research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(tetra­hydro­furan-κO)bis­­(tri­fluoro­methane­sulfonato-κO)iron(II)

aOrganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, and bBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: m.lutz@uu.nl

Edited by A. Van der Lee, Université de Montpellier II, France (Received 6 September 2019; accepted 23 September 2019; online 27 September 2019)

The title compound, [Fe(CF3SO3)2(C4H8O)4], is octa­hedral with two tri­fluoro­methane­sulfonate ligands in trans positions and four tetra­hydro­furane mol­ecules in the equatorial plane. By the conformation of the ligands the complex is chiral in the crystal packing. The compound crystallizes in the Sohncke space group P212121 and is enanti­omerically pure. The packing of the mol­ecules is determined by weak C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component inversion twin.

1. Chemical context

The tri­fluoro­methane­sulfonato anion is usually weakly coordinating to metals, and the salts thereof are consequently important starting compounds for the exchange with other ligands. In an attempt of such a synthesis on iron(II) we obtained the starting material back with tetra­hydro­furan (THF) mol­ecules from the solvent completing the sixfold coordination environment. The overall composition of the title compound (I)[link] is then [Fe(CF3SO3)2(C4H8O)4].

[Scheme 1]

2. Structural commentary

A mol­ecular plot of (I)[link] is shown in Fig. 1[link] with selected bond lengths and bond angles given in Table 1[link]. The present Fe compound is isostructural to the corresponding Co, Ni and Zn compounds known from the literature (Amel'chenkova et al., 2006[Amel'chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218-1263.]). An isostructural Cu compound is mentioned in the same publication but no further details are given. An overlay of the isostructural compounds is presented in Fig. 2[link]. The comparison of metal–oxygen distances in Table 2[link] follows the trend of effective ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) with 0.92 Å for octa­hedral Fe2+ (high-spin), 0.885 Å for Co2+ (high-spin), 0.83 Å for Ni2+ and 0.88 Å for Zn2+. From this comparison we can conclude that the Fe ion in (I)[link] has a high-spin electronic configuration. It should also be noted that there are no significant differences in metal–oxygen distances between the partially negative triflate and the neutral THF.

Table 1
Selected geometric parameters (Å, °)

S1—O2 1.4325 (16) S2—O6 1.4290 (17)
S1—O3 1.4346 (15) S2—O5 1.4329 (16)
S1—O1 1.4608 (14) S2—O4 1.4608 (14)
       
O8—Fe1—O10 177.82 (6) O9—Fe1—O7 175.98 (6)
O8—Fe1—O4 87.98 (5) O8—Fe1—O1 89.70 (5)
O10—Fe1—O4 89.99 (6) O10—Fe1—O1 92.31 (5)
O8—Fe1—O9 87.53 (6) O4—Fe1—O1 177.54 (6)
O10—Fe1—O9 93.31 (5) O9—Fe1—O1 89.86 (5)
O4—Fe1—O9 90.86 (6) O7—Fe1—O1 88.90 (5)
O8—Fe1—O7 88.64 (6) S1—O1—Fe1 135.31 (9)
O10—Fe1—O7 90.57 (5) S2—O4—Fe1 142.51 (9)
O4—Fe1—O7 90.22 (6)    

Table 2
Comparison between the metal–oxygen distances of the Fe compound (I)[link] and the isostructural Co, Ni and Zn compounds from the literature (Amel'chenkova et al., 2006[Amel'chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218-1263.]).

The atom names of the Co and Ni complexes have been changed for consistency.

