research communications
The varied structures of cobalt(II)–pyridine (py)–sulfate: [Co(SO4)(py)4]n, [Co2(SO4)2(py)6]n, and [Co3(SO4)3(py)11]n
aPortsmouth Abbey School, 285 Cory's Lane, Portsmouth, RI, 02871, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Rd., North Dartmouth, MA, 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The solid-state structures of two cobalt–pyridine–sulfate compounds, namely catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O′], [Co(SO4)(C5H5N)4]n, (1), and catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O:O′,O′′-[bis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O,O′:O′′]n, [Co2(SO4)2(C5H5N)6]n, (2), are reported. Compound (1) displays a polymeric structure, with infinite chains of CoII cations adopting octahedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ions. Compound (2) is also polymeric with infinite chains of CoII cations. The first Co center has an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The second Co center has an octahedral N2O4 coordination environment that involves two pyridine ligands and two bridging sulfate ions that chelate the Co atom. The structure of (2) was refined as a two-component inversion twin.
1. Chemical context
The synthesis of metal–pyrdine–sulfates has been reported since the 19th century, when Jørgensen's chain theory was still the prevailing hypothesis (Reitzenstein, 1894; Howe, 1898). Since that time, the structural understanding of metal complexes has greatly increased, first with the acceptance of Werner's coordination theory (Werner, 1893), with crystal field theory from Bethe in 1929 (Bethe, 1929), and the modifications of theory in the ninety years since. Despite the long history of these compounds, their crystallographic study is rather limited. Before we began a crystallographic examination of metal–pyridine–sulfates in 2018, there were only two examples of such complexes without other ligands or components reported in the literature (Cotton & Reid, 1984; Memon et al., 2006).
Since we began studying the structural chemistry of metal–pyridine–sulfates, we have observed many different structural motifs in the complexes. The coordination environment of each compound can usually be predicted with crystal field theory, although the exact nature is dependent upon the number of pyridines bound and the binding mode of the sulfate anion. The sulfate anion can have a number of different coordination modes, including μ-sulfato-κ2-O:O, μ-sulfato-κ2-O:O′ and μ-sulfato-κ3-O:O′:O". Herein we report two new structures of cobalt–pyridine–sulfates formed by altering the growth conditions and compare these structures with the previously reported structure of a cobalt–pyridine–sulfate and the structures of related complexes.
2. Structural commentary
The 1) consists of two pyridine molecules and one half of a sulfate anion coordinated to a cobalt atom sitting on an inversion center (Fig. 1a). When grown out, the cobalt ion shows an octahedral coordination environment (Fig. 1b). The equatorial positions of the octahedron are occupied by four pyridine ligands in a square-planar arrangement. The CoN4 unit exhibits planarity enforced by symmetry, with cis N—Co—N angles of 86.45 (6) and 93.55 (6)°. To complete the octahedron, the axial positions are occupied by two sulfate ions, with an inversion enforced O—Co—O angle of 180° and cis O—Co—N angles of 88.87 (6) and 91.67 (6)°. The pyridine rings are rotated from the CoN4 plane by dihedral angles of 47.30 (10) and 78.33 (9)°. The 78.33 (9)° angles are constrained by two C—H⋯O interactions between the ortho hydrogen atoms and the two trans sulfates (Table 1).
of the pink crystals of (The 2) consists of two cobalt atoms, six coordinated pyridines and two sulfate anions (Fig. 2a). There are two crystallographically unique cobalt atoms, with Co1 (Fig. 2b) displaying an octahedral N4O2 coordination environment and Co2 (Fig. 2c) exhibiting an octahedral N2O4 coordination geometry.
of the purple crystals of (Co1 has four pyridine ligands occupying the equatorial positions of an octahedron, with the CoN4 plane showing a maximum deviation from planarity of 0.018 Å. Two sulfate anions occupy the axial positions to complete the octahedral coordination. The cis N—Co—N angles have values ranging from 87.48 (13) to 93.18 (12)°, and the trans O—Co—O angle is 173.43 (12)°. The planes of the four pyridine rings are rotated from the equatorial CoN4 plane by dihedral angles of 58.6 (2), 64.6 (2), 65.6 (2), and 73.1 (2)°. Two of the rings show one C—H⋯O interaction with an ortho hydrogen atom, one ring shows two C—H⋯O interactions with two ortho hydrogen atoms, and the fourth ring shows no C—H⋯O interactions (Table 2).
|
Co2 is bound by two pyridine ligands and two chelating sulfate anions to give an octahedral coordination environment. The pyridine rings adopt a cis configuration, with an N—Co—N angle of 93.63 (13)°. The two sulfate ligands exhibit O—Co—O bite angles of 65.90 (10) and 66.37 (10)°. The other cis O—Co—O angles are 86.87 (11), 98.98 (11), and 102.84 (11)°, and the six cis N—Co—O angles range from 92.49 (12) to 98.33 (13)°. Each pyridine ring is involved in ortho C—H⋯O interactions (Table 2).
3. Supramolecular features
The CoII atoms in compound (1) are linked together into infinite chains along the [001] direction through sulfate anions with O—S—O bridges (Figs. 3a, 4a). Between each successive tetrapyridine cobalt unit, there are parallel slipped π–π interactions [inter-centroid distance: 3.637 (1) Å, inter-planar distance: 3.611 (1) Å, slippage: 0.435 (1) Å].
The CoII atoms in compound (2) are linked together into infinite chains along the [111] direction through the sulfate anions (Figs. 3b, 4b). The chain alternates between tetrapyridine cobalt units and dipyridine cobalt units. No π–π interactions are observed in the crystal.
4. Database survey
In a prior publication, we reported the structure of another cobalt–pyridine–sulfate [Co3(SO4)3(C5H5N)11)]n, which was grown at a lower concentration of cobalt. This structure shows two successive octahedral cobalt atoms with N4O2 coordination, where each atom is coordinated to four pyridines and two bridging sulfates. The third cobalt atom in the chain shows N3O3 coordination where three pyridines are bound and there are two sulfates bound, one of which is chelating to the cobalt (Pham et al., 2018). Fig. 3 compares the chain structure of this complex with those of compounds (1) and (2). In compound (1), every cobalt atom possesses an octahedral N4O2 coordination. This complex is isostructural with the structure observed for the iron and nickel pyridine–sulfate complexes (Roy et al., 2018). This structural motif is also consistent with that observed for the 4-picoline–sulfate structures of iron, cobalt, nickel and cadmium (Pham et al., 2019). In compound (2), the cobalt atoms alternate between N4O2 coordination and N2O4 coordination. This tetrapyridine/bipyridine alternation is similar to what is observed in the zinc–pyridine–sulfate structure, which alternates between octahedral and tetrahedral zinc centers. In the case of cobalt, the bis(pyridine) cobalt center is still octahedral because the two coordinated sulfates both chelate to the cobalt. The end result is an infinite chain of octahedral cobalt atoms, which is true in compound (1) and the previously reported cobalt–pyridine–sulfate complex. The methanesulfato complexes of cobalt (II) have also been reported as octahedral tetrakis(pyridine), [Co(SO3CH3)2(py)4], and octahedral bis(pyridine), [Co(SO3CH3)2(py)2], compounds, consistent with the two independent cobalt centers observed in (2) (Johnson et al., 1977).
5. Synthesis and crystallization
For compound (1), 40 mg of cobalt sulfate heptahydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (100 µL) in a 20 mL vial. The vial was heated to 338 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.
For compound (2), 48 mg of cobalt sulfate heptahydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (30 µL) in a 20 mL vial. The vial was heated to 358 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.
6. Refinement
Crystal data, data collection and structure . All structure solutions were obtained by intrinsic phasing. All non-hydrogen atoms were refined anisotropically (SHELXL) by full-matrix least squares on F2. Hydrogen atoms were placed in calculated positions and then refined with a riding model with C—H bond lengths of 0.95 Å and with isotropic displacement parameters set to 1.20 Ueq of the parent C atom. The structre of (2) was refined as a two-component BASF = 0.165 (13).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S205698901901538X/sj5586sup1.cif
contains datablocks 1, 2, I. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S205698901901538X/sj55861sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S205698901901538X/sj55862sup3.hkl
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009). Molecular graphics: SHELXTL (Sheldrick, 2008) for (1); SHELXTL (Sheldrick 2008) for (2). For both structures, software used to prepare material for publication: SHELXTL (Sheldrick 2008) and publCIF (Westrip, 2010).[Co(SO4)(C5H5N)4] | F(000) = 972 |
Mr = 471.39 | Dx = 1.553 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.6323 (18) Å | Cell parameters from 8333 reflections |
b = 10.0803 (9) Å | θ = 3.3–25.3° |
c = 11.9403 (11) Å | µ = 0.99 mm−1 |
β = 115.945 (3)° | T = 295 K |
V = 2016.6 (3) Å3 | BLOCK, pink |
Z = 4 | 0.28 × 0.13 × 0.06 mm |
Bruker APEXIII CMOS diffractometer | 1572 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.071 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 25.4°, θmin = 3.3° |
Tmin = 0.667, Tmax = 0.745 | h = −22→22 |
20212 measured reflections | k = −12→12 |
1854 independent reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0254P)2 + 2.4084P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.063 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.24 e Å−3 |
1854 reflections | Δρmin = −0.24 e Å−3 |
139 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0019 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.02070 (13) | |
O1 | 0.49333 (8) | 0.59836 (16) | 0.64714 (13) | 0.0406 (4) | |
O2 | 0.57186 (9) | 0.76549 (16) | 0.79112 (15) | 0.0433 (4) | |
N1 | 0.45647 (10) | 0.32138 (17) | 0.55318 (15) | 0.0305 (4) | |
N2 | 0.37320 (9) | 0.55056 (17) | 0.38523 (14) | 0.0257 (4) | |
C1 | 0.39850 (16) | 0.3286 (3) | 0.5901 (2) | 0.0503 (7) | |
H1A | 0.3780 | 0.4116 | 0.5942 | 0.060* | |
C2 | 0.36775 (18) | 0.2191 (3) | 0.6224 (3) | 0.0649 (8) | |
H2A | 0.3265 | 0.2285 | 0.6457 | 0.078* | |
C3 | 0.39806 (18) | 0.0971 (3) | 0.6200 (2) | 0.0594 (8) | |
H3A | 0.3780 | 0.0216 | 0.6410 | 0.071* | |
C4 | 0.45897 (19) | 0.0885 (3) | 0.5858 (3) | 0.0582 (7) | |
H4A | 0.4823 | 0.0069 | 0.5857 | 0.070* | |
C5 | 0.48541 (15) | 