research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The varied structures of cobalt(II)–pyridine (py)–sulfate: [Co(SO4)(py)4]n, [Co2(SO4)2(py)6]n, and [Co3(SO4)3(py)11]n

CROSSMARK_Color_square_no_text.svg

aPortsmouth Abbey School, 285 Cory's Lane, Portsmouth, RI, 02871, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Rd., North Dartmouth, MA, 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 11 November 2019; accepted 14 November 2019; online 19 November 2019)

The solid-state structures of two cobalt–pyridine–sulfate compounds, namely catena-poly[[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O′], [Co(SO4)(C5H5N)4]n, (1), and catena-poly[[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O:O′,O′′-[bis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O,O′:O′′]n, [Co2(SO4)2(C5H5N)6]n, (2), are reported. Compound (1) displays a polymeric structure, with infinite chains of CoII cations adopting octa­hedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ions. Compound (2) is also polymeric with infinite chains of CoII cations. The first Co center has an octa­hedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The second Co center has an octa­hedral N2O4 coordination environment that involves two pyridine ligands and two bridging sulfate ions that chelate the Co atom. The structure of (2) was refined as a two-component inversion twin.

1. Chemical context

The synthesis of metal–pyrdine–sulfates has been reported since the 19th century, when Jørgensen's chain theory was still the prevailing hypothesis (Reitzenstein, 1894[Reitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267-280.]; Howe, 1898[Howe, J. L. (1898). Science, 8, 945-947.]). Since that time, the structural understanding of metal complexes has greatly increased, first with the acceptance of Werner's coordination theory (Werner, 1893[Werner, A. (1893). Z. Anorg. Chem. 3, 267-330.]), with crystal field theory from Bethe in 1929 (Bethe, 1929[Bethe, H. A. (1929). Ann. Phys. 395, 133-208.]), and the modifications of theory in the ninety years since. Despite the long history of these compounds, their crystallographic study is rather limited. Before we began a crystallographic examination of metal–pyridine–sulfates in 2018, there were only two examples of such complexes without other ligands or components reported in the literature (Cotton & Reid, 1984[Cotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203-206.]; Memon et al., 2006[Memon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O'Brien, P. & Raftery, J. (2006). Dalton Trans. pp. 4499-4505.]).

Since we began studying the structural chemistry of metal–pyridine–sulfates, we have observed many different structural motifs in the complexes. The coordination environment of each compound can usually be predicted with crystal field theory, although the exact nature is dependent upon the number of pyridines bound and the binding mode of the sulfate anion. The sulfate anion can have a number of different coordination modes, including μ-sulfato-κ2-O:O, μ-sulfato-κ2-O:O′ and μ-sulfato-κ3-O:O′:O". Herein we report two new structures of cobalt–pyridine–sulfates formed by altering the growth conditions and compare these structures with the previously reported structure of a cobalt–pyridine–sulfate and the structures of related complexes.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the pink crystals of (1) consists of two pyridine mol­ecules and one half of a sulfate anion coordinated to a cobalt atom sitting on an inversion center (Fig. 1[link]a). When grown out, the cobalt ion shows an octa­hedral coordination environment (Fig. 1[link]b). The equatorial positions of the octa­hedron are occupied by four pyridine ligands in a square-planar arrangement. The CoN4 unit exhibits planarity enforced by symmetry, with cis N—Co—N angles of 86.45 (6) and 93.55 (6)°. To complete the octa­hedron, the axial positions are occupied by two sulfate ions, with an inversion enforced O—Co—O angle of 180° and cis O—Co—N angles of 88.87 (6) and 91.67 (6)°. The pyridine rings are rotated from the CoN4 plane by dihedral angles of 47.30 (10) and 78.33 (9)°. The 78.33 (9)° angles are constrained by two C—H⋯O inter­actions between the ortho hydrogen atoms and the two trans sulfates (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.93 2.51 3.106 (2) 122
C6—H6A⋯O2i 0.93 2.51 3.429 (3) 171
C10—H10A⋯O1 0.93 2.48 3.046 (2) 120
C10—H10A⋯O2ii 0.93 2.43 3.353 (3) 171
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of compound (1), including (a) the asymmetric unit and (b) the coordination environment around Co1. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C—H⋯O inter­actions (Table 1[link]) are shown as dashed lines. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 1 − y, −[{1\over 2}] + z; (iii) 1 − x, y, [{3\over 2}] − z].

The asymmetric unit of the purple crystals of (2) consists of two cobalt atoms, six coordinated pyridines and two sulfate anions (Fig. 2[link]a). There are two crystallographically unique cobalt atoms, with Co1 (Fig. 2[link]b) displaying an octa­hedral N4O2 coordination environment and Co2 (Fig. 2[link]c) exhibiting an octa­hedral N2O4 coordination geometry.

[Figure 2]
Figure 2
The mol­ecular structure of compound (2), including (a) the asymmetric unit, (b) the coordination environment around Co1, and (c) the coordination environment around Co2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C—H⋯O inter­actions (Table 2[link]) are shown as dashed lines. [Symmetry code: (i) −1 + x, −1 + y, −1 + z].

Co1 has four pyridine ligands occupying the equatorial positions of an octa­hedron, with the CoN4 plane showing a maximum deviation from planarity of 0.018 Å. Two sulfate anions occupy the axial positions to complete the octa­hedral coordination. The cis N—Co—N angles have values ranging from 87.48 (13) to 93.18 (12)°, and the trans O—Co—O angle is 173.43 (12)°. The planes of the four pyridine rings are rotated from the equatorial CoN4 plane by dihedral angles of 58.6 (2), 64.6 (2), 65.6 (2), and 73.1 (2)°. Two of the rings show one C—H⋯O inter­action with an ortho hydrogen atom, one ring shows two C—H⋯O inter­actions with two ortho hydrogen atoms, and the fourth ring shows no C—H⋯O inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O6 0.95 2.63 3.563 (6) 167
C2—H2A⋯O2i 0.95 2.52 3.219 (5) 131
C5—H5A⋯O4 0.95 2.42 3.009 (5) 120
C6—H6A⋯O5 0.95 2.56 3.054 (5) 112
C6—H6A⋯O7 0.95 2.47 3.322 (6) 149
C10—H10A⋯O4 0.95 2.53 3.010 (5) 112
C12—H12A⋯O7ii 0.95 2.60 3.271 (5) 128
C15—H15A⋯O5 0.95 2.45 3.017 (5) 118
C16—H16A⋯O2 0.95 2.19 3.139 (6) 176
C20—H20A⋯O5 0.95 2.51 3.091 (5) 119
C20—H20A⋯O6 0.95 2.32 3.272 (5) 175
C25—H25A⋯O8 0.95 2.55 3.162 (5) 123
C30—H30A⋯O7 0.95 2.54 3.116 (5) 119
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y+1, z.

Co2 is bound by two pyridine ligands and two chelating sulfate anions to give an octa­hedral coordination environment. The pyridine rings adopt a cis configuration, with an N—Co—N angle of 93.63 (13)°. The two sulfate ligands exhibit O—Co—O bite angles of 65.90 (10) and 66.37 (10)°. The other cis O—Co—O angles are 86.87 (11), 98.98 (11), and 102.84 (11)°, and the six cis N—Co—O angles range from 92.49 (12) to 98.33 (13)°. Each pyridine ring is involved in ortho C—H⋯O inter­actions (Table 2[link]).

3. Supra­molecular features

The CoII atoms in compound (1) are linked together into infinite chains along the [001] direction through sulfate anions with O—S—O bridges (Figs. 3[link]a, 4[link]a). Between each successive tetra­pyridine cobalt unit, there are parallel slipped ππ inter­actions [inter-centroid distance: 3.637 (1) Å, inter-planar distance: 3.611 (1) Å, slippage: 0.435 (1) Å].

[Figure 3]
Figure 3
The infinite chains of (a) compound (1) along [001], (b) compound (2) along [111], and (c) the previously reported cobalt–pyridine-sulfate complex [Co3(SO4)3(C5H5N)11]n along [001] (Pham et al., 2019[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568-574.]). Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. The ππ inter­actions in (1) are shown as dashed lines.
[Figure 4]
Figure 4
The packing of (a) compound (1) along the c-axis and (b) compound (2) along the b-axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

The CoII atoms in compound (2) are linked together into infinite chains along the [111] direction through the sulfate anions (Figs. 3[link]b, 4[link]b). The chain alternates between tetra­pyridine cobalt units and di­pyridine cobalt units. No ππ inter­actions are observed in the crystal.

4. Database survey

In a prior publication, we reported the structure of another cobalt–pyridine–sulfate [Co3(SO4)3(C5H5N)11)]n, which was grown at a lower concentration of cobalt. This structure shows two successive octa­hedral cobalt atoms with N4O2 coordination, where each atom is coordinated to four pyridines and two bridging sulfates. The third cobalt atom in the chain shows N3O3 coordination where three pyridines are bound and there are two sulfates bound, one of which is chelating to the cobalt (Pham et al., 2018[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857-861.]). Fig. 3[link] compares the chain structure of this complex with those of compounds (1) and (2). In compound (1), every cobalt atom possesses an octa­hedral N4O2 coord­in­ation. This complex is isostructural with the structure observed for the iron and nickel pyridine–sulfate complexes (Roy et al., 2018[Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263-268.]). This structural motif is also consistent with that observed for the 4-picoline–sulfate structures of iron, cobalt, nickel and cadmium (Pham et al., 2019[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568-574.]). In compound (2), the cobalt atoms alternate between N4O2 coordination and N2O4 coordination. This tetra­pyridine/bi­pyridine alternation is similar to what is observed in the zinc–pyridine–sulfate structure, which alternates between octa­hedral and tetra­hedral zinc centers. In the case of cobalt, the bis­(pyridine) cobalt center is still octa­hedral because the two coordinated sulfates both chelate to the cobalt. The end result is an infinite chain of octa­hedral cobalt atoms, which is true in compound (1) and the previously reported cobalt–pyridine–sulfate complex. The methane­sulfato complexes of cobalt (II) have also been reported as octa­hedral tetra­kis­(pyridine), [Co(SO3CH3)2(py)4], and octa­hedral bis­(pyridine), [Co(SO3CH3)2(py)2], compounds, consistent with the two independent cobalt centers observed in (2) (Johnson et al., 1977[Johnson, N. O., Turk, J. T., Bull, W. E. & Mayfield, H. G. (1977). Inorg. Chim. Acta, 25, 235-239.]).

5. Synthesis and crystallization

For compound (1), 40 mg of cobalt sulfate hepta­hydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (100 µL) in a 20 mL vial. The vial was heated to 338 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.

For compound (2), 48 mg of cobalt sulfate hepta­hydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (30 µL) in a 20 mL vial. The vial was heated to 358 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All structure solutions were obtained by intrinsic phasing. All non-hydrogen atoms were refined anisotropically (SHELXL) by full-matrix least squares on F2. Hydrogen atoms were placed in calculated positions and then refined with a riding model with C—H bond lengths of 0.95 Å and with isotropic displacement parameters set to 1.20 Ueq of the parent C atom. The structre of (2) was refined as a two-component inversion twin, BASF = 0.165 (13).

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula [Co(SO4)(C5H5N)4] [Co2(SO4)2(C5H5N)6]
Mr 471.39 784.58
Crystal system, space group Monoclinic, C2/c Triclinic, P1
Temperature (K) 295 200
a, b, c (Å) 18.6323 (18), 10.0803 (9), 11.9403 (11) 9.5795 (6), 9.7612 (5), 10.7219 (6)
α, β, γ (°) 90, 115.945 (3), 90 98.488 (2), 107.697 (2), 115.948 (2)
V3) 2016.6 (3) 811.46 (8)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.99 1.21
Crystal size (mm) 0.28 × 0.13 × 0.06 0.25 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker APEXIII CMOS Bruker APEXIII photon2
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.667, 0.745 0.661, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 20212, 1854, 1572 22679, 6013, 5906
Rint 0.071 0.026
(sin θ/λ)max−1) 0.604 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.02 0.026, 0.072, 1.03
No. of reflections 1854 6013
No. of parameters 139 434
No. of restraints 0 3
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.24 0.79, −0.30
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.165 (13)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009). Molecular graphics: SHELXTL (Sheldrick, 2008) for (1); SHELXTL (Sheldrick 2008) for (2). For both structures, software used to prepare material for publication: SHELXTL (Sheldrick 2008) and publCIF (Westrip, 2010).

catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (1) top
Crystal data top
[Co(SO4)(C5H5N)4]F(000) = 972
Mr = 471.39Dx = 1.553 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.6323 (18) ÅCell parameters from 8333 reflections
b = 10.0803 (9) Åθ = 3.3–25.3°
c = 11.9403 (11) ŵ = 0.99 mm1
β = 115.945 (3)°T = 295 K
V = 2016.6 (3) Å3BLOCK, pink
Z = 40.28 × 0.13 × 0.06 mm
Data collection top
Bruker APEXIII CMOS
diffractometer
1572 reflections with I > 2σ(I)
φ and ω scansRint = 0.071
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 3.3°
Tmin = 0.667, Tmax = 0.745h = 2222
20212 measured reflectionsk = 1212
1854 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.4084P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.24 e Å3
1854 reflectionsΔρmin = 0.24 e Å3
139 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02070 (13)
O10.49333 (8)0.59836 (16)0.64714 (13)0.0406 (4)
O20.57186 (9)0.76549 (16)0.79112 (15)0.0433 (4)
N10.45647 (10)0.32138 (17)0.55318 (15)0.0305 (4)
N20.37320 (9)0.55056 (17)0.38523 (14)0.0257 (4)
C10.39850 (16)0.3286 (3)0.5901 (2)0.0503 (7)
H1A0.37800.41160.59420.060*
C20.36775 (18)0.2191 (3)0.6224 (3)0.0649 (8)
H2A0.32650.22850.64570.078*
C30.39806 (18)0.0971 (3)0.6200 (2)0.0594 (8)
H3A0.37800.02160.64100.071*
C40.45897 (19)0.0885 (3)0.5858 (3)0.0582 (7)
H4A0.48230.00690.58570.070*
C50.48541 (15)0.2016 (2)0.5514 (2)0.0448 (6)
H5A0.52570.19370.52570.054*
C60.33165 (12)0.4887 (2)0.2775 (2)0.0360 (5)
H6A0.35770.42590.25130.043*
C70.25194 (13)0.5129 (3)0.2028 (2)0.0469 (6)
H7A0.22550.46870.12740.056*
C80.21197 (12)0.6030 (2)0.2410 (2)0.0404 (6)
H8A0.15840.62180.19190.048*
C90.25326 (12)0.6644 (2)0.3534 (2)0.0370 (5)
H9A0.22760.72400.38320.044*
C100.33304 (12)0.6372 (2)0.42193 (19)0.0331 (5)
H10A0.36050.68090.49740.040*
S10.50000.68569 (6)0.75000.01886 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0187 (2)0.0246 (2)0.0198 (2)0.00353 (15)0.00935 (15)0.00111 (15)
O10.0358 (8)0.0582 (11)0.0268 (8)0.0111 (8)0.0128 (6)0.0138 (7)
O20.0303 (8)0.0391 (9)0.0562 (10)0.0150 (7)0.0148 (7)0.0026 (8)
N10.0321 (9)0.0314 (10)0.0290 (9)0.0009 (8)0.0141 (8)0.0004 (8)
N20.0212 (8)0.0300 (9)0.0261 (9)0.0040 (7)0.0105 (7)0.0013 (7)
C10.0583 (16)0.0482 (16)0.0638 (16)0.0080 (13)0.0445 (14)0.0116 (13)
C20.0691 (19)0.070 (2)0.079 (2)0.0043 (16)0.0536 (17)0.0158 (16)
C30.083 (2)0.0493 (17)0.0534 (16)0.0231 (15)0.0364 (15)0.0029 (13)
C40.085 (2)0.0324 (14)0.0665 (18)0.0050 (13)0.0420 (16)0.0024 (13)
C50.0510 (14)0.0351 (13)0.0563 (15)0.0006 (11)0.0309 (12)0.0000 (11)
C60.0268 (11)0.0426 (13)0.0359 (11)0.0071 (10)0.0114 (9)0.0080 (10)
C70.0286 (12)0.0580 (16)0.0401 (13)0.0042 (11)0.0021 (10)0.0160 (12)
C80.0214 (11)0.0496 (14)0.0440 (13)0.0096 (10)0.0085 (10)0.0030 (11)
C90.0304 (11)0.0438 (14)0.0399 (12)0.0135 (10)0.0183 (10)0.0025 (10)
C100.0282 (11)0.0406 (12)0.0289 (11)0.0058 (9)0.0110 (9)0.0033 (9)
S10.0181 (3)0.0204 (3)0.0206 (3)0.0000.0108 (3)0.000
Geometric parameters (Å, º) top
Co1—O1i2.0679 (13)C3—C41.367 (4)
Co1—O12.0679 (13)C3—H3A0.9300
Co1—N12.1803 (17)C4—C51.373 (3)
Co1—N1i2.1803 (17)C4—H4A0.9300
Co1—N22.2105 (15)C5—H5A0.9300
Co1—N2i2.2105 (15)C6—C71.379 (3)
O1—S11.4715 (14)C6—H6A0.9300
O2—S11.4511 (14)C7—C81.373 (3)
N1—C51.327 (3)C7—H7A0.9300
N1—C11.335 (3)C8—C91.368 (3)
N2—C61.331 (3)C8—H8A0.9300
N2—C101.342 (2)C9—C101.375 (3)
C1—C21.373 (4)C9—H9A0.9300
C1—H1A0.9300C10—H10A0.9300
C2—C31.359 (4)S1—O2ii1.4511 (14)
C2—H2A0.9300S1—O1ii1.4715 (14)
O1i—Co1—O1180.0C2—C3—H3A121.0
O1i—Co1—N191.13 (6)C4—C3—H3A121.0
O1—Co1—N188.87 (6)C3—C4—C5119.3 (3)
O1i—Co1—N1i88.87 (6)C3—C4—H4A120.3
O1—Co1—N1i91.13 (6)C5—C4—H4A120.3
N1—Co1—N1i180.0N1—C5—C4123.3 (2)
O1i—Co1—N291.66 (6)N1—C5—H5A118.3
O1—Co1—N288.34 (6)C4—C5—H5A118.3
N1—Co1—N286.45 (6)N2—C6—C7123.24 (19)
N1i—Co1—N293.55 (6)N2—C6—H6A118.4
O1i—Co1—N2i88.33 (6)C7—C6—H6A118.4
O1—Co1—N2i91.67 (6)C8—C7—C6119.3 (2)
N1—Co1—N2i93.55 (6)C8—C7—H7A120.3
N1i—Co1—N2i86.45 (6)C6—C7—H7A120.3
N2—Co1—N2i180.0C9—C8—C7118.1 (2)
S1—O1—Co1168.95 (11)C9—C8—H8A120.9
C5—N1—C1116.6 (2)C7—C8—H8A120.9
C5—N1—Co1122.80 (14)C8—C9—C10119.39 (19)
C1—N1—Co1120.61 (16)C8—C9—H9A120.3
C6—N2—C10116.66 (17)C10—C9—H9A120.3
C6—N2—Co1120.20 (13)N2—C10—C9123.22 (19)
C10—N2—Co1123.03 (13)N2—C10—H10A118.4
N1—C1—C2123.1 (2)C9—C10—H10A118.4
N1—C1—H1A118.5O2—S1—O2ii112.67 (14)
C2—C1—H1A118.5O2—S1—O1110.03 (9)
C3—C2—C1119.5 (2)O2ii—S1—O1108.71 (8)
C3—C2—H2A120.2O2—S1—O1ii108.71 (8)
C1—C2—H2A120.2O2ii—S1—O1ii110.03 (9)
C2—C3—C4118.1 (2)O1—S1—O1ii106.52 (14)
C5—N1—C1—C21.5 (4)N2—C6—C7—C81.4 (4)
Co1—N1—C1—C2178.7 (2)C6—C7—C8—C90.7 (4)
N1—C1—C2—C31.5 (5)C7—C8—C9—C101.9 (3)
C1—C2—C3—C40.4 (5)C6—N2—C10—C90.8 (3)
C2—C3—C4—C52.1 (4)Co1—N2—C10—C9176.96 (16)
C1—N1—C5—C40.3 (4)C8—C9—C10—N21.2 (3)
Co1—N1—C5—C4179.4 (2)Co1—O1—S1—O216.8 (5)
C3—C4—C5—N12.2 (4)Co1—O1—S1—O2ii107.0 (5)
C10—N2—C6—C72.1 (3)Co1—O1—S1—O1ii134.5 (5)
Co1—N2—C6—C7178.36 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.513.106 (2)122
C6—H6A···O2i0.932.513.429 (3)171
C10—H10A···O10.932.483.046 (2)120
C10—H10A···O2ii0.932.433.353 (3)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
(2) top
Crystal data top
[Co(SO4)2(C5H6N)6]Z = 1
Mr = 784.58F(000) = 402
Triclinic, P1Dx = 1.606 Mg m3
a = 9.5795 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7612 (5) ÅCell parameters from 9920 reflections
c = 10.7219 (6) Åθ = 2.6–25.7°
α = 98.488 (2)°µ = 1.21 mm1
β = 107.697 (2)°T = 200 K
γ = 115.948 (2)°PLATE, purple
V = 811.46 (8) Å30.25 × 0.20 × 0.02 mm
Data collection top
Bruker APEXIII photon2
diffractometer
5906 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.7°, θmin = 3.1°
Tmin = 0.661, Tmax = 0.745h = 1111
22679 measured reflectionsk = 1111
6013 independent reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1142P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.79 e Å3
6013 reflectionsΔρmin = 0.29 e Å3
434 parametersAbsolute structure: Refined as an inversion twin
3 restraintsAbsolute structure parameter: 0.165 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. BASF 0.16482

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.84425 (5)0.55261 (5)0.61510 (4)0.01356 (12)
Co20.24785 (6)0.13866 (6)0.10725 (5)0.01665 (13)
S11.17468 (11)0.89862 (10)0.89114 (9)0.01596 (19)
S20.51931 (11)0.19943 (10)0.33225 (9)0.0164 (2)
O11.1869 (4)0.8903 (3)1.0308 (3)0.0257 (6)
O21.3166 (4)0.9028 (4)0.8658 (4)0.0307 (7)
O31.1721 (4)1.0501 (3)0.8887 (3)0.0241 (6)
O41.0118 (3)0.7597 (3)0.7855 (3)0.0244 (6)
O50.6576 (4)0.3553 (3)0.4393 (3)0.0217 (6)
O60.5406 (4)0.0691 (4)0.3655 (3)0.0301 (7)
O70.3509 (3)0.1777 (3)0.3224 (3)0.0223 (6)
O80.5184 (4)0.2064 (4)0.1943 (3)0.0230 (6)
N10.7283 (4)0.4360 (4)0.7445 (4)0.0204 (7)
N20.6741 (4)0.6487 (4)0.5820 (4)0.0215 (7)
N30.9613 (4)0.6672 (4)0.4849 (3)0.0200 (7)
N41.0052 (4)0.4460 (4)0.6447 (3)0.0176 (7)
N50.3110 (5)0.3784 (4)0.1165 (4)0.0246 (7)
N60.0033 (4)0.0704 (4)0.0989 (4)0.0229 (7)
C10.6334 (6)0.2757 (5)0.7094 (5)0.0272 (9)
H1A0.61630.21090.62470.033*
C20.5587 (6)0.1993 (6)0.7905 (5)0.0336 (10)
H2A0.49270.08500.76190.040*
C30.5820 (6)0.2929 (7)0.9138 (5)0.0369 (11)
H3A0.53470.24470.97280.044*
C40.6773 (6)0.4601 (7)0.9487 (5)0.0370 (11)
H4A0.69290.52811.03100.044*
C50.7486 (6)0.5257 (5)0.8629 (4)0.0286 (9)
H5A0.81520.63970.88890.034*
C60.5027 (6)0.5482 (6)0.5237 (5)0.0306 (10)
H6A0.45810.43520.49910.037*
C70.3906 (7)0.6036 (7)0.4988 (6)0.0488 (15)
H7A0.27110.52960.45890.059*
C80.4526 (8)0.7670 (8)0.5321 (7)0.0532 (16)
H8A0.37710.80740.51500.064*
C90.6240 (8)0.8687 (7)0.5899 (6)0.0464 (14)
H9A0.67010.98190.61370.056*
C100.7326 (6)0.8065 (6)0.6143 (5)0.0296 (10)
H10A0.85240.87930.65540.036*
C111.0601 (5)0.8273 (5)0.5168 (4)0.0246 (9)
H11A1.08210.89580.60190.030*
C121.1313 (6)0.8974 (6)0.4317 (5)0.0316 (10)
H12A1.19841.01130.45720.038*
C131.1031 (6)0.7992 (7)0.3097 (5)0.0355 (11)
H13A1.14980.84370.24910.043*
C141.0062 (6)0.6355 (6)0.2778 (5)0.0354 (11)
H14A0.98730.56490.19530.042*
C150.9365 (5)0.5741 (5)0.3658 (5)0.0277 (9)
H15A0.86760.46040.34100.033*
C161.1720 (6)0.5345 (6)0.7278 (6)0.0349 (11)
H16A1.22120.64710.76890.042*
C171.2763 (6)0.4698 (7)0.7568 (6)0.0461 (14)
H17A1.39390.53710.81690.055*
C181.2079 (7)0.3067 (7)0.6978 (6)0.0444 (13)
H18A1.27600.25880.71800.053*
C191.0382 (7)0.2158 (6)0.6090 (6)0.0429 (13)
H19A0.98790.10400.56320.051*
C200.9411 (6)0.2882 (5)0.5866 (5)0.0295 (10)
H20A0.82300.22270.52720.035*
C210.1897 (7)0.4092 (6)0.0510 (6)0.0390 (11)
H21A0.07810.32070.00620.047*
C220.2193 (8)0.5635 (7)0.0626 (7)0.0458 (13)
H22A0.12990.57980.01390.055*
C230.3786 (8)0.6921 (6)0.1451 (6)0.0475 (15)
H23A0.40170.79940.15710.057*
C240.5055 (8)0.6619 (6)0.2107 (6)0.0456 (13)
H24A0.61860.74870.26660.055*
C250.4666 (6)0.5049 (5)0.1944 (5)0.0337 (10)
H25A0.55480.48610.24080.040*
C260.1383 (6)0.0208 (6)0.0188 (5)0.0321 (10)
H26A0.12910.06770.09790.039*
C270.2969 (6)0.0497 (6)0.0301 (5)0.0384 (11)
H27A0.39440.11500.11540.046*
C280.3120 (6)0.0175 (6)0.0842 (6)0.0368 (11)
H28A0.41920.00190.07820.044*
C290.1684 (7)0.1076 (7)0.2070 (6)0.0441 (13)
H29A0.17510.15300.28820.053*
C300.0132 (6)0.1308 (6)0.2096 (5)0.0338 (10)
H30A0.08550.19270.29450.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0131 (2)0.0118 (2)0.0131 (2)0.00517 (18)0.00466 (18)0.00285 (17)
Co20.0152 (2)0.0145 (2)0.0156 (2)0.00629 (19)0.00422 (19)0.00207 (18)
S10.0135 (4)0.0128 (4)0.0152 (4)0.0041 (3)0.0040 (3)0.0009 (3)
S20.0148 (4)0.0132 (4)0.0148 (4)0.0049 (4)0.0032 (4)0.0021 (4)
O10.0351 (17)0.0227 (15)0.0163 (14)0.0150 (13)0.0074 (13)0.0052 (12)
O20.0177 (14)0.0232 (15)0.0453 (19)0.0067 (12)0.0157 (14)0.0028 (14)
O30.0320 (16)0.0164 (14)0.0256 (15)0.0124 (13)0.0133 (13)0.0082 (12)
O40.0158 (13)0.0201 (14)0.0213 (15)0.0030 (12)0.0036 (12)0.0055 (11)
O50.0182 (14)0.0174 (14)0.0173 (14)0.0036 (11)0.0036 (12)0.0004 (11)
O60.0295 (16)0.0180 (15)0.0332 (18)0.0114 (13)0.0037 (14)0.0064 (13)
O70.0165 (14)0.0273 (15)0.0192 (14)0.0085 (12)0.0073 (11)0.0066 (12)
O80.0239 (14)0.0275 (15)0.0170 (14)0.0131 (13)0.0092 (12)0.0045 (12)
N10.0187 (16)0.0204 (17)0.0201 (17)0.0082 (14)0.0082 (14)0.0073 (14)
N20.0273 (18)0.0250 (18)0.0211 (17)0.0173 (15)0.0134 (15)0.0102 (14)
N30.0195 (16)0.0214 (17)0.0191 (17)0.0099 (14)0.0084 (14)0.0073 (14)
N40.0171 (16)0.0174 (16)0.0188 (17)0.0083 (13)0.0093 (14)0.0052 (13)
N50.0304 (19)0.0205 (18)0.0229 (18)0.0129 (16)0.0116 (15)0.0061 (15)
N60.0189 (17)0.0236 (17)0.0243 (18)0.0103 (14)0.0092 (14)0.0038 (14)
C10.031 (2)0.026 (2)0.033 (2)0.0157 (19)0.0180 (19)0.0152 (19)
C20.031 (2)0.028 (2)0.040 (3)0.0087 (19)0.018 (2)0.020 (2)
C30.029 (2)0.052 (3)0.034 (3)0.016 (2)0.020 (2)0.026 (2)
C40.034 (3)0.047 (3)0.023 (2)0.014 (2)0.015 (2)0.008 (2)
C50.029 (2)0.029 (2)0.020 (2)0.0102 (19)0.0091 (18)0.0037 (18)
C60.023 (2)0.029 (2)0.036 (3)0.0144 (19)0.0078 (19)0.0027 (19)
C70.024 (2)0.052 (3)0.055 (4)0.024 (2)0.001 (2)0.004 (3)
C80.046 (3)0.056 (4)0.061 (4)0.043 (3)0.005 (3)0.007 (3)
C90.053 (3)0.039 (3)0.058 (4)0.037 (3)0.017 (3)0.012 (3)
C100.036 (2)0.028 (2)0.029 (2)0.022 (2)0.010 (2)0.0090 (19)
C110.031 (2)0.022 (2)0.026 (2)0.0147 (18)0.0138 (18)0.0113 (17)
C120.033 (2)0.032 (2)0.041 (3)0.018 (2)0.022 (2)0.023 (2)
C130.032 (2)0.049 (3)0.032 (3)0.019 (2)0.020 (2)0.025 (2)
C140.030 (2)0.043 (3)0.025 (2)0.012 (2)0.015 (2)0.006 (2)
C150.025 (2)0.026 (2)0.029 (2)0.0082 (18)0.0159 (19)0.0061 (18)
C160.023 (2)0.026 (2)0.047 (3)0.0133 (19)0.008 (2)0.001 (2)
C170.024 (2)0.043 (3)0.055 (3)0.021 (2)0.000 (2)0.001 (3)
C180.042 (3)0.045 (3)0.060 (4)0.035 (3)0.018 (3)0.017 (3)
C190.038 (3)0.028 (2)0.064 (4)0.022 (2)0.016 (3)0.013 (2)
C200.024 (2)0.024 (2)0.037 (2)0.0139 (18)0.0080 (19)0.0077 (19)
C210.035 (3)0.036 (3)0.051 (3)0.020 (2)0.017 (2)0.024 (2)
C220.057 (3)0.048 (3)0.069 (4)0.041 (3)0.041 (3)0.037 (3)
C230.079 (4)0.030 (3)0.058 (4)0.035 (3)0.045 (3)0.023 (3)
C240.055 (3)0.025 (2)0.045 (3)0.011 (2)0.020 (3)0.010 (2)
C250.038 (3)0.021 (2)0.032 (2)0.011 (2)0.010 (2)0.0063 (19)
C260.024 (2)0.035 (2)0.030 (2)0.013 (2)0.0077 (19)0.004 (2)
C270.020 (2)0.041 (3)0.039 (3)0.012 (2)0.003 (2)0.004 (2)
C280.023 (2)0.044 (3)0.051 (3)0.020 (2)0.019 (2)0.020 (2)
C290.038 (3)0.060 (3)0.046 (3)0.031 (3)0.025 (2)0.013 (3)
C300.021 (2)0.044 (3)0.030 (2)0.017 (2)0.0062 (18)0.004 (2)
Geometric parameters (Å, º) top
Co1—O42.070 (3)C6—C71.376 (7)
Co1—O52.080 (3)C6—H6A0.9500
Co1—N22.179 (3)C7—C81.377 (9)
Co1—N12.180 (3)C7—H7A0.9500
Co1—N42.183 (3)C8—C91.356 (9)
Co1—N32.185 (3)C8—H8A0.9500
Co2—N62.104 (3)C9—C101.398 (6)
Co2—O72.113 (3)C9—H9A0.9500
Co2—N52.123 (3)C10—H10A0.9500
Co2—O3i2.141 (3)C11—C121.385 (6)
Co2—O1i2.185 (3)C11—H11A0.9500
Co2—O82.208 (3)C12—C131.375 (7)
Co2—S1i2.7061 (11)C12—H12A0.9500
Co2—S22.7107 (10)C13—C141.370 (7)
S1—O21.450 (3)C13—H13A0.9500
S1—O41.476 (3)C14—C151.378 (7)
S1—O11.483 (3)C14—H14A0.9500
S1—O31.493 (3)C15—H15A0.9500
S1—Co2ii2.7062 (11)C16—C171.384 (7)
S2—O61.451 (3)C16—H16A0.9500
S2—O51.477 (3)C17—C181.379 (8)
S2—O81.488 (3)C17—H17A0.9500
S2—O71.500 (3)C18—C191.372 (8)
O1—Co2ii2.185 (3)C18—H18A0.9500
O3—Co2ii2.141 (3)C19—C201.383 (6)
N1—C51.337 (6)C19—H19A0.9500
N1—C11.337 (6)C20—H20A0.9500
N2—C101.333 (6)C21—C221.383 (7)
N2—C61.355 (6)C21—H21A0.9500
N3—C151.340 (5)C22—C231.364 (9)
N3—C111.344 (5)C22—H22A0.9500
N4—C161.339 (6)C23—C241.383 (9)
N4—C201.340 (6)C23—H23A0.9500
N5—C251.331 (6)C24—C251.379 (7)
N5—C211.344 (6)C24—H24A0.9500
N6—C301.331 (6)C25—H25A0.9500
N6—C261.340 (6)C26—C271.381 (7)
C1—C21.388 (6)C26—H26A0.9500
C1—H1A0.9500C27—C281.380 (8)
C2—C31.384 (8)C27—H27A0.9500
C2—H2A0.9500C28—C291.378 (8)
C3—C41.395 (8)C28—H28A0.9500
C3—H3A0.9500C29—C301.393 (7)
C4—C51.378 (7)C29—H29A0.9500
C4—H4A0.9500C30—H30A0.9500
C5—H5A0.9500
O4—Co1—O5173.43 (12)C2—C1—H1A118.3
O4—Co1—N285.60 (13)C3—C2—C1118.7 (4)
O5—Co1—N287.84 (12)C3—C2—H2A120.6
O4—Co1—N189.17 (13)C1—C2—H2A120.6
O5—Co1—N190.86 (12)C2—C3—C4117.9 (4)
N2—Co1—N187.48 (13)C2—C3—H3A121.0
O4—Co1—N496.45 (12)C4—C3—H3A121.0
O5—Co1—N490.12 (12)C5—C4—C3119.4 (5)
N2—Co1—N4177.57 (14)C5—C4—H4A120.3
N1—Co1—N491.24 (12)C3—C4—H4A120.3
O4—Co1—N391.19 (13)N1—C5—C4122.9 (4)
O5—Co1—N388.85 (12)N1—C5—H5A118.5
N2—Co1—N393.18 (12)C4—C5—H5A118.5
N1—Co1—N3179.27 (14)N2—C6—C7122.5 (5)
N4—Co1—N388.08 (12)N2—C6—H6A118.8
N6—Co2—O792.49 (12)C7—C6—H6A118.8
N6—Co2—N593.63 (13)C6—C7—C8119.6 (5)
O7—Co2—N598.33 (13)C6—C7—H7A120.2
N6—Co2—O3i96.90 (13)C8—C7—H7A120.2
O7—Co2—O3i162.62 (11)C9—C8—C7118.4 (5)
N5—Co2—O3i95.64 (12)C9—C8—H8A120.8
N6—Co2—O1i93.88 (13)C7—C8—H8A120.8
O7—Co2—O1i98.98 (11)C8—C9—C10119.8 (5)
N5—Co2—O1i160.79 (12)C8—C9—H9A120.1
O3i—Co2—O1i65.90 (10)C10—C9—H9A120.1
N6—Co2—O8158.65 (12)N2—C10—C9122.3 (5)
O7—Co2—O866.37 (10)N2—C10—H10A118.8
N5—Co2—O892.48 (13)C9—C10—H10A118.8
O3i—Co2—O8102.84 (11)N3—C11—C12123.2 (4)
O1i—Co2—O886.87 (11)N3—C11—H11A118.4
N6—Co2—S1i101.38 (10)C12—C11—H11A118.4
O7—Co2—S1i130.13 (8)C13—C12—C11118.9 (4)
N5—Co2—S1i127.73 (10)C13—C12—H12A120.6
O3i—Co2—S1i33.37 (7)C11—C12—H12A120.6
O1i—Co2—S1i33.18 (8)C14—C13—C12118.5 (4)
O8—Co2—S1i90.91 (8)C14—C13—H13A120.8
N6—Co2—S2125.39 (10)C12—C13—H13A120.8
O7—Co2—S233.41 (8)C13—C14—C15119.6 (5)
N5—Co2—S299.84 (10)C13—C14—H14A120.2
O3i—Co2—S2133.35 (8)C15—C14—H14A120.2
O1i—Co2—S290.12 (8)N3—C15—C14123.0 (4)
O8—Co2—S233.27 (7)N3—C15—H15A118.5
S1i—Co2—S2110.52 (3)C14—C15—H15A118.5
O2—S1—O4110.31 (18)N4—C16—C17123.2 (4)
O2—S1—O1112.58 (19)N4—C16—H16A118.4
O4—S1—O1109.17 (18)C17—C16—H16A118.4
O2—S1—O3111.06 (18)C18—C17—C16119.4 (5)
O4—S1—O3109.08 (18)C18—C17—H17A120.3
O1—S1—O3104.45 (16)C16—C17—H17A120.3
O2—S1—Co2ii117.43 (14)C19—C18—C17117.9 (4)
O4—S1—Co2ii132.24 (12)C19—C18—H18A121.1
O1—S1—Co2ii53.72 (11)C17—C18—H18A121.1
O3—S1—Co2ii52.05 (12)C18—C19—C20119.5 (5)
O6—S2—O5110.02 (17)C18—C19—H19A120.2
O6—S2—O8112.20 (18)C20—C19—H19A120.2
O5—S2—O8109.12 (17)N4—C20—C19123.2 (4)
O6—S2—O7111.68 (18)N4—C20—H20A118.4
O5—S2—O7108.93 (17)C19—C20—H20A118.4
O8—S2—O7104.72 (17)N5—C21—C22123.3 (5)
O6—S2—Co2120.94 (13)N5—C21—H21A118.4
O5—S2—Co2128.99 (12)C22—C21—H21A118.4
O8—S2—Co254.46 (11)C23—C22—C21119.1 (5)
O7—S2—Co250.87 (11)C23—C22—H22A120.5
S1—O1—Co2ii93.10 (14)C21—C22—H22A120.5
S1—O3—Co2ii94.57 (14)C22—C23—C24118.2 (4)
S1—O4—Co1159.38 (19)C22—C23—H23A120.9
S2—O5—Co1169.67 (19)C24—C23—H23A120.9
S2—O7—Co295.72 (15)C25—C24—C23119.5 (5)
S2—O8—Co292.27 (14)C25—C24—H24A120.3
C5—N1—C1117.6 (4)C23—C24—H24A120.3
C5—N1—Co1119.9 (3)N5—C25—C24123.0 (5)
C1—N1—Co1122.6 (3)N5—C25—H25A118.5
C10—N2—C6117.3 (4)C24—C25—H25A118.5
C10—N2—Co1122.1 (3)N6—C26—C27122.9 (5)
C6—N2—Co1120.6 (3)N6—C26—H26A118.5
C15—N3—C11116.8 (4)C27—C26—H26A118.5
C15—N3—Co1119.0 (3)C28—C27—C26119.1 (4)
C11—N3—Co1124.2 (3)C28—C27—H27A120.4
C16—N4—C20116.7 (4)C26—C27—H27A120.4
C16—N4—Co1121.3 (3)C29—C28—C27118.7 (4)
C20—N4—Co1121.9 (3)C29—C28—H28A120.7
C25—N5—C21117.0 (4)C27—C28—H28A120.7
C25—N5—Co2122.4 (3)C28—C29—C30118.5 (5)
C21—N5—Co2120.4 (3)C28—C29—H29A120.7
C30—N6—C26117.5 (4)C30—C29—H29A120.7
C30—N6—Co2119.9 (3)N6—C30—C29123.2 (4)
C26—N6—Co2122.3 (3)N6—C30—H30A118.4
N1—C1—C2123.4 (4)C29—C30—H30A118.4
N1—C1—H1A118.3
O2—S1—O1—Co2ii108.27 (16)Co1—N2—C10—C9178.3 (4)
O4—S1—O1—Co2ii128.88 (15)C8—C9—C10—N20.4 (9)
O3—S1—O1—Co2ii12.33 (17)C15—N3—C11—C121.7 (6)
O2—S1—O3—Co2ii109.00 (18)Co1—N3—C11—C12179.2 (3)
O4—S1—O3—Co2ii129.22 (15)N3—C11—C12—C131.4 (7)
O1—S1—O3—Co2ii12.61 (17)C11—C12—C13—C140.4 (7)
O2—S1—O4—Co11.7 (7)C12—C13—C14—C151.6 (7)
O1—S1—O4—Co1122.5 (6)C11—N3—C15—C140.3 (6)
O3—S1—O4—Co1124.0 (6)Co1—N3—C15—C14179.5 (4)
Co2ii—S1—O4—Co1179.6 (5)C13—C14—C15—N31.4 (7)
O6—S2—O5—Co143.6 (11)C20—N4—C16—C171.2 (8)
O8—S2—O5—Co1167.1 (11)Co1—N4—C16—C17175.5 (4)
O7—S2—O5—Co179.2 (11)N4—C16—C17—C180.4 (9)
Co2—S2—O5—Co1133.7 (10)C16—C17—C18—C191.7 (9)
O6—S2—O7—Co2112.94 (17)C17—C18—C19—C202.8 (9)
O5—S2—O7—Co2125.34 (15)C16—N4—C20—C190.0 (7)
O8—S2—O7—Co28.72 (18)Co1—N4—C20—C19176.7 (4)
O6—S2—O8—Co2113.01 (16)C18—C19—C20—N42.0 (8)
O5—S2—O8—Co2124.80 (14)C25—N5—C21—C220.8 (8)
O7—S2—O8—Co28.31 (17)Co2—N5—C21—C22174.2 (4)
C5—N1—C1—C21.2 (6)N5—C21—C22—C230.5 (8)
Co1—N1—C1—C2180.0 (3)C21—C22—C23—C241.8 (8)
N1—C1—C2—C30.4 (7)C22—C23—C24—C251.9 (8)
C1—C2—C3—C41.2 (7)C21—N5—C25—C240.7 (7)
C2—C3—C4—C52.1 (7)Co2—N5—C25—C24174.2 (4)
C1—N1—C5—C40.3 (7)C23—C24—C25—N50.6 (8)
Co1—N1—C5—C4179.2 (4)C30—N6—C26—C272.0 (7)
C3—C4—C5—N11.3 (7)Co2—N6—C26—C27171.6 (4)
C10—N2—C6—C70.5 (7)N6—C26—C27—C280.1 (8)
Co1—N2—C6—C7178.9 (4)C26—C27—C28—C291.8 (8)
N2—C6—C7—C80.8 (9)C27—C28—C29—C301.8 (8)
C6—C7—C8—C90.5 (10)C26—N6—C30—C292.1 (7)
C7—C8—C9—C100.1 (10)Co2—N6—C30—C29171.7 (4)
C6—N2—C10—C90.1 (7)C28—C29—C30—N60.2 (8)
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O60.952.633.563 (6)167
C2—H2A···O2iii0.952.523.219 (5)131
C5—H5A···O40.952.423.009 (5)120
C6—H6A···O50.952.563.054 (5)112
C6—H6A···O70.952.473.322 (6)149
C10—H10A···O40.952.533.010 (5)112
C12—H12A···O7iv0.952.603.271 (5)128
C15—H15A···O50.952.453.017 (5)118
C16—H16A···O20.952.193.139 (6)176
C20—H20A···O50.952.513.091 (5)119
C20—H20A···O60.952.323.272 (5)175
C25—H25A···O80.952.553.162 (5)123
C30—H30A···O70.952.543.116 (5)119
Symmetry codes: (iii) x1, y1, z; (iv) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBethe, H. A. (1929). Ann. Phys. 395, 133–208.  CrossRef Google Scholar
First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203–206.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHowe, J. L. (1898). Science, 8, 945–947.  PubMed Google Scholar
First citationJohnson, N. O., Turk, J. T., Bull, W. E. & Mayfield, H. G. (1977). Inorg. Chim. Acta, 25, 235–239.  CrossRef CAS Google Scholar
First citationMemon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O'Brien, P. & Raftery, J. (2006). Dalton Trans. pp. 4499–4505.  Web of Science CSD CrossRef Google Scholar
First citationPham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574.  CSD CrossRef IUCr Journals Google Scholar
First citationReitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267–280.  CrossRef CAS Google Scholar
First citationRoy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWerner, A. (1893). Z. Anorg. Chem. 3, 267–330.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds