B | 108.8 |
O4—Fe1—O7 | 90.22 (6) | C7—C8—C9 | 103.87 (17) |
O9—Fe1—O7 | 175.98 (6) | C7—C8—H8A | 111.0 |
O8—Fe1—O1 | 89.70 (5) | C9—C8—H8A | 111.0 |
O10—Fe1—O1 | 92.31 (5) | C7—C8—H8B | 111.0 |
O4—Fe1—O1 | 177.54 (6) | C9—C8—H8B | 111.0 |
O9—Fe1—O1 | 89.86 (5) | H8A—C8—H8B | 109.0 |
O7—Fe1—O1 | 88.90 (5) | C10—C9—C8 | 104.11 (18) |
O2—S1—O3 | 116.30 (10) | C10—C9—H9A | 110.9 |
O2—S1—O1 | 114.09 (9) | C8—C9—H9A | 110.9 |
O3—S1—O1 | 114.30 (9) | C10—C9—H9B | 110.9 |
O2—S1—C1 | 104.29 (11) | C8—C9—H9B | 110.9 |
O3—S1—C1 | 104.11 (10) | H9A—C9—H9B | 109.0 |
O1—S1—C1 | 101.34 (10) | O8—C10—C9 | 106.67 (17) |
O6—S2—O5 | 116.43 (11) | O8—C10—H10A | 110.4 |
O6—S2—O4 | 114.17 (10) | C9—C10—H10A | 110.4 |
O5—S2—O4 | 114.51 (10) | O8—C10—H10B | 110.4 |
O6—S2—C2 | 104.02 (11) | C9—C10—H10B | 110.4 |
O5—S2—C2 | 104.55 (10) | H10A—C10—H10B | 108.6 |
O4—S2—C2 | 100.57 (9) | O9—C11—C12 | 104.14 (17) |
S1—O1—Fe1 | 135.31 (9) | O9—C11—H11A | 110.9 |
S2—O4—Fe1 | 142.51 (9) | C12—C11—H11A | 110.9 |
C6—O7—C3 | 109.25 (14) | O9—C11—H11B | 110.9 |
C6—O7—Fe1 | 125.96 (11) | C12—C11—H11B | 110.9 |
C3—O7—Fe1 | 124.38 (11) | H11A—C11—H11B | 108.9 |
C10—O8—C7 | 109.61 (15) | C11—C12—C13 | 102.1 (2) |
C10—O8—Fe1 | 125.99 (12) | C11—C12—H12A | 111.3 |
C7—O8—Fe1 | 124.39 (12) | C13—C12—H12A | 111.3 |
C11—O9—C14 | 107.83 (14) | C11—C12—H12B | 111.3 |
C11—O9—Fe1 | 128.44 (12) | C13—C12—H12B | 111.3 |
C14—O9—Fe1 | 122.42 (12) | H12A—C12—H12B | 109.2 |
C15—O10—C18 | 109.12 (15) | C14—C13—C12 | 105.3 (2) |
C15—O10—Fe1 | 124.88 (12) | C14—C13—H13A | 110.7 |
C18—O10—Fe1 | 125.93 (11) | C12—C13—H13A | 110.7 |
F3—C1—F2 | 107.6 (2) | C14—C13—H13B | 110.7 |
F3—C1—F1 | 108.4 (2) | C12—C13—H13B | 110.7 |
F2—C1—F1 | 107.59 (19) | H13A—C13—H13B | 108.8 |
F3—C1—S1 | 112.09 (16) | O9—C14—C13 | 106.82 (18) |
F2—C1—S1 | 111.02 (15) | O9—C14—H14A | 110.4 |
F1—C1—S1 | 110.05 (18) | C13—C14—H14A | 110.4 |
F5—C2—F4 | 108.00 (19) | O9—C14—H14B | 110.4 |
F5—C2—F6 | 107.51 (18) | C13—C14—H14B | 110.4 |
F4—C2—F6 | 107.37 (19) | H14A—C14—H14B | 108.6 |
F5—C2—S2 | 111.21 (15) | O10—C15—C16 | 105.46 (17) |
F4—C2—S2 | 111.38 (15) | O10—C15—H15A | 110.7 |
F6—C2—S2 | 111.18 (15) | C16—C15—H15A | 110.7 |
O7—C3—C4 | 105.50 (16) | O10—C15—H15B | 110.7 |
O7—C3—H3A | 110.6 | C16—C15—H15B | 110.7 |
C4—C3—H3A | 110.6 | H15A—C15—H15B | 108.8 |
O7—C3—H3B | 110.6 | C15—C16—C17 | 101.44 (19) |
C4—C3—H3B | 110.6 | C15—C16—H16A | 111.5 |
H3A—C3—H3B | 108.8 | C17—C16—H16A | 111.5 |
C3—C4—C5 | 103.22 (16) | C15—C16—H16B | 111.5 |
C3—C4—H4A | 111.1 | C17—C16—H16B | 111.5 |
C5—C4—H4A | 111.1 | H16A—C16—H16B | 109.3 |
C3—C4—H4B | 111.1 | C18—C17—C16 | 101.86 (17) |
C5—C4—H4B | 111.1 | C18—C17—H17A | 111.4 |
H4A—C4—H4B | 109.1 | C16—C17—H17A | 111.4 |
C6—C5—C4 | 101.37 (16) | C18—C17—H17B | 111.4 |
C6—C5—H5A | 111.5 | C16—C17—H17B | 111.4 |
C4—C5—H5A | 111.5 | H17A—C17—H17B | 109.3 |
C6—C5—H5B | 111.5 | O10—C18—C17 | 104.95 (17) |
C4—C5—H5B | 111.5 | O10—C18—H18A | 110.8 |
H5A—C5—H5B | 109.3 | C17—C18—H18A | 110.8 |
O7—C6—C5 | 104.12 (16) | O10—C18—H18B | 110.8 |
O7—C6—H6A | 110.9 | C17—C18—H18B | 110.8 |
C5—C6—H6A | 110.9 | H18A—C18—H18B | 108.8 |
O7—C6—H6B | 110.9 | ||
O2—S1—O1—Fe1 | 83.66 (14) | O7—C3—C4—C5 | −21.8 (2) |
O3—S1—O1—Fe1 | −53.60 (15) | C3—C4—C5—C6 | 37.3 (2) |
C1—S1—O1—Fe1 | −164.91 (12) | C3—O7—C6—C5 | 27.1 (2) |
O6—S2—O4—Fe1 | 93.74 (17) | Fe1—O7—C6—C5 | −160.09 (13) |
O5—S2—O4—Fe1 | −44.07 (19) | C4—C5—C6—O7 | −39.6 (2) |
C2—S2—O4—Fe1 | −155.53 (15) | C10—O8—C7—C8 | 18.0 (3) |
O2—S1—C1—F3 | 56.6 (2) | Fe1—O8—C7—C8 | −161.93 (14) |
O3—S1—C1—F3 | 178.93 (19) | O8—C7—C8—C9 | −30.8 (2) |
O1—S1—C1—F3 | −62.2 (2) | C7—C8—C9—C10 | 32.0 (3) |
O2—S1—C1—F2 | 176.88 (16) | C7—O8—C10—C9 | 2.3 (3) |
O3—S1—C1—F2 | −60.75 (18) | Fe1—O8—C10—C9 | −177.78 (14) |
O1—S1—C1—F2 | 58.15 (17) | C8—C9—C10—O8 | −21.4 (3) |
O2—S1—C1—F1 | −64.11 (19) | C14—O9—C11—C12 | 30.3 (2) |
O3—S1—C1—F1 | 58.26 (19) | Fe1—O9—C11—C12 | −162.73 (15) |
O1—S1—C1—F1 | 177.16 (17) | O9—C11—C12—C13 | −37.2 (3) |
O6—S2—C2—F5 | −60.00 (19) | C11—C12—C13—C14 | 30.6 (3) |
O5—S2—C2—F5 | 62.60 (18) | C11—O9—C14—C13 | −10.8 (3) |
O4—S2—C2—F5 | −178.42 (16) | Fe1—O9—C14—C13 | −178.7 (2) |
O6—S2—C2—F4 | 60.52 (19) | C12—C13—C14—O9 | −13.0 (4) |
O5—S2—C2—F4 | −176.87 (16) | C18—O10—C15—C16 | −13.7 (2) |
O4—S2—C2—F4 | −57.89 (18) | Fe1—O10—C15—C16 | 163.46 (14) |
O6—S2—C2—F6 | −179.78 (16) | O10—C15—C16—C17 | 33.9 (2) |
O5—S2—C2—F6 | −57.17 (17) | C15—C16—C17—C18 | −41.0 (2) |
O4—S2—C2—F6 | 61.81 (17) | C15—O10—C18—C17 | −12.8 (2) |
C6—O7—C3—C4 | −3.0 (2) | Fe1—O10—C18—C17 | 170.13 (15) |
Fe1—O7—C3—C4 | −175.97 (14) | C16—C17—C18—O10 | 33.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O2i | 0.99 | 2.55 | 3.514 (3) | 164 |
C11—H11B···O5 | 0.99 | 2.59 | 3.412 (3) | 140 |
C12—H12A···O3ii | 0.99 | 2.49 | 3.388 (3) | 151 |
C14—H14A···O2 | 0.99 | 2.51 | 3.429 (3) | 155 |
C16—H16B···O6iii | 0.99 | 2.56 | 3.476 (3) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, −y+1, z−1/2; (iii) x+1/2, −y+1/2, −z+2. |
The atom names of the Co and Ni complexes have been changed for consistency. |
M = Fe | M = Co | Δ Fe/Co | M = Ni | Δ Fe/Ni | M = Zn | Δ Fe/Zn | |
M—O1 | 2.1279 (14) | 2.115 (3) | 0.013 (3) | 2.034 (3) | 0.094 (3) | 2.078 (3) | 0.050 (3) |
M—O4 | 2.1179 (14) | 2.098 (3) | 0.020 (3) | 2.031 (3) | 0.087 (3) | 2.080 (3) | 0.038 (3) |
M—O7 | 2.1239 (12) | 2.088 (3) | 0.036 (3) | 2.054 (2) | 0.070 (2) | 2.087 (3) | 0.037 (3) |
M—O8 | 2.1024 (13) | 2.076 (3) | 0.026 (3) | 2.036 (2) | 0.066 (2) | 2.088 (3) | 0.014 (3) |
M—O9 | 2.1187 (13) | 2.093 (3) | 0.026 (3) | 2.051 (2) | 0.068 (2) | 2.092 (3) | 0.027 (3) |
M—O10 | 2.1153 (13) | 2.103 (3) | 0.012 (3) | 2.039 (3) | 0.076 (3) | 2.084 (3) | 0.031 (3) |
Acknowledgements
The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).
Funding information
The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).
References
Amel'chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218–1263. Google Scholar
Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta. Google Scholar
Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hagen, K. S. (2000). Inorg. Chem. 39, 5867–5869. CSD CrossRef PubMed CAS Google Scholar
Haynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429–441. CSD CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackay, A. L. (1984). Acta Cryst. A40, 165–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504. Web of Science CrossRef CAS IUCr Journals Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands. Google Scholar
Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.