research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,2′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}bis­­[4-(tri­fluoro­meth­­oxy)phenol]copper(II) hydro­quinone hemisolvate

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey, bBoyabat Vocational School, Sinop University, 57200 Sinop, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64 Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 9 October 2019; accepted 20 October 2019; online 29 October 2019)

In the title com­plex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetra­dentate open-chain Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol]. The crystal packing is stabilized by intra­molecular O—H⋯O and inter­molecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak ππ inter­actions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) inter­actions.

1. Chemical context

Metal com­plexes of Schiff bases have different applications because of their different heteroatoms (N, S, Cl etc.), functional groups, π-electron density, isomer structures and easy synthesis (El-Samanody et al., 2017[El-Samanody, E. A., Emam, S. M. & Emara, E. M. (2017). J. Mol. Struct. 1146, 868-880.]). Metal com­plexes with less oxophilic character exhibit attractive properties, such as targeting catalysts in many polymerization reactions (Ng et al., 2016[Ng, J. D., Upadhyay, S. P., Marquard, A. N., Lupo, K. M., Hinton, D. A., Padilla, N. A., Bates, D. M. & Goldsmith, R. H. (2016). J. Am. Chem. Soc. 138, 3876-3883.]). On the other hand, in nature, metal com­plexes are encountered in many reactions, such as binding to DNA or enzymes (Li et al., 2010[Li, Y., Yang, Z.-Y. & Wang, M.-F. (2010). J. Fluoresc. 20, 891-905.]). For this reason, metal com­plexes are of increasing inter­est in the fields of medicine and chemical synthesis with attractive functional properties and stable structures. Salen-type Schiff bases [salen is N,N′-bis­(salicyl­idene)ethyl­enedi­amine] have been synthesized by many research groups from different di­amines and derivatives of benzaldehyde (Prushan et al., 2007[Prushan, M. J., Tomezsko, D. M., Lofland, S., Zeller, M. & Hunter, A. D. (2007). Inorg. Chim. Acta, 360, 2245-2254.]). In addition, salen-type Schiff bases derived from 2-hy­droxy-3-meth­oxy­benzaldehyde (also called o-vanillin) are very effective ligands for many metal ions due to the two different binding sites, because of the presence of the meth­oxy group near the –OH group (Andruh, 2015[Andruh, M. (2015). Dalton Trans. 44, 16333-16653.]). Each transition metal has different biological properties depending on the geometry of the com­plex and the structure of the ligand, so the biological activity of a drug may be controlled by changing the metal ion or the chemical structure of the ligand. Recently, it was reported that synthesized Schiff bases indicate anti­bacterial properties, more pronounced in the case of metal com­plexes com­pared to the free Schiff bases (Wu et al., 2011[Wu, H., Kou, F., Jia, F., Liu, B., Yuan, J. & Bai, Y. (2011). J. Photochem. Photobiol. B, 105, 190-197.]).

In this study, a salen-type Schiff base has been synthesized from 2-hy­droxy-5-(tri­fluoro­meth­oxy)benzaldehyde with ethyl­enedi­amine by a condensation reaction. The synthesized Schiff base was used as an O,N,N′,O′-type tetra­dentate ligand, and a copper(II) com­plex was obtained and the structure confirmed by single-crystal X-ray diffraction analysis. In this study, we describe the crystal structure and Hirshfeld surface analysis of the title com­pound, as determined by X-ray crystallographic analysis.

[Scheme 1]

2. Structural commentary

Fig. 1[link] illustrates the title metal com­plex formed by a CuII ion chelated by a doubly deprotonated tetra­dentate Schiff base ligand and a hydrogen-bonded mol­ecule of hydro­quinone. The Cu1 ion is coordinated by two imine N atoms (N6 and N7) and two phenoxo O atoms (O2 and O3) of the tetra­dentate Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol] (L1). The hydro­quinone mol­ecule is located on an inversion centre and is linked to neighbouring com­plex cations via O—H⋯O hydrogen bonds. The bond lengths Cu1—O2 and Cu1—O3 [1.883 (4) and 1.906 (4) Å, respectively] and Cu1—N1 and Cu1—N2 [1.929 (5) and 1.927 (5) Å, respectively] are close to the values observed for related copper(II) com­plexes reported in the literature (Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]; Fritsky et al., 2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]). Selected geometric parameters of the title com­pound are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.883 (4) N3—C10 1.455 (8)
Cu1—O3 1.906 (4) N2—C8 1.275 (8)
Cu1—N2 1.927 (5) O4—C18 1.269 (12)
Cu1—N3 1.929 (5) O1—C1 1.267 (9)
O2—C5 1.309 (7) F2—C1 1.271 (9)
O3—C17 1.317 (7) F4—C18 1.265 (11)
       
O2—Cu1—O3 87.54 (17) O2—Cu1—N3 177.82 (18)
O2—Cu1—N2 94.40 (18) O3—Cu1—N3 93.9 (2)
O3—Cu1—N2 176.2 (2) N2—Cu1—N3 84.3 (2)
[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond. [Symmetry code: (i) −x, −y, −z + 1.]

3. Supra­molecular features

The crystal packing of the title com­pound is stabilized by inter­molecular C—H⋯O, C—H⋯F and C—H⋯Cg1 (Cg1 is the centroid of the C19–C21/C19i–C21i ring) hydrogen bonds (Table 2[link] and Fig. 2[link]). In addition, weak ππ inter­actions connect the mol­ecules into a three-dimensional supra­molecular architecture (Fig. 3[link]). The Cg2⋯Cg3 distance is 3.507 (2) Å, where Cg2 and Cg3 are the centroids of the Cu1/O2/C5/C6/C8/N2 and Cu1/O3/C17/C12/C11/N1 rings, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C19–C21/C19i–C21i ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3 0.82 2.20 2.993 (8) 165
C11—H11⋯F2i 0.93 2.63 3.513 (8) 159
C10—H10A⋯O5ii 0.97 2.53 3.469 (11) 162
C15—H15⋯O5iii 0.93 2.55 3.345 (9) 144
C8—H8⋯Cg1iv 0.93 2.82 3.740 (8) 173
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.
[Figure 2]
Figure 2
A view of the crystal packing of the title com­pound. Dashed lines denote inter­molecular O—H⋯O, C—H⋯F and C—H⋯π hydrogen bonds.
[Figure 3]
Figure 3
A view of the crystal packing of the title com­pound. The ππ inter­actions are shown as pink dashed lines. [The direction of the unitcell parameters is missing. It might be better to show the unitcell outline]

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots were performed and created with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer Ver. 17.5. University of Western Australia. http://hirshfeldsurface.net.]). The Hirshfeld surface was mapped with dnorm (Fig. 4[link]). The view of surface were obtained in the range −0.4385 to 1.6105 a.u. (dnorm). The blue, white and red colour conventions used for the dnorm-mapped Hirshfeld surfaces recognize the inter­atomic contacts as longer, at van der Waals separations and short inter­atomic contacts, respectively.

[Figure 4]
Figure 4
The dnorm-mapped Hirshfeld surface for visualizing the inter­molecular contacts of the title com­pound.

A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in gray. Fig. 5[link](a) shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The most significant contribution to the Hirshfeld surface is from F⋯H/H⋯F contacts (25.7%) (Fig. 5[link]b). Here, H⋯H interactions are only the second most significant contribution to the total Hirshfeld surface (23.5%). In addition, C⋯H/H⋯C and O⋯H/H⋯O contacts contribute 12.6 and 11.2% to the Hirshfeld surface, respectively.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title com­pound.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) related to the title com­plex revealed six hits. These structures are Cu(5-hexyl­oxySalen)·CHCl3 (FAGLOP; Paschke et al., 2002[Paschke, R., Balkow, D. & Sinn, E. (2002). Inorg. Chem. 41, 1949-1953.]), C30H54Cu2F12N10O2P2 (ICUHEU; Margraf et al., 2006[Margraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277-1288.]), C38H44Cu2N4O10 (PIFKOE01; Liu, 2016[Liu, H.-Y. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 210-215.]), C36H36Cu2N4O8·2CH4O (PIFKOE02; Zhang, 2016[Zhang, X.-L. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1848-1853.]), C18H18CuN2O4·1.5H2O (QARPAB; Yao et al., 2005[Yao, H.-H., Huang, W.-T., Lo, J.-M., Liao, F.-L. & Chattopadhyay, P. (2005). J. Coord. Chem. 58, 975-984.]) and C18H18CuN2O4 (XOZ­ZUH; Atria et al., 2002[Atria, A. M., Moreno, Y., Spodine, E., Garland, M. T. & Baggio, R. (2002). Inorg. Chim. Acta, 335, 1-6.]). All of these structures have square-planar environments, as in the title copper(II) com­plex. The Cu—O and Cu—N bond lengths range from ca 1.898 to 1.915 Å and from ca 1.936 to 2.271 Å, respectively. In the title com­plex, the Cu—N bond lengths [1.927 (5) and 1.929 (5) Å] fall within these limits. While the Cu1—O3 and C1—O2 bond length [1.906 (4) and 1.883 (4) Å, respectively] are within and close to these limits, respectively, the Cu1—O2 bond length is outside these limits, with a shorter value of 1.883 (4) Å.

6. Synthesis and crystallization

2,2′-{(1E,1′E)-[Ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methan­ylyl­idene)}bis­[4-(tri­fluoro­meth­oxy)phenol] (H2L1) was syn­thesized by condensation of 2-hy­droxy-5-(tri­­fluoro­meth­oxy)­benzaldehyde (0.0095 mmol) and 1,2-ethane­diamine (0.0095 mmol) in ethanol under reflux for about 18 h. The yellow product was washed with ether and dried at room temperature. 0.0080 mmol H2L1 was dissolved in 20 ml ethanol and 0.0080 mmol Cu(CH3COO)2·H2O was dissolved in 20 ml ethanol. The metal solution was added dropwise to the Schiff base solution and the resulting solution refluxed for about 6 h. The product (CuL1) was washed with toluene and crystallized from ethanol at room temperature. 2,2′-{(1E,1′E)-[Ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[4-(tri­fluoro­meth­oxy)phenol]copper(II) hydro­quinone hemisolvate was obtained even after 0.0040 mmol hydro­quinone was added to 0.0040 mmol CuL1 in 20 ml ethanol and refluxed for about 6 h. A purple crystal suitable for X-ray diffraction analysis was obtained from the reaction (m.p. 568 K; yield 80%) (Fig. 6[link]).

[Figure 6]
Figure 6
The synthesis of the title com­pound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for methine, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for hy­droxy H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C18H12F6N2O4)]·0.5C6H6O2
Mr 552.89
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.3167 (10), 10.0363 (10), 11.8052 (13)
α, β, γ (°) 92.633 (9), 97.310 (9), 98.670 (9)
V3) 1080.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.10
Crystal size (mm) 0.57 × 0.25 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.695, 0.944
No. of measured, independent and observed [I > 2σ(I)] reflections 9277, 4105, 2818
Rint 0.105
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.217, 1.08
No. of reflections 4105
No. of parameters 317
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.43
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

2,2'-{(1E,1'E)-[Ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate top
Crystal data top
[Cu(C18H12F6N2O4)]·0.5C6H6O2Z = 2
Mr = 552.89F(000) = 556
Triclinic, P1Dx = 1.700 Mg m3
a = 9.3167 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0363 (10) ÅCell parameters from 9488 reflections
c = 11.8052 (13) Åθ = 2.1–31.6°
α = 92.633 (9)°µ = 1.10 mm1
β = 97.310 (9)°T = 296 K
γ = 98.670 (9)°Stick, orange
V = 1080.0 (2) Å30.57 × 0.25 × 0.06 mm
Data collection top
Stoe IPDS 2
diffractometer
4105 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2818 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.105
rotation method scansθmax = 26.0°, θmin = 2.1°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1111
Tmin = 0.695, Tmax = 0.944k = 1112
9277 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.1271P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4105 reflectionsΔρmax = 0.88 e Å3
317 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34081 (8)0.48948 (6)0.55458 (5)0.0543 (3)
O20.2235 (5)0.4083 (4)0.4202 (3)0.0623 (10)
O30.4268 (5)0.3290 (4)0.5642 (3)0.0725 (12)
N30.4629 (6)0.5787 (5)0.6891 (4)0.0615 (12)
N20.2498 (5)0.6496 (4)0.5547 (4)0.0599 (11)
O40.8058 (6)0.1792 (5)0.9159 (5)0.0941 (16)
O10.2353 (6)0.5831 (6)0.1519 (6)0.1072 (19)
F20.3405 (7)0.6958 (6)0.0275 (5)0.1250 (19)
C50.1234 (6)0.4598 (5)0.3559 (5)0.0562 (12)
C170.5157 (6)0.2963 (6)0.6508 (5)0.0594 (13)
C120.5756 (7)0.3861 (6)0.7474 (5)0.0607 (14)
C130.6693 (7)0.3408 (6)0.8348 (5)0.0656 (14)
H130.7084360.3983260.8988910.079*
C110.5502 (7)0.5230 (6)0.7574 (5)0.0652 (15)
H110.6024340.5768700.8198030.078*
C40.0563 (7)0.3889 (6)0.2529 (5)0.0640 (14)
H40.0861520.3082540.2313980.077*
O50.2281 (8)0.1271 (6)0.3981 (7)0.133 (3)
H50.2915170.1700470.4461420.199*
C60.0774 (7)0.5844 (5)0.3848 (5)0.0600 (13)
C80.1441 (7)0.6725 (6)0.4822 (5)0.0637 (14)
H80.1075140.7525910.4934450.076*
C140.7035 (7)0.2153 (6)0.8275 (6)0.0701 (16)
C200.1237 (8)0.0623 (7)0.5681 (7)0.083 (2)
H200.2066080.1071430.6145940.099*
F50.8619 (9)0.0840 (7)1.0705 (6)0.165 (3)
C20.1012 (8)0.5510 (7)0.2184 (6)0.0809 (19)
C160.5574 (8)0.1686 (6)0.6466 (6)0.0716 (16)
H160.5218400.1096510.5827200.086*
C10.2238 (10)0.6854 (8)0.0927 (6)0.089 (2)
F40.6940 (12)0.0204 (7)0.9451 (6)0.213 (5)
C90.3081 (9)0.7467 (6)0.6522 (6)0.0793 (19)
H9A0.2431300.7371350.7103600.095*
H9B0.3138650.8380050.6274970.095*
C30.0517 (8)0.4351 (7)0.1834 (6)0.0784 (19)
H30.0912570.3890630.1135850.094*
F30.1763 (13)0.7969 (6)0.1498 (6)0.220 (5)
C190.0109 (9)0.0032 (6)0.6171 (6)0.084 (2)
H190.0195890.0077140.6961490.101*
C70.0395 (8)0.6257 (7)0.3149 (6)0.0793 (19)
H70.0740970.7044730.3351830.095*
C100.4551 (9)0.7224 (6)0.7003 (6)0.086 (2)
H10A0.5283710.7720040.6601720.104*
H10B0.4752290.7541840.7804490.104*
F10.1335 (8)0.6744 (10)0.0196 (7)0.179 (3)
C210.1175 (9)0.0633 (6)0.4511 (7)0.085 (2)
C150.6497 (7)0.1268 (7)0.7341 (6)0.0730 (16)
H150.6750210.0407160.7299920.088*
F60.6605 (12)0.1453 (14)1.0406 (8)0.215 (5)
C180.7608 (15)0.0945 (11)0.9851 (10)0.122 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0612 (5)0.0452 (4)0.0562 (4)0.0114 (3)0.0058 (3)0.0023 (2)
O20.073 (3)0.0482 (19)0.064 (2)0.0178 (17)0.0043 (18)0.0075 (16)
O30.094 (3)0.059 (2)0.064 (2)0.037 (2)0.012 (2)0.0105 (18)
N30.068 (3)0.052 (2)0.060 (3)0.002 (2)0.003 (2)0.0008 (19)
N20.062 (3)0.046 (2)0.071 (3)0.012 (2)0.004 (2)0.006 (2)
O40.088 (3)0.082 (3)0.106 (4)0.015 (3)0.022 (3)0.029 (3)
O10.091 (4)0.096 (4)0.132 (5)0.013 (3)0.005 (3)0.038 (4)
F20.130 (4)0.118 (4)0.120 (4)0.043 (3)0.042 (3)0.018 (3)
C50.054 (3)0.054 (3)0.062 (3)0.011 (2)0.009 (2)0.004 (2)
C170.054 (3)0.062 (3)0.068 (3)0.026 (3)0.010 (3)0.003 (3)
C120.065 (4)0.054 (3)0.060 (3)0.003 (3)0.002 (3)0.007 (2)
C130.065 (4)0.059 (3)0.071 (3)0.008 (3)0.003 (3)0.006 (3)
C110.061 (3)0.068 (4)0.062 (3)0.006 (3)0.000 (3)0.003 (3)
C40.061 (3)0.056 (3)0.074 (3)0.018 (3)0.002 (3)0.008 (3)
O50.146 (6)0.068 (3)0.188 (7)0.016 (3)0.094 (6)0.049 (4)
C60.062 (3)0.049 (3)0.070 (3)0.016 (2)0.002 (3)0.005 (2)
C80.069 (4)0.048 (3)0.076 (4)0.021 (3)0.008 (3)0.004 (2)
C140.067 (4)0.063 (3)0.078 (4)0.012 (3)0.004 (3)0.018 (3)
C200.070 (4)0.057 (4)0.119 (6)0.017 (3)0.004 (4)0.029 (4)
F50.219 (7)0.133 (5)0.126 (4)0.032 (5)0.067 (5)0.044 (4)
C20.081 (5)0.068 (4)0.090 (4)0.025 (3)0.018 (4)0.007 (3)
C160.078 (4)0.061 (3)0.077 (4)0.025 (3)0.000 (3)0.003 (3)
C10.105 (6)0.093 (5)0.060 (4)0.004 (4)0.007 (4)0.014 (4)
F40.351 (12)0.082 (4)0.151 (6)0.054 (5)0.078 (7)0.038 (4)
C90.102 (5)0.054 (3)0.077 (4)0.020 (3)0.008 (4)0.013 (3)
C30.090 (5)0.063 (4)0.075 (4)0.011 (3)0.010 (3)0.005 (3)
F30.390 (13)0.087 (4)0.149 (5)0.083 (6)0.138 (7)0.026 (4)
C190.117 (6)0.055 (3)0.081 (4)0.022 (4)0.009 (4)0.008 (3)
C70.088 (5)0.059 (3)0.090 (4)0.023 (3)0.006 (4)0.001 (3)
C100.112 (6)0.051 (3)0.085 (4)0.002 (3)0.012 (4)0.008 (3)
F10.151 (6)0.259 (10)0.144 (6)0.038 (6)0.057 (5)0.058 (6)
C210.093 (5)0.047 (3)0.114 (6)0.007 (3)0.026 (4)0.021 (3)
C150.076 (4)0.061 (3)0.085 (4)0.021 (3)0.003 (3)0.016 (3)
F60.202 (9)0.316 (14)0.137 (6)0.034 (9)0.043 (6)0.097 (7)
C180.149 (10)0.098 (7)0.101 (6)0.003 (6)0.028 (7)0.026 (5)
Geometric parameters (Å, º) top
Cu1—O21.883 (4)O5—H50.8200
Cu1—O31.906 (4)C6—C71.407 (9)
Cu1—N21.927 (5)C6—C81.431 (8)
Cu1—N31.929 (5)C8—H80.9300
O2—C51.309 (7)C14—C151.375 (9)
O3—C171.317 (7)C20—C191.361 (11)
N3—C111.279 (8)C20—C211.375 (11)
N3—C101.455 (8)C20—H200.9300
N2—C81.275 (8)F5—C181.309 (11)
N2—C91.465 (7)C2—C71.348 (10)
O4—C181.269 (12)C2—C31.379 (10)
O4—C141.419 (7)C16—C151.381 (9)
O1—C11.267 (9)C16—H160.9300
O1—C21.475 (8)C1—F31.268 (9)
F2—C11.271 (9)C1—F11.292 (10)
C5—C41.403 (8)F4—C181.265 (11)
C5—C61.423 (8)C9—C101.474 (11)
C17—C161.395 (8)C9—H9A0.9700
C17—C121.420 (8)C9—H9B0.9700
C12—C131.403 (8)C3—H30.9300
C12—C111.431 (9)C19—C21i1.392 (11)
C13—C141.346 (9)C19—H190.9300
C13—H130.9300C7—H70.9300
C11—H110.9300C10—H10A0.9700
C4—C31.366 (9)C10—H10B0.9700
C4—H40.9300C15—H150.9300
O5—C211.366 (9)F6—C181.353 (15)
O2—Cu1—O387.54 (17)C21—C20—H20119.4
O2—Cu1—N294.40 (18)C7—C2—C3122.2 (6)
O3—Cu1—N2176.2 (2)C7—C2—O1120.4 (7)
O2—Cu1—N3177.82 (18)C3—C2—O1117.0 (6)
O3—Cu1—N393.9 (2)C15—C16—C17122.2 (6)
N2—Cu1—N384.3 (2)C15—C16—H16118.9
C5—O2—Cu1127.1 (3)C17—C16—H16118.9
C17—O3—Cu1127.0 (4)F3—C1—O1114.8 (7)
C11—N3—C10122.4 (5)F3—C1—F2109.4 (8)
C11—N3—Cu1125.0 (4)O1—C1—F2113.7 (7)
C10—N3—Cu1112.3 (4)F3—C1—F1105.7 (9)
C8—N2—C9120.3 (5)O1—C1—F1110.6 (9)
C8—N2—Cu1125.9 (4)F2—C1—F1101.6 (7)
C9—N2—Cu1113.8 (4)N2—C9—C10109.6 (6)
C18—O4—C14118.9 (7)N2—C9—H9A109.7
C1—O1—C2118.1 (6)C10—C9—H9A109.7
O2—C5—C4118.9 (5)N2—C9—H9B109.7
O2—C5—C6123.6 (5)C10—C9—H9B109.7
C4—C5—C6117.5 (5)H9A—C9—H9B108.2
O3—C17—C16118.8 (5)C4—C3—C2119.0 (6)
O3—C17—C12123.4 (5)C4—C3—H3120.5
C16—C17—C12117.8 (5)C2—C3—H3120.5
C13—C12—C17118.7 (6)C20—C19—C21i119.9 (7)
C13—C12—C11118.3 (5)C20—C19—H19120.0
C17—C12—C11123.0 (5)C21i—C19—H19120.0
C14—C13—C12121.1 (6)C2—C7—C6119.8 (6)
C14—C13—H13119.5C2—C7—H7120.1
C12—C13—H13119.5C6—C7—H7120.1
N3—C11—C12126.5 (5)N3—C10—C9109.9 (5)
N3—C11—H11116.7N3—C10—H10A109.7
C12—C11—H11116.7C9—C10—H10A109.7
C3—C4—C5121.9 (6)N3—C10—H10B109.7
C3—C4—H4119.1C9—C10—H10B109.7
C5—C4—H4119.1H10A—C10—H10B108.2
C21—O5—H5109.5O5—C21—C20123.4 (7)
C7—C6—C5119.3 (5)O5—C21—C19i117.9 (8)
C7—C6—C8117.1 (5)C20—C21—C19i118.7 (7)
C5—C6—C8123.6 (5)C14—C15—C16118.5 (6)
N2—C8—C6125.1 (5)C14—C15—H15120.7
N2—C8—H8117.5C16—C15—H15120.7
C6—C8—H8117.5F4—C18—O4118.6 (10)
C13—C14—C15121.7 (6)F4—C18—F5111.2 (9)
C13—C14—O4117.9 (6)O4—C18—F5112.4 (10)
C15—C14—O4120.2 (6)F4—C18—F6103.2 (13)
C19—C20—C21121.3 (7)O4—C18—F6108.5 (10)
C19—C20—H20119.4F5—C18—F6101.1 (11)
O3—Cu1—O2—C5179.3 (5)C18—O4—C14—C1574.5 (11)
N2—Cu1—O2—C52.6 (5)C1—O1—C2—C774.4 (11)
Cu1—O2—C5—C4174.2 (4)C1—O1—C2—C3111.7 (9)
Cu1—O2—C5—C66.2 (8)O3—C17—C16—C15179.8 (6)
Cu1—O3—C17—C16174.3 (5)C12—C17—C16—C152.2 (10)
Cu1—O3—C17—C127.8 (9)C2—O1—C1—F361.3 (13)
O3—C17—C12—C13180.0 (6)C2—O1—C1—F2171.7 (7)
C16—C17—C12—C132.0 (9)C2—O1—C1—F158.2 (10)
O3—C17—C12—C112.9 (10)C8—N2—C9—C10161.6 (6)
C16—C17—C12—C11175.0 (6)Cu1—N2—C9—C1021.2 (7)
C17—C12—C13—C140.6 (10)C5—C4—C3—C23.4 (11)
C11—C12—C13—C14176.5 (6)C7—C2—C3—C44.9 (12)
C10—N3—C11—C12173.9 (7)O1—C2—C3—C4168.9 (6)
Cu1—N3—C11—C120.6 (10)C21—C20—C19—C21i4.1 (12)
C13—C12—C11—N3176.2 (6)C3—C2—C7—C61.4 (12)
C17—C12—C11—N36.8 (10)O1—C2—C7—C6172.2 (6)
O2—C5—C4—C3178.2 (6)C5—C6—C7—C23.6 (10)
C6—C5—C4—C31.5 (9)C8—C6—C7—C2176.2 (7)
O2—C5—C6—C7174.7 (6)C11—N3—C10—C9153.1 (6)
C4—C5—C6—C74.9 (9)Cu1—N3—C10—C931.8 (8)
O2—C5—C6—C85.5 (9)N2—C9—C10—N333.6 (9)
C4—C5—C6—C8174.8 (6)C19—C20—C21—O5179.7 (7)
C9—N2—C8—C6179.2 (6)C19—C20—C21—C19i4.1 (12)
Cu1—N2—C8—C62.3 (9)C13—C14—C15—C160.6 (11)
C7—C6—C8—N2179.2 (6)O4—C14—C15—C16176.1 (6)
C5—C6—C8—N21.0 (10)C17—C16—C15—C140.9 (11)
C12—C13—C14—C150.7 (11)C14—O4—C18—F456.4 (17)
C12—C13—C14—O4176.3 (6)C14—O4—C18—F5171.6 (9)
C18—O4—C14—C13109.8 (10)C14—O4—C18—F660.7 (11)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.822.202.993 (8)165
C11—H11···F2ii0.932.633.513 (8)159
C10—H10A···O5iii0.972.533.469 (11)162
C15—H15···O5iv0.932.553.345 (9)144
C8—H8···Cg1v0.932.823.740 (8)173
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z.
 

Funding information

Funding for this research was provided by: Ondokuz Mayıs University (award No. PYO.FEN.1906.19.001).

References

First citationAndruh, M. (2015). Dalton Trans. 44, 16333–16653.  CrossRef Google Scholar
First citationAtria, A. M., Moreno, Y., Spodine, E., Garland, M. T. & Baggio, R. (2002). Inorg. Chim. Acta, 335, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl-Samanody, E. A., Emam, S. M. & Emara, E. M. (2017). J. Mol. Struct. 1146, 868–880.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, Y., Yang, Z.-Y. & Wang, M.-F. (2010). J. Fluoresc. 20, 891–905.  CrossRef PubMed Google Scholar
First citationLiu, H.-Y. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 210–215.  CrossRef CAS Google Scholar
First citationMargraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277–1288.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNg, J. D., Upadhyay, S. P., Marquard, A. N., Lupo, K. M., Hinton, D. A., Padilla, N. A., Bates, D. M. & Goldsmith, R. H. (2016). J. Am. Chem. Soc. 138, 3876–3883.  CrossRef CAS PubMed Google Scholar
First citationPaschke, R., Balkow, D. & Sinn, E. (2002). Inorg. Chem. 41, 1949–1953.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPrushan, M. J., Tomezsko, D. M., Lofland, S., Zeller, M. & Hunter, A. D. (2007). Inorg. Chim. Acta, 360, 2245–2254.  CrossRef CAS Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer Ver. 17.5. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar
First citationWu, H., Kou, F., Jia, F., Liu, B., Yuan, J. & Bai, Y. (2011). J. Photochem. Photobiol. B, 105, 190–197.  CrossRef CAS PubMed Google Scholar
First citationYao, H.-H., Huang, W.-T., Lo, J.-M., Liao, F.-L. & Chattopadhyay, P. (2005). J. Coord. Chem. 58, 975–984.  CrossRef CAS Google Scholar
First citationZhang, X.-L. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1848–1853.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds