research communications
E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate
and Hirshfeld surface analysis of 2,2′-{(1aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey, bBoyabat Vocational School, Sinop University, 57200 Sinop, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64 Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua
In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) interactions.
Keywords: crystal structure; copper (II); salen-type Schiff base; Hirshfeld surface.
1. Chemical context
Metal complexes of etc.), functional groups, π-electron density, isomer structures and easy synthesis (El-Samanody et al., 2017). Metal complexes with less oxophilic character exhibit attractive properties, such as targeting catalysts in many polymerization reactions (Ng et al., 2016). On the other hand, in nature, metal complexes are encountered in many reactions, such as binding to DNA or enzymes (Li et al., 2010). For this reason, metal complexes are of increasing interest in the fields of medicine and chemical synthesis with attractive functional properties and stable structures. Salen-type [salen is N,N′-bis(salicylidene)ethylenediamine] have been synthesized by many research groups from different diamines and derivatives of benzaldehyde (Prushan et al., 2007). In addition, salen-type derived from 2-hydroxy-3-methoxybenzaldehyde (also called o-vanillin) are very effective ligands for many metal ions due to the two different binding sites, because of the presence of the methoxy group near the –OH group (Andruh, 2015). Each transition metal has different biological properties depending on the geometry of the complex and the structure of the ligand, so the biological activity of a drug may be controlled by changing the metal ion or the chemical structure of the ligand. Recently, it was reported that synthesized indicate antibacterial properties, more pronounced in the case of metal complexes compared to the free (Wu et al., 2011).
have different applications because of their different heteroatoms (N, S, ClIn this study, a salen-type Schiff base has been synthesized from 2-hydroxy-5-(trifluoromethoxy)benzaldehyde with ethylenediamine by a condensation reaction. The synthesized Schiff base was used as an O,N,N′,O′-type tetradentate ligand, and a copper(II) complex was obtained and the structure confirmed by single-crystal X-ray In this study, we describe the and Hirshfeld surface analysis of the title compound, as determined by X-ray crystallographic analysis.
2. Structural commentary
Fig. 1 illustrates the title metal complex formed by a CuII ion chelated by a doubly deprotonated tetradentate Schiff base ligand and a hydrogen-bonded molecule of hydroquinone. The Cu1 ion is coordinated by two imine N atoms (N6 and N7) and two phenoxo O atoms (O2 and O3) of the tetradentate Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol] (L1). The hydroquinone molecule is located on an inversion centre and is linked to neighbouring complex cations via O—H⋯O hydrogen bonds. The bond lengths Cu1—O2 and Cu1—O3 [1.883 (4) and 1.906 (4) Å, respectively] and Cu1—N1 and Cu1—N2 [1.929 (5) and 1.927 (5) Å, respectively] are close to the values observed for related copper(II) complexes reported in the literature (Şen et al., 2017; Fritsky et al., 2004; Strotmeyer et al., 2003). Selected geometric parameters of the title compound are listed in Table 1.
|
3. Supramolecular features
The crystal packing of the title compound is stabilized by intermolecular C—H⋯O, C—H⋯F and C—H⋯Cg1 (Cg1 is the centroid of the C19–C21/C19i–C21i ring) hydrogen bonds (Table 2 and Fig. 2). In addition, weak π–π interactions connect the molecules into a three-dimensional supramolecular architecture (Fig. 3). The Cg2⋯Cg3 distance is 3.507 (2) Å, where Cg2 and Cg3 are the centroids of the Cu1/O2/C5/C6/C8/N2 and Cu1/O3/C17/C12/C11/N1 rings, respectively.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots were performed and created with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface was mapped with dnorm (Fig. 4). The view of surface were obtained in the range −0.4385 to 1.6105 a.u. (dnorm). The blue, white and red colour conventions used for the dnorm-mapped Hirshfeld surfaces recognize the interatomic contacts as longer, at van der Waals separations and short interatomic contacts, respectively.
A fingerprint plot delineated into specific interatomic contacts contains information related to specific intermolecular interactions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in gray. Fig. 5(a) shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The most significant contribution to the Hirshfeld surface is from F⋯H/H⋯F contacts (25.7%) (Fig. 5b). Here, H⋯H interactions are only the second most significant contribution to the total Hirshfeld surface (23.5%). In addition, C⋯H/H⋯C and O⋯H/H⋯O contacts contribute 12.6 and 11.2% to the Hirshfeld surface, respectively.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016) related to the title complex revealed six hits. These structures are Cu(5-hexyloxySalen)·CHCl3 (FAGLOP; Paschke et al., 2002), C30H54Cu2F12N10O2P2 (ICUHEU; Margraf et al., 2006), C38H44Cu2N4O10 (PIFKOE01; Liu, 2016), C36H36Cu2N4O8·2CH4O (PIFKOE02; Zhang, 2016), C18H18CuN2O4·1.5H2O (QARPAB; Yao et al., 2005) and C18H18CuN2O4 (XOZZUH; Atria et al., 2002). All of these structures have square-planar environments, as in the title copper(II) complex. The Cu—O and Cu—N bond lengths range from ca 1.898 to 1.915 Å and from ca 1.936 to 2.271 Å, respectively. In the title complex, the Cu—N bond lengths [1.927 (5) and 1.929 (5) Å] fall within these limits. While the Cu1—O3 and C1—O2 bond length [1.906 (4) and 1.883 (4) Å, respectively] are within and close to these limits, respectively, the Cu1—O2 bond length is outside these limits, with a shorter value of 1.883 (4) Å.
6. Synthesis and crystallization
2,2′-{(1E,1′E)-[Ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol] (H2L1) was synthesized by condensation of 2-hydroxy-5-(trifluoromethoxy)benzaldehyde (0.0095 mmol) and 1,2-ethanediamine (0.0095 mmol) in ethanol under reflux for about 18 h. The yellow product was washed with ether and dried at room temperature. 0.0080 mmol H2L1 was dissolved in 20 ml ethanol and 0.0080 mmol Cu(CH3COO)2·H2O was dissolved in 20 ml ethanol. The metal solution was added dropwise to the Schiff base solution and the resulting solution refluxed for about 6 h. The product (CuL1) was washed with toluene and crystallized from ethanol at room temperature. 2,2′-{(1E,1′E)-[Ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate was obtained even after 0.0040 mmol hydroquinone was added to 0.0040 mmol CuL1 in 20 ml ethanol and refluxed for about 6 h. A purple crystal suitable for X-ray was obtained from the reaction (m.p. 568 K; yield 80%) (Fig. 6).
7. Refinement
Crystal data, data collection and structure . All H atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for methine, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for hydroxy H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019014294/lh5932sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014294/lh5932Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu(C18H12F6N2O4)]·0.5C6H6O2 | Z = 2 |
Mr = 552.89 | F(000) = 556 |
Triclinic, P1 | Dx = 1.700 Mg m−3 |
a = 9.3167 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0363 (10) Å | Cell parameters from 9488 reflections |
c = 11.8052 (13) Å | θ = 2.1–31.6° |
α = 92.633 (9)° | µ = 1.10 mm−1 |
β = 97.310 (9)° | T = 296 K |
γ = 98.670 (9)° | Stick, orange |
V = 1080.0 (2) Å3 | 0.57 × 0.25 × 0.06 mm |
Stoe IPDS 2 diffractometer | 4105 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2818 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.105 |
rotation method scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −11→11 |
Tmin = 0.695, Tmax = 0.944 | k = −11→12 |
9277 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.217 | w = 1/[σ2(Fo2) + (0.1271P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
4105 reflections | Δρmax = 0.88 e Å−3 |
317 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.34081 (8) | 0.48948 (6) | 0.55458 (5) | 0.0543 (3) | |
O2 | 0.2235 (5) | 0.4083 (4) | 0.4202 (3) | 0.0623 (10) | |
O3 | 0.4268 (5) | 0.3290 (4) | 0.5642 (3) | 0.0725 (12) | |
N3 | 0.4629 (6) | 0.5787 (5) | 0.6891 (4) | 0.0615 (12) | |
N2 | 0.2498 (5) | 0.6496 (4) | 0.5547 (4) | 0.0599 (11) | |
O4 | 0.8058 (6) | 0.1792 (5) | 0.9159 (5) | 0.0941 (16) | |
O1 | −0.2353 (6) | 0.5831 (6) | 0.1519 (6) | 0.1072 (19) | |
F2 | −0.3405 (7) | 0.6958 (6) | 0.0275 (5) | 0.1250 (19) | |
C5 | 0.1234 (6) | 0.4598 (5) | 0.3559 (5) | 0.0562 (12) | |
C17 | 0.5157 (6) | 0.2963 (6) | 0.6508 (5) | 0.0594 (13) | |
C12 | 0.5756 (7) | 0.3861 (6) | 0.7474 (5) | 0.0607 (14) | |
C13 | 0.6693 (7) | 0.3408 (6) | 0.8348 (5) | 0.0656 (14) | |
H13 | 0.708436 | 0.398326 | 0.898891 | 0.079* | |
C11 | 0.5502 (7) | 0.5230 (6) | 0.7574 (5) | 0.0652 (15) | |
H11 | 0.602434 | 0.576870 | 0.819803 | 0.078* | |
C4 | 0.0563 (7) | 0.3889 (6) | 0.2529 (5) | 0.0640 (14) | |
H4 | 0.086152 | 0.308254 | 0.231398 | 0.077* | |
O5 | 0.2281 (8) | 0.1271 (6) | 0.3981 (7) | 0.133 (3) | |
H5 | 0.291517 | 0.170047 | 0.446142 | 0.199* | |
C6 | 0.0774 (7) | 0.5844 (5) | 0.3848 (5) | 0.0600 (13) | |
C8 | 0.1441 (7) | 0.6725 (6) | 0.4822 (5) | 0.0637 (14) | |
H8 | 0.107514 | 0.752591 | 0.493445 | 0.076* | |
C14 | 0.7035 (7) | 0.2153 (6) | 0.8275 (6) | 0.0701 (16) | |
C20 | 0.1237 (8) | 0.0623 (7) | 0.5681 (7) | 0.083 (2) | |
H20 | 0.206608 | 0.107143 | 0.614594 | 0.099* | |
F5 | 0.8619 (9) | 0.0840 (7) | 1.0705 (6) | 0.165 (3) | |
C2 | −0.1012 (8) | 0.5510 (7) | 0.2184 (6) | 0.0809 (19) | |
C16 | 0.5574 (8) | 0.1686 (6) | 0.6466 (6) | 0.0716 (16) | |
H16 | 0.521840 | 0.109651 | 0.582720 | 0.086* | |
C1 | −0.2238 (10) | 0.6854 (8) | 0.0927 (6) | 0.089 (2) | |
F4 | 0.6940 (12) | −0.0204 (7) | 0.9451 (6) | 0.213 (5) | |
C9 | 0.3081 (9) | 0.7467 (6) | 0.6522 (6) | 0.0793 (19) | |
H9A | 0.243130 | 0.737135 | 0.710360 | 0.095* | |
H9B | 0.313865 | 0.838005 | 0.627497 | 0.095* | |
C3 | −0.0517 (8) | 0.4351 (7) | 0.1834 (6) | 0.0784 (19) | |
H3 | −0.091257 | 0.389063 | 0.113585 | 0.094* | |
F3 | −0.1763 (13) | 0.7969 (6) | 0.1498 (6) | 0.220 (5) | |
C19 | 0.0109 (9) | −0.0032 (6) | 0.6171 (6) | 0.084 (2) | |
H19 | 0.019589 | −0.007714 | 0.696149 | 0.101* | |
C7 | −0.0395 (8) | 0.6257 (7) | 0.3149 (6) | 0.0793 (19) | |
H7 | −0.074097 | 0.704473 | 0.335183 | 0.095* | |
C10 | 0.4551 (9) | 0.7224 (6) | 0.7003 (6) | 0.086 (2) | |
H10A | 0.528371 | 0.772004 | 0.660172 | 0.104* | |
H10B | 0.475229 | 0.754184 | 0.780449 | 0.104* | |
F1 | −0.1335 (8) | 0.6744 (10) | 0.0196 (7) | 0.179 (3) | |
C21 | 0.1175 (9) | 0.0633 (6) | 0.4511 (7) | 0.085 (2) | |
C15 | 0.6497 (7) | 0.1268 (7) | 0.7341 (6) | 0.0730 (16) | |
H15 | 0.675021 | 0.040716 | 0.729992 | 0.088* | |
F6 | 0.6605 (12) | 0.1453 (14) | 1.0406 (8) | 0.215 (5) | |
C18 | 0.7608 (15) | 0.0945 (11) | 0.9851 (10) | 0.122 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0612 (5) | 0.0452 (4) | 0.0562 (4) | 0.0114 (3) | 0.0058 (3) | −0.0023 (2) |
O2 | 0.073 (3) | 0.0482 (19) | 0.064 (2) | 0.0178 (17) | −0.0043 (18) | −0.0075 (16) |
O3 | 0.094 (3) | 0.059 (2) | 0.064 (2) | 0.037 (2) | −0.012 (2) | −0.0105 (18) |
N3 | 0.068 (3) | 0.052 (2) | 0.060 (3) | 0.002 (2) | 0.003 (2) | −0.0008 (19) |
N2 | 0.062 (3) | 0.046 (2) | 0.071 (3) | 0.012 (2) | 0.004 (2) | −0.006 (2) |
O4 | 0.088 (3) | 0.082 (3) | 0.106 (4) | 0.015 (3) | −0.022 (3) | 0.029 (3) |
O1 | 0.091 (4) | 0.096 (4) | 0.132 (5) | 0.013 (3) | −0.005 (3) | 0.038 (4) |
F2 | 0.130 (4) | 0.118 (4) | 0.120 (4) | 0.043 (3) | −0.042 (3) | 0.018 (3) |
C5 | 0.054 (3) | 0.054 (3) | 0.062 (3) | 0.011 (2) | 0.009 (2) | 0.004 (2) |
C17 | 0.054 (3) | 0.062 (3) | 0.068 (3) | 0.026 (3) | 0.010 (3) | 0.003 (3) |
C12 | 0.065 (4) | 0.054 (3) | 0.060 (3) | 0.003 (3) | 0.002 (3) | 0.007 (2) |
C13 | 0.065 (4) | 0.059 (3) | 0.071 (3) | 0.008 (3) | 0.003 (3) | 0.006 (3) |
C11 | 0.061 (3) | 0.068 (4) | 0.062 (3) | 0.006 (3) | 0.000 (3) | −0.003 (3) |
C4 | 0.061 (3) | 0.056 (3) | 0.074 (3) | 0.018 (3) | 0.002 (3) | −0.008 (3) |
O5 | 0.146 (6) | 0.068 (3) | 0.188 (7) | −0.016 (3) | 0.094 (6) | −0.049 (4) |
C6 | 0.062 (3) | 0.049 (3) | 0.070 (3) | 0.016 (2) | 0.002 (3) | 0.005 (2) |
C8 | 0.069 (4) | 0.048 (3) | 0.076 (4) | 0.021 (3) | 0.008 (3) | −0.004 (2) |
C14 | 0.067 (4) | 0.063 (3) | 0.078 (4) | 0.012 (3) | −0.004 (3) | 0.018 (3) |
C20 | 0.070 (4) | 0.057 (4) | 0.119 (6) | 0.017 (3) | 0.004 (4) | −0.029 (4) |
F5 | 0.219 (7) | 0.133 (5) | 0.126 (4) | 0.032 (5) | −0.067 (5) | 0.044 (4) |
C2 | 0.081 (5) | 0.068 (4) | 0.090 (4) | 0.025 (3) | −0.018 (4) | 0.007 (3) |
C16 | 0.078 (4) | 0.061 (3) | 0.077 (4) | 0.025 (3) | 0.000 (3) | −0.003 (3) |
C1 | 0.105 (6) | 0.093 (5) | 0.060 (4) | 0.004 (4) | −0.007 (4) | 0.014 (4) |
F4 | 0.351 (12) | 0.082 (4) | 0.151 (6) | −0.054 (5) | −0.078 (7) | 0.038 (4) |
C9 | 0.102 (5) | 0.054 (3) | 0.077 (4) | 0.020 (3) | −0.008 (4) | −0.013 (3) |
C3 | 0.090 (5) | 0.063 (4) | 0.075 (4) | 0.011 (3) | −0.010 (3) | −0.005 (3) |
F3 | 0.390 (13) | 0.087 (4) | 0.149 (5) | 0.083 (6) | −0.138 (7) | −0.026 (4) |
C19 | 0.117 (6) | 0.055 (3) | 0.081 (4) | 0.022 (4) | 0.009 (4) | −0.008 (3) |
C7 | 0.088 (5) | 0.059 (3) | 0.090 (4) | 0.023 (3) | −0.006 (4) | 0.001 (3) |
C10 | 0.112 (6) | 0.051 (3) | 0.085 (4) | 0.002 (3) | −0.012 (4) | −0.008 (3) |
F1 | 0.151 (6) | 0.259 (10) | 0.144 (6) | 0.038 (6) | 0.057 (5) | 0.058 (6) |
C21 | 0.093 (5) | 0.047 (3) | 0.114 (6) | 0.007 (3) | 0.026 (4) | −0.021 (3) |
C15 | 0.076 (4) | 0.061 (3) | 0.085 (4) | 0.021 (3) | 0.003 (3) | 0.016 (3) |
F6 | 0.202 (9) | 0.316 (14) | 0.137 (6) | 0.034 (9) | 0.043 (6) | 0.097 (7) |
C18 | 0.149 (10) | 0.098 (7) | 0.101 (6) | −0.003 (6) | −0.028 (7) | 0.026 (5) |
Cu1—O2 | 1.883 (4) | O5—H5 | 0.8200 |
Cu1—O3 | 1.906 (4) | C6—C7 | 1.407 (9) |
Cu1—N2 | 1.927 (5) | C6—C8 | 1.431 (8) |
Cu1—N3 | 1.929 (5) | C8—H8 | 0.9300 |
O2—C5 | 1.309 (7) | C14—C15 | 1.375 (9) |
O3—C17 | 1.317 (7) | C20—C19 | 1.361 (11) |
N3—C11 | 1.279 (8) | C20—C21 | 1.375 (11) |
N3—C10 | 1.455 (8) | C20—H20 | 0.9300 |
N2—C8 | 1.275 (8) | F5—C18 | 1.309 (11) |
N2—C9 | 1.465 (7) | C2—C7 | 1.348 (10) |
O4—C18 | 1.269 (12) | C2—C3 | 1.379 (10) |
O4—C14 | 1.419 (7) | C16—C15 | 1.381 (9) |
O1—C1 | 1.267 (9) | C16—H16 | 0.9300 |
O1—C2 | 1.475 (8) | C1—F3 | 1.268 (9) |
F2—C1 | 1.271 (9) | C1—F1 | 1.292 (10) |
C5—C4 | 1.403 (8) | F4—C18 | 1.265 (11) |
C5—C6 | 1.423 (8) | C9—C10 | 1.474 (11) |
C17—C16 | 1.395 (8) | C9—H9A | 0.9700 |
C17—C12 | 1.420 (8) | C9—H9B | 0.9700 |
C12—C13 | 1.403 (8) | C3—H3 | 0.9300 |
C12—C11 | 1.431 (9) | C19—C21i | 1.392 (11) |
C13—C14 | 1.346 (9) | C19—H19 | 0.9300 |
C13—H13 | 0.9300 | C7—H7 | 0.9300 |
C11—H11 | 0.9300 | C10—H10A | 0.9700 |
C4—C3 | 1.366 (9) | C10—H10B | 0.9700 |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
O5—C21 | 1.366 (9) | F6—C18 | 1.353 (15) |
O2—Cu1—O3 | 87.54 (17) | C21—C20—H20 | 119.4 |
O2—Cu1—N2 | 94.40 (18) | C7—C2—C3 | 122.2 (6) |
O3—Cu1—N2 | 176.2 (2) | C7—C2—O1 | 120.4 (7) |
O2—Cu1—N3 | 177.82 (18) | C3—C2—O1 | 117.0 (6) |
O3—Cu1—N3 | 93.9 (2) | C15—C16—C17 | 122.2 (6) |
N2—Cu1—N3 | 84.3 (2) | C15—C16—H16 | 118.9 |
C5—O2—Cu1 | 127.1 (3) | C17—C16—H16 | 118.9 |
C17—O3—Cu1 | 127.0 (4) | F3—C1—O1 | 114.8 (7) |
C11—N3—C10 | 122.4 (5) | F3—C1—F2 | 109.4 (8) |
C11—N3—Cu1 | 125.0 (4) | O1—C1—F2 | 113.7 (7) |
C10—N3—Cu1 | 112.3 (4) | F3—C1—F1 | 105.7 (9) |
C8—N2—C9 | 120.3 (5) | O1—C1—F1 | 110.6 (9) |
C8—N2—Cu1 | 125.9 (4) | F2—C1—F1 | 101.6 (7) |
C9—N2—Cu1 | 113.8 (4) | N2—C9—C10 | 109.6 (6) |
C18—O4—C14 | 118.9 (7) | N2—C9—H9A | 109.7 |
C1—O1—C2 | 118.1 (6) | C10—C9—H9A | 109.7 |
O2—C5—C4 | 118.9 (5) | N2—C9—H9B | 109.7 |
O2—C5—C6 | 123.6 (5) | C10—C9—H9B | 109.7 |
C4—C5—C6 | 117.5 (5) | H9A—C9—H9B | 108.2 |
O3—C17—C16 | 118.8 (5) | C4—C3—C2 | 119.0 (6) |
O3—C17—C12 | 123.4 (5) | C4—C3—H3 | 120.5 |
C16—C17—C12 | 117.8 (5) | C2—C3—H3 | 120.5 |
C13—C12—C17 | 118.7 (6) | C20—C19—C21i | 119.9 (7) |
C13—C12—C11 | 118.3 (5) | C20—C19—H19 | 120.0 |
C17—C12—C11 | 123.0 (5) | C21i—C19—H19 | 120.0 |
C14—C13—C12 | 121.1 (6) | C2—C7—C6 | 119.8 (6) |
C14—C13—H13 | 119.5 | C2—C7—H7 | 120.1 |
C12—C13—H13 | 119.5 | C6—C7—H7 | 120.1 |
N3—C11—C12 | 126.5 (5) | N3—C10—C9 | 109.9 (5) |
N3—C11—H11 | 116.7 | N3—C10—H10A | 109.7 |
C12—C11—H11 | 116.7 | C9—C10—H10A | 109.7 |
C3—C4—C5 | 121.9 (6) | N3—C10—H10B | 109.7 |
C3—C4—H4 | 119.1 | C9—C10—H10B | 109.7 |
C5—C4—H4 | 119.1 | H10A—C10—H10B | 108.2 |
C21—O5—H5 | 109.5 | O5—C21—C20 | 123.4 (7) |
C7—C6—C5 | 119.3 (5) | O5—C21—C19i | 117.9 (8) |
C7—C6—C8 | 117.1 (5) | C20—C21—C19i | 118.7 (7) |
C5—C6—C8 | 123.6 (5) | C14—C15—C16 | 118.5 (6) |
N2—C8—C6 | 125.1 (5) | C14—C15—H15 | 120.7 |
N2—C8—H8 | 117.5 | C16—C15—H15 | 120.7 |
C6—C8—H8 | 117.5 | F4—C18—O4 | 118.6 (10) |
C13—C14—C15 | 121.7 (6) | F4—C18—F5 | 111.2 (9) |
C13—C14—O4 | 117.9 (6) | O4—C18—F5 | 112.4 (10) |
C15—C14—O4 | 120.2 (6) | F4—C18—F6 | 103.2 (13) |
C19—C20—C21 | 121.3 (7) | O4—C18—F6 | 108.5 (10) |
C19—C20—H20 | 119.4 | F5—C18—F6 | 101.1 (11) |
O3—Cu1—O2—C5 | 179.3 (5) | C18—O4—C14—C15 | −74.5 (11) |
N2—Cu1—O2—C5 | 2.6 (5) | C1—O1—C2—C7 | 74.4 (11) |
Cu1—O2—C5—C4 | 174.2 (4) | C1—O1—C2—C3 | −111.7 (9) |
Cu1—O2—C5—C6 | −6.2 (8) | O3—C17—C16—C15 | −179.8 (6) |
Cu1—O3—C17—C16 | 174.3 (5) | C12—C17—C16—C15 | 2.2 (10) |
Cu1—O3—C17—C12 | −7.8 (9) | C2—O1—C1—F3 | −61.3 (13) |
O3—C17—C12—C13 | −180.0 (6) | C2—O1—C1—F2 | 171.7 (7) |
C16—C17—C12—C13 | −2.0 (9) | C2—O1—C1—F1 | 58.2 (10) |
O3—C17—C12—C11 | −2.9 (10) | C8—N2—C9—C10 | −161.6 (6) |
C16—C17—C12—C11 | 175.0 (6) | Cu1—N2—C9—C10 | 21.2 (7) |
C17—C12—C13—C14 | 0.6 (10) | C5—C4—C3—C2 | −3.4 (11) |
C11—C12—C13—C14 | −176.5 (6) | C7—C2—C3—C4 | 4.9 (12) |
C10—N3—C11—C12 | −173.9 (7) | O1—C2—C3—C4 | −168.9 (6) |
Cu1—N3—C11—C12 | 0.6 (10) | C21—C20—C19—C21i | −4.1 (12) |
C13—C12—C11—N3 | −176.2 (6) | C3—C2—C7—C6 | −1.4 (12) |
C17—C12—C11—N3 | 6.8 (10) | O1—C2—C7—C6 | 172.2 (6) |
O2—C5—C4—C3 | 178.2 (6) | C5—C6—C7—C2 | −3.6 (10) |
C6—C5—C4—C3 | −1.5 (9) | C8—C6—C7—C2 | 176.2 (7) |
O2—C5—C6—C7 | −174.7 (6) | C11—N3—C10—C9 | −153.1 (6) |
C4—C5—C6—C7 | 4.9 (9) | Cu1—N3—C10—C9 | 31.8 (8) |
O2—C5—C6—C8 | 5.5 (9) | N2—C9—C10—N3 | −33.6 (9) |
C4—C5—C6—C8 | −174.8 (6) | C19—C20—C21—O5 | −179.7 (7) |
C9—N2—C8—C6 | −179.2 (6) | C19—C20—C21—C19i | 4.1 (12) |
Cu1—N2—C8—C6 | −2.3 (9) | C13—C14—C15—C16 | −0.6 (11) |
C7—C6—C8—N2 | 179.2 (6) | O4—C14—C15—C16 | −176.1 (6) |
C5—C6—C8—N2 | −1.0 (10) | C17—C16—C15—C14 | −0.9 (11) |
C12—C13—C14—C15 | 0.7 (11) | C14—O4—C18—F4 | 56.4 (17) |
C12—C13—C14—O4 | 176.3 (6) | C14—O4—C18—F5 | −171.6 (9) |
C18—O4—C14—C13 | 109.8 (10) | C14—O4—C18—F6 | −60.7 (11) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O3 | 0.82 | 2.20 | 2.993 (8) | 165 |
C11—H11···F2ii | 0.93 | 2.63 | 3.513 (8) | 159 |
C10—H10A···O5iii | 0.97 | 2.53 | 3.469 (11) | 162 |
C15—H15···O5iv | 0.93 | 2.55 | 3.345 (9) | 144 |
C8—H8···Cg1v | 0.93 | 2.82 | 3.740 (8) | 173 |
Symmetry codes: (ii) x+1, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) x, y+1, z. |
Funding information
Funding for this research was provided by: Ondokuz Mayıs University (award No. PYO.FEN.1906.19.001).
References
Andruh, M. (2015). Dalton Trans. 44, 16333–16653. CrossRef Google Scholar
Atria, A. M., Moreno, Y., Spodine, E., Garland, M. T. & Baggio, R. (2002). Inorg. Chim. Acta, 335, 1–6. Web of Science CSD CrossRef CAS Google Scholar
El-Samanody, E. A., Emam, S. M. & Emara, E. M. (2017). J. Mol. Struct. 1146, 868–880. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Li, Y., Yang, Z.-Y. & Wang, M.-F. (2010). J. Fluoresc. 20, 891–905. CrossRef PubMed Google Scholar
Liu, H.-Y. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 210–215. CrossRef CAS Google Scholar
Margraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277–1288. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ng, J. D., Upadhyay, S. P., Marquard, A. N., Lupo, K. M., Hinton, D. A., Padilla, N. A., Bates, D. M. & Goldsmith, R. H. (2016). J. Am. Chem. Soc. 138, 3876–3883. CrossRef CAS PubMed Google Scholar
Paschke, R., Balkow, D. & Sinn, E. (2002). Inorg. Chem. 41, 1949–1953. Web of Science CSD CrossRef PubMed CAS Google Scholar
Prushan, M. J., Tomezsko, D. M., Lofland, S., Zeller, M. & Hunter, A. D. (2007). Inorg. Chim. Acta, 360, 2245–2254. CrossRef CAS Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer Ver. 17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wu, H., Kou, F., Jia, F., Liu, B., Yuan, J. & Bai, Y. (2011). J. Photochem. Photobiol. B, 105, 190–197. CrossRef CAS PubMed Google Scholar
Yao, H.-H., Huang, W.-T., Lo, J.-M., Liao, F.-L. & Chattopadhyay, P. (2005). J. Coord. Chem. 58, 975–984. CrossRef CAS Google Scholar
Zhang, X.-L. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1848–1853. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.