  M = Fe M = Co Δ Fe/Co M = Ni Δ Fe/Ni M = Zn Δ Fe/Zn
M—O1 2.1279 (14) 2.115 (3) 0.013 (3) 2.034 (3) 0.094 (3) 2.078 (3) 0.050 (3)
M—O4 2.1179 (14) 2.098 (3) 0.020 (3) 2.031 (3) 0.087 (3) 2.080 (3) 0.038 (3)
M—O7 2.1239 (12) 2.088 (3) 0.036 (3) 2.054 (2) 0.070 (2) 2.087 (3) 0.037 (3)
M—O8 2.1024 (13) 2.076 (3) 0.026 (3) 2.036 (2) 0.066 (2) 2.088 (3) 0.014 (3)
M—O9 2.1187 (13) 2.093 (3) 0.026 (3) 2.051 (2) 0.068 (2) 2.092 (3) 0.027 (3)
M—O10 2.1153 (13) 2.103 (3) 0.012 (3) 2.039 (3) 0.076 (3) 2.084 (3) 0.031 (3)
[Figure 1]
Figure 1
A view of the molecular structure of (I)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.
[Figure 2]
Figure 2
Overlay plot of the isostructural Co, Ni, and Zn complexes (Amel'chenkova et al., 2006[Amel'chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218-1263.]) with respect to the Fe complex (I)[link]. The coordinates of the Ni and Zn complexes have been inverted for this comparison. Hydrogen atoms are omitted for clarity. The quaternion fit algorithm (Mackay, 1984[Mackay, A. L. (1984). Acta Cryst. A40, 165-166.]) as implemented in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used for the preparation of the plot. Color scheme: Fe complex (blue),Co complex (green), Ni complex (red), and Zn complex (black).

In the octa­hedral compound (I)[link], the triflate ligands are in trans positions and the equatorial plane is formed by O atoms of THF. The Fe atom is approximately in the equatorial plane at a distance of 0.0079 (3) Å from the least-squares plane of the THF oxygen atoms. The FeO6 octa­hedron is nearly undistorted with a quadratic elongation of 1.001 and an angle variance of 2.79°2 (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). To the best of our knowledge, the crystal structure of compound (I)[link] is the first of a trans triflate Fe complex with an FeO6 chromophore. Similar complexes with N atoms in the equatorial plane are known from the literature. In the aceto­nitrile complex [Fe(CF3SO3)2(CH3CN)4], the core octa­hedron is similarly undistorted (Hagen, 2000[Hagen, K. S. (2000). Inorg. Chem. 39, 5867-5869.]), while the pyridine complex [Fe(CF3SO3)2(C5H5N)4] is slightly tetra­gonally compressed (Haynes et al., 1986[Haynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429-441.]).

As expected, all four coordinated THF mol­ecules are puckered. The rings at O7 and O8 are best described as having an envelope conformation, the rings at O9 and O10 as being in a twist conformation. The O atoms are coordinated to the metal in a trigonal geometry with angle sums of 358.7 (2)–360.0 (2)°.

The two triflate ligands adopt a staggered conformation with O—S—C—F torsion angles between 56.6 (2) and 64.11 (19)°. The S—O distances to the coordinating oxygen atoms are significantly longer than to the non-coordinating oxygen atoms (Table 1[link]). A search in the Cambridge Structural Database (update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows a large variation between 99.3 and 178.2° in S—O—metal bond angles for the weakly coordinating triflate ligand (1501 observations, non-disordered structures). The angles of 135.31 (9) and 142.51 (9)° in compound (I)[link] are well within this range.

The octa­hedral symmetry of the inner-sphere coordination environment (see above) is reduced to approximate C2 symmetry by the arrangement of the triflate anion (Fig. 3[link]). If the THF mol­ecules are considered as well, the overall symmetry reduces to C1. Despite the achiral ligands, the metal complex is thus chiral in the crystal.

[Figure 3]
Figure 3
The approximate Oh symmetry of the FeO6 polyhedron (left, r.m.s.d. 0.0489 Å) is reduced by the tri­fluoro­methane­sulfonate coordination in the second coordination shell to approximate C2 (center, r.m.s.d. 0.1460 Å). If the coordinated THF mol­ecules are taken into consideration, the symmetry is only C1 (right). The algorithm of Pilati & Forni (1998[Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503-504.]) was used to calculate the r.m.s.d. values.

3. Supra­molecular features

The crystal structure of (I)[link] has a packing index (Kitajgorodskij, 1973[Kitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.]) of only 68.7%, which is at the lower end of the 65–75% range expected for organic solids (Dunitz, 1995[Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106-111. Basel: Verlag Helvetica Chimica Acta.]). Indeed, the packing is determined by only weak C—H⋯O inter­actions with the THF atoms as donors and the non-coordinated triflate oxygen atoms as acceptors (Table 3[link]). Every mol­ecule of (I)[link] is the donor and acceptor of three inter­molecular C—H⋯O hydrogen bonds and has thus a coordination number of six. This results in a three-dimensional network.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2i 0.99 2.55 3.514 (3) 164
C11—H11B⋯O5 0.99 2.59 3.412 (3) 140
C12—H12A⋯O3ii 0.99 2.49 3.388 (3) 151
C14—H14A⋯O2 0.99 2.51 3.429 (3) 155
C16—H16B⋯O6iii 0.99 2.56 3.476 (3) 154
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

4. Synthesis and crystallization

The title compound was obtained from an experiment aimed at synthesizing an iron coordination compound based on an oxazine ligand. In a glovebox under a di­nitro­gen atmosphere, 4a,8a-di­methyl­octa­hydro-[1,4]oxazino[3,2-b][1,4]oxazine (159 mg, 0.923 mmol) and Fe(OTf)2·2MeCN (400 mg, 0.917 mmol) were placed in separate vials. The ligand was dissolved in THF (about 12 mL) and added to the vial containing Fe(OTf)2·2MeCN under gentle stirring. The color of the solution turned from black to dark red and stirring was maintained overnight at room temperature. The resulting compound was precipitated twice by dropwise addition of a concentrated THF solution into hexane. The slightly pink-colored supernatants were removed by deca­ntation. The precipitated solids were washed with hexa­nes and dried under vacuum. The deca­nted solutions were stored in a freezer at 238 K and over a month light-pink crystals slowly grew.

A second crystallization starting from the isolated precipitate in an 1:1 THF:hexane solution grew similar crystals over several months at 238 K. 1H-NMR in d3-MeCN showed no paramagnetic peaks but small diamagnetic peaks of THF (3.64, 1.79 ppm) and hexane (1.28, 0.89 ppm). 19F-NMR showed a single sharp peak at −79.36 ppm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were placed in calculated positions (C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula [Fe(CF3O3S)2(C4H8O)4]
Mr 642.40
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 8.6618 (3), 16.2610 (6), 19.0572 (4)
V3) 2684.20 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.43 × 0.32 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.652, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 43720, 6166, 6027
Rint 0.020
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.07
No. of reflections 6166
No. of parameters 335
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.28
Absolute structure Refined as an inversion twin
Absolute structure parameter −0.001 (10)
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), PEAKREF (Schreurs, 2016[Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.]), Eval15 (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]), initial coordinates from isostructural Zn complex (Amel'chenkova et al., 2006[Amel'chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218-1263.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DRAWxtl (Finger et al., 2007[Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188-192.]).

The reflection profiles in Eval15 (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]) were based on a split-mosaic model. Two fragments were rotated by 0.56° with respect to each other. An example for a reflection profile is shown in Fig. 4[link].

[Figure 4]
Figure 4
Height plot of the pixel intensities of reflection hkl = (5,[\overline{15}],[\overline{12}]). The central frame (scan width 0.3°) is shown. Observed intensities (left) and model intensities (right). A split-mosaic model was assumed for the prediction of the profile.

Because (I)[link] crystallizes in the Sohncke space group P212121 without second kind symmetry operations, it is susceptible for an absolute structure determination. A full-matrix refinement as inversion twin results in a Flack parameter of x = −0.001 (10) (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). Within standard uncertainties, the crystal structure can consequently be considered as enanti­omerically pure. The standard uncertainty is corrected for the different number of observations in the point group versus the Laue group symmetry (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). If this correction is not applied (program SHELXL97, Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), the Flack parameter is x = −0.001 (8). Analysis of 2590 intensity quotients (Parsons et al. 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) results in an absolute structure parameter of z = −0.001 (2). Similarly, a likelihood analysis on Bijvoet differences (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) gives an absolute structure parameter y = −0.000 (1). This analysis uses a t-value of 99, resulting in a slope of 0.885 and an inter­cept of −0.037. The student-t probability plot is linear with a correlation coefficient of 1.000. All of these different methods give a consistent result for the present crystal. The measurement of a second crystal results in x = 0.015 (11) from an inversion twin refinement, but very low standard uncertainties in the values of z = 0.015 (2) and y = 0.0012 (1) leave reasons for doubt concerning its enanti­opurity, although the Bijvoet difference related probabilities P2/P3 (true) are 1.000 and the probability P3 (false) is 0.000 in both crystals, suggesting that both crystals are enanti­opure.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: PEAKREF (Schreurs, 2016); data reduction: Eval15 (Schreurs et al., 2010); program(s) used to solve structure: initial coordinates from isostructural Zn complex (Amel'chenkova et al., 2006); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007).

Tetrakis(tetrahydrofuran-κO)bis(trifluoromethanesulfonato-κO)iron(II) top
Crystal data top
[Fe(CF3O3S)2(C4H8O)4]Dx = 1.590 Mg m3
Mr = 642.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 40729 reflections
a = 8.6618 (3) Åθ = 1.6–27.5°
b = 16.2610 (6) ŵ = 0.81 mm1
c = 19.0572 (4) ÅT = 150 K
V = 2684.20 (14) Å3Block, light pink
Z = 40.43 × 0.32 × 0.18 mm
F(000) = 1328
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6027 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.020
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.652, Tmax = 0.746k = 2121
43720 measured reflectionsl = 2424
6166 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.6586P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6166 reflectionsΔρmax = 0.33 e Å3
335 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50772 (3)0.48861 (2)0.86831 (2)0.01643 (6)
S10.81595 (5)0.57825 (3)0.93928 (2)0.02277 (10)
S20.32496 (6)0.31474 (3)0.81507 (2)0.02265 (10)
F10.9574 (2)0.68741 (12)1.01554 (11)0.0680 (6)
F20.7121 (2)0.68477 (9)1.03052 (7)0.0470 (4)
F30.8062 (3)0.73954 (9)0.93805 (9)0.0590 (5)
F40.06455 (18)0.35905 (12)0.75689 (10)0.0558 (4)
F50.14957 (18)0.24184 (9)0.72262 (9)0.0480 (4)
F60.2551 (2)0.35272 (10)0.68562 (7)0.0508 (4)
O10.65973 (16)0.57880 (9)0.91040 (7)0.0240 (3)
O20.93533 (19)0.58245 (12)0.88737 (9)0.0406 (4)
O30.83890 (17)0.52029 (9)0.99506 (8)0.0324 (3)
O40.34877 (17)0.40267 (8)0.82643 (8)0.0274 (3)
O50.45752 (17)0.27184 (10)0.78893 (9)0.0353 (4)
O60.2398 (2)0.27486 (11)0.86955 (9)0.0428 (4)
O70.38706 (15)0.48776 (10)0.96533 (6)0.0238 (3)
O80.35941 (17)0.58263 (8)0.83381 (7)0.0256 (3)
O90.62129 (17)0.49769 (8)0.77015 (7)0.0264 (3)
O100.64976 (15)0.39087 (8)0.90293 (7)0.0235 (3)
C10.8230 (3)0.67820 (14)0.98276 (12)0.0350 (5)
C20.1914 (3)0.31710 (13)0.74133 (11)0.0296 (4)
C30.2234 (2)0.46794 (15)0.97287 (10)0.0305 (5)
H3A0.2035480.4101330.9593130.037*
H3B0.1596800.5044030.9430110.037*
C40.1865 (2)0.48144 (16)1.05024 (11)0.0354 (5)
H4A0.1150200.4386961.0679680.042*
H4B0.1399120.5362881.0580320.042*
C50.3443 (2)0.47496 (15)1.08559 (10)0.0308 (4)
H5A0.3461380.5045461.1309870.037*
H5B0.3744320.4169171.0932070.037*
C60.4466 (2)0.51605 (14)1.03204 (9)0.0272 (4)
H6A0.4396990.5766641.0357360.033*
H6B0.5556330.4992161.0382540.033*
C70.2531 (3)0.57493 (15)0.77512 (11)0.0349 (5)
H7A0.1595430.5440200.7891440.042*
H7B0.3027890.5461520.7353150.042*
C80.2128 (3)0.66148 (15)0.75551 (12)0.0358 (5)
H8A0.1074560.6645820.7355750.043*
H8B0.2871620.6837030.7208960.043*
C90.2226 (3)0.70770 (13)0.82393 (12)0.0318 (5)
H9A0.2505090.7659770.8159060.038*
H9B0.1230890.7053980.8494380.038*
C100.3467 (3)0.66399 (13)0.86392 (13)0.0417 (6)
H10A0.4459410.6937860.8595510.050*
H10B0.3192500.6603900.9142470.050*
C110.6152 (3)0.44132 (13)0.71141 (10)0.0274 (4)
H11A0.5181120.4482470.6846490.033*
H11B0.6228000.3836010.7275810.033*
C120.7528 (3)0.46439 (15)0.66738 (12)0.0393 (5)
H12A0.7384280.4478000.6178300.047*
H12B0.8486830.4391360.6857160.047*
C130.7560 (4)0.55698 (18)0.67491 (16)0.0593 (9)
H13A0.8630150.5779570.6710680.071*
H13B0.6921380.5833160.6381620.071*
C140.6920 (4)0.57395 (14)0.74568 (11)0.0407 (6)
H14A0.7751020.5913010.7780980.049*
H14B0.6138790.6183180.7432180.049*
C150.6119 (3)0.33496 (14)0.95980 (11)0.0316 (4)
H15A0.5029450.3170000.9565100.038*
H15B0.6281450.3618451.0058210.038*
C160.7192 (3)0.26300 (15)0.95120 (13)0.0376 (5)
H16A0.6775520.2222970.9175070.045*
H16B0.7396030.2355450.9966230.045*
C170.8638 (3)0.30493 (17)0.92264 (14)0.0417 (6)
H17A0.9223100.3327640.9604360.050*
H17B0.9322370.2651690.8985450.050*
C180.7963 (2)0.36611 (13)0.87176 (12)0.0292 (4)
H18A0.8656160.4140730.8661340.035*
H18B0.7797060.3404710.8252530.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01825 (11)0.01659 (11)0.01444 (10)0.00166 (10)0.00053 (9)0.00065 (8)
S10.0182 (2)0.0244 (2)0.0257 (2)0.00151 (17)0.00011 (18)0.00155 (17)
S20.0229 (2)0.0189 (2)0.0261 (2)0.00106 (17)0.00181 (18)0.00144 (16)
F10.0548 (10)0.0586 (11)0.0907 (14)0.0162 (8)0.0327 (10)0.0222 (10)
F20.0648 (10)0.0402 (8)0.0360 (7)0.0033 (7)0.0047 (7)0.0135 (6)
F30.0976 (14)0.0258 (7)0.0536 (9)0.0106 (8)0.0009 (10)0.0063 (7)
F40.0342 (7)0.0635 (11)0.0697 (11)0.0195 (7)0.0173 (7)0.0151 (9)
F50.0478 (9)0.0322 (7)0.0640 (9)0.0105 (6)0.0218 (7)0.0118 (7)
F60.0648 (10)0.0564 (9)0.0311 (7)0.0160 (8)0.0116 (7)0.0056 (7)
O10.0226 (6)0.0237 (7)0.0256 (6)0.0001 (5)0.0033 (5)0.0029 (5)
O20.0279 (7)0.0495 (10)0.0443 (10)0.0002 (7)0.0124 (7)0.0004 (8)
O30.0293 (7)0.0315 (7)0.0364 (7)0.0018 (6)0.0072 (6)0.0046 (6)
O40.0284 (7)0.0211 (7)0.0326 (7)0.0000 (5)0.0059 (6)0.0067 (6)
O50.0274 (7)0.0271 (8)0.0514 (9)0.0054 (6)0.0033 (7)0.0092 (7)
O60.0478 (10)0.0439 (9)0.0368 (8)0.0087 (8)0.0054 (8)0.0099 (8)
O70.0173 (6)0.0382 (8)0.0160 (5)0.0010 (6)0.0006 (4)0.0031 (6)
O80.0334 (8)0.0201 (6)0.0233 (6)0.0088 (6)0.0091 (6)0.0057 (5)
O90.0397 (7)0.0196 (7)0.0199 (6)0.0031 (6)0.0099 (5)0.0025 (5)
O100.0199 (7)0.0233 (6)0.0273 (6)0.0039 (5)0.0045 (5)0.0053 (5)
C10.0411 (12)0.0290 (10)0.0351 (11)0.0086 (10)0.0066 (10)0.0027 (9)
C20.0285 (10)0.0247 (9)0.0356 (10)0.0027 (8)0.0070 (9)0.0049 (8)
C30.0171 (9)0.0492 (13)0.0253 (9)0.0037 (8)0.0017 (7)0.0003 (9)
C40.0244 (9)0.0533 (14)0.0284 (9)0.0015 (10)0.0073 (8)0.0001 (10)
C50.0309 (10)0.0433 (12)0.0183 (8)0.0017 (9)0.0034 (7)0.0006 (8)
C60.0274 (9)0.0374 (11)0.0169 (8)0.0044 (8)0.0002 (7)0.0043 (8)
C70.0416 (12)0.0330 (11)0.0301 (10)0.0088 (10)0.0163 (9)0.0054 (9)
C80.0390 (12)0.0357 (12)0.0325 (11)0.0092 (10)0.0090 (9)0.0042 (9)
C90.0362 (11)0.0213 (9)0.0379 (11)0.0063 (8)0.0023 (9)0.0022 (8)
C100.0577 (15)0.0241 (10)0.0432 (12)0.0170 (10)0.0213 (12)0.0150 (10)
C110.0372 (10)0.0255 (10)0.0195 (8)0.0029 (8)0.0047 (8)0.0057 (7)
C120.0488 (14)0.0415 (13)0.0275 (10)0.0022 (10)0.0154 (10)0.0072 (9)
C130.084 (2)0.0427 (15)0.0515 (16)0.0202 (15)0.0368 (16)0.0027 (12)
C140.0679 (17)0.0247 (10)0.0295 (10)0.0127 (11)0.0150 (11)0.0011 (8)
C150.0301 (10)0.0353 (11)0.0294 (10)0.0062 (9)0.0039 (8)0.0126 (8)
C160.0424 (12)0.0317 (11)0.0386 (11)0.0109 (10)0.0024 (10)0.0136 (9)
C170.0284 (11)0.0489 (14)0.0479 (13)0.0154 (10)0.0012 (10)0.0088 (11)
C180.0245 (9)0.0269 (9)0.0363 (10)0.0057 (7)0.0080 (9)0.0020 (9)
Geometric parameters (Å, º) top
Fe1—O82.1024 (13)C5—H5B0.9900
Fe1—O102.1153 (13)C6—H6A0.9900
Fe1—O42.1179 (14)C6—H6B0.9900
Fe1—O92.1187 (13)C7—C81.497 (3)
Fe1—O72.1239 (12)C7—H7A0.9900
Fe1—O12.1279 (14)C7—H7B0.9900
S1—O21.4325 (16)C8—C91.507 (3)
S1—O31.4346 (15)C8—H8A0.9900
S1—O11.4608 (14)C8—H8B0.9900
S1—C11.825 (2)C9—C101.497 (3)
S2—O61.4290 (17)C9—H9A0.9900
S2—O51.4329 (16)C9—H9B0.9900
S2—O41.4608 (14)C10—H10A0.9900
S2—C21.821 (2)C10—H10B0.9900
F1—C11.329 (3)C11—C121.505 (3)
F2—C11.328 (3)C11—H11A0.9900
F3—C11.320 (3)C11—H11B0.9900
F4—C21.327 (3)C12—C131.513 (4)
F5—C21.325 (2)C12—H12A0.9900
F6—C21.330 (3)C12—H12B0.9900
O7—C61.447 (2)C13—C141.484 (3)
O7—C31.461 (2)C13—H13A0.9900
O8—C101.446 (2)C13—H13B0.9900
O8—C71.454 (2)C14—H14A0.9900
O9—C111.448 (2)C14—H14B0.9900
O9—C141.459 (3)C15—C161.503 (3)
O10—C151.452 (2)C15—H15A0.9900
O10—C181.458 (2)C15—H15B0.9900
C3—C41.525 (3)C16—C171.527 (3)
C3—H3A0.9900C16—H16A0.9900
C3—H3B0.9900C16—H16B0.9900
C4—C51.528 (3)C17—C181.507 (3)
C4—H4A0.9900C17—H17A0.9900
C4—H4B0.9900C17—H17B0.9900
C5—C61.508 (3)C18—H18A0.9900
C5—H5A0.9900C18—H18B0.9900
O8—Fe1—O10177.82 (6)C5—C6—H6B110.9
O8—Fe1—O487.98 (5)H6A—C6—H6B109.0
O10—Fe1—O489.99 (6)O8—C7—C8104.97 (17)
O8—Fe1—O987.53 (6)O8—C7—H7A110.8
O10—Fe1—O993.31 (5)C8—C7—H7A110.8
O4—Fe1—O990.86 (6)O8—C7—H7B110.8
O8—Fe1—O788.64 (6)C8—C7—H7B110.8
O10—Fe1—O790.57 (5)H7A—C7—H7B108.8
O4—Fe1—O790.22 (6)C7—C8—C9103.87 (17)
O9—Fe1—O7175.98 (6)C7—C8—H8A111.0
O8—Fe1—O189.70 (5)C9—C8—H8A111.0
O10—Fe1—O192.31 (5)C7—C8—H8B111.0
O4—Fe1—O1177.54 (6)C9—C8—H8B111.0
O9—Fe1—O189.86 (5)H8A—C8—H8B109.0
O7—Fe1—O188.90 (5)C10—C9—C8104.11 (18)
O2—S1—O3116.30 (10)C10—C9—H9A110.9
O2—S1—O1114.09 (9)C8—C9—H9A110.9
O3—S1—O1114.30 (9)C10—C9—H9B110.9
O2—S1—C1104.29 (11)C8—C9—H9B110.9
O3—S1—C1104.11 (10)H9A—C9—H9B109.0
O1—S1—C1101.34 (10)O8—C10—C9106.67 (17)
O6—S2—O5116.43 (11)O8—C10—H10A110.4
O6—S2—O4114.17 (10)C9—C10—H10A110.4
O5—S2—O4114.51 (10)O8—C10—H10B110.4
O6—S2—C2104.02 (11)C9—C10—H10B110.4
O5—S2—C2104.55 (10)H10A—C10—H10B108.6
O4—S2—C2100.57 (9)O9—C11—C12104.14 (17)
S1—O1—Fe1135.31 (9)O9—C11—H11A110.9
S2—O4—Fe1142.51 (9)C12—C11—H11A110.9
C6—O7—C3109.25 (14)O9—C11—H11B110.9
C6—O7—Fe1125.96 (11)C12—C11—H11B110.9
C3—O7—Fe1124.38 (11)H11A—C11—H11B108.9
C10—O8—C7109.61 (15)C11—C12—C13102.1 (2)
C10—O8—Fe1125.99 (12)C11—C12—H12A111.3
C7—O8—Fe1124.39 (12)C13—C12—H12A111.3
C11—O9—C14107.83 (14)C11—C12—H12B111.3
C11—O9—Fe1128.44 (12)C13—C12—H12B111.3
C14—O9—Fe1122.42 (12)H12A—C12—H12B109.2
C15—O10—C18109.12 (15)C14—C13—C12105.3 (2)
C15—O10—Fe1124.88 (12)C14—C13—H13A110.7
C18—O10—Fe1125.93 (11)C12—C13—H13A110.7
F3—C1—F2107.6 (2)C14—C13—H13B110.7
F3—C1—F1108.4 (2)C12—C13—H13B110.7
F2—C1—F1107.59 (19)H13A—C13—H13B108.8
F3—C1—S1112.09 (16)O9—C14—C13106.82 (18)
F2—C1—S1111.02 (15)O9—C14—H14A110.4
F1—C1—S1110.05 (18)C13—C14—H14A110.4
F5—C2—F4108.00 (19)O9—C14—H14B110.4
F5—C2—F6107.51 (18)C13—C14—H14B110.4
F4—C2—F6107.37 (19)H14A—C14—H14B108.6
F5—C2—S2111.21 (15)O10—C15—C16105.46 (17)
F4—C2—S2111.38 (15)O10—C15—H15A110.7
F6—C2—S2111.18 (15)C16—C15—H15A110.7
O7—C3—C4105.50 (16)O10—C15—H15B110.7
O7—C3—H3A110.6C16—C15—H15B110.7
C4—C3—H3A110.6H15A—C15—H15B108.8
O7—C3—H3B110.6C15—C16—C17101.44 (19)
C4—C3—H3B110.6C15—C16—H16A111.5
H3A—C3—H3B108.8C17—C16—H16A111.5
C3—C4—C5103.22 (16)C15—C16—H16B111.5
C3—C4—H4A111.1C17—C16—H16B111.5
C5—C4—H4A111.1H16A—C16—H16B109.3
C3—C4—H4B111.1C18—C17—C16101.86 (17)
C5—C4—H4B111.1C18—C17—H17A111.4
H4A—C4—H4B109.1C16—C17—H17A111.4
C6—C5—C4101.37 (16)C18—C17—H17B111.4
C6—C5—H5A111.5C16—C17—H17B111.4
C4—C5—H5A111.5H17A—C17—H17B109.3
C6—C5—H5B111.5O10—C18—C17104.95 (17)
C4—C5—H5B111.5O10—C18—H18A110.8
H5A—C5—H5B109.3C17—C18—H18A110.8
O7—C6—C5104.12 (16)O10—C18—H18B110.8
O7—C6—H6A110.9C17—C18—H18B110.8
C5—C6—H6A110.9H18A—C18—H18B108.8
O7—C6—H6B110.9
O2—S1—O1—Fe183.66 (14)O7—C3—C4—C521.8 (2)
O3—S1—O1—Fe153.60 (15)C3—C4—C5—C637.3 (2)
C1—S1—O1—Fe1164.91 (12)C3—O7—C6—C527.1 (2)
O6—S2—O4—Fe193.74 (17)Fe1—O7—C6—C5160.09 (13)
O5—S2—O4—Fe144.07 (19)C4—C5—C6—O739.6 (2)
C2—S2—O4—Fe1155.53 (15)C10—O8—C7—C818.0 (3)
O2—S1—C1—F356.6 (2)Fe1—O8—C7—C8161.93 (14)
O3—S1—C1—F3178.93 (19)O8—C7—C8—C930.8 (2)
O1—S1—C1—F362.2 (2)C7—C8—C9—C1032.0 (3)
O2—S1—C1—F2176.88 (16)C7—O8—C10—C92.3 (3)
O3—S1—C1—F260.75 (18)Fe1—O8—C10—C9177.78 (14)
O1—S1—C1—F258.15 (17)C8—C9—C10—O821.4 (3)
O2—S1—C1—F164.11 (19)C14—O9—C11—C1230.3 (2)
O3—S1—C1—F158.26 (19)Fe1—O9—C11—C12162.73 (15)
O1—S1—C1—F1177.16 (17)O9—C11—C12—C1337.2 (3)
O6—S2—C2—F560.00 (19)C11—C12—C13—C1430.6 (3)
O5—S2—C2—F562.60 (18)C11—O9—C14—C1310.8 (3)
O4—S2—C2—F5178.42 (16)Fe1—O9—C14—C13178.7 (2)
O6—S2—C2—F460.52 (19)C12—C13—C14—O913.0 (4)
O5—S2—C2—F4176.87 (16)C18—O10—C15—C1613.7 (2)
O4—S2—C2—F457.89 (18)Fe1—O10—C15—C16163.46 (14)
O6—S2—C2—F6179.78 (16)O10—C15—C16—C1733.9 (2)
O5—S2—C2—F657.17 (17)C15—C16—C17—C1841.0 (2)
O4—S2—C2—F661.81 (17)C15—O10—C18—C1712.8 (2)
C6—O7—C3—C43.0 (2)Fe1—O10—C18—C17170.13 (15)
Fe1—O7—C3—C4175.97 (14)C16—C17—C18—O1033.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.992.553.514 (3)164
C11—H11B···O50.992.593.412 (3)140
C12—H12A···O3ii0.992.493.388 (3)151
C14—H14A···O20.992.513.429 (3)155
C16—H16B···O6iii0.992.563.476 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1, z1/2; (iii) x+1/2, y+1/2, z+2.
Comparison between the metal–oxygen distances of the Fe compound (I) and the isostructural Co, Ni and Zn compounds from the literature (Amel'chenkova et al., 2006). top
The atom names of the Co and Ni complexes have been changed for consistency.
M = FeM = CoΔ Fe/CoM = NiΔ Fe/NiM = ZnΔ Fe/Zn
M—O12.1279 (14)2.115 (3)0.013 (3)2.034 (3)0.094 (3)2.078 (3)0.050 (3)
M—O42.1179 (14)2.098 (3)0.020 (3)2.031 (3)0.087 (3)2.080 (3)0.038 (3)
M—O72.1239 (12)2.088 (3)0.036 (3)2.054 (2)0.070 (2)2.087 (3)0.037 (3)
M—O82.1024 (13)2.076 (3)0.026 (3)2.036 (2)0.066 (2)2.088 (3)0.014 (3)
M—O92.1187 (13)2.093 (3)0.026 (3)2.051 (2)0.068 (2)2.092 (3)0.027 (3)
M—O102.1153 (13)2.103 (3)0.012 (3)2.039 (3)0.076 (3)2.084 (3)0.031 (3)
 

Acknowledgements

The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).

Funding information

The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).

References

First citationAmel'chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218–1263.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta.  Google Scholar
First citationFinger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHagen, K. S. (2000). Inorg. Chem. 39, 5867–5869.  CSD CrossRef PubMed CAS Google Scholar
First citationHaynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429–441.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackay, A. L. (1984). Acta Cryst. A40, 165–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.  Google Scholar
First citationSchreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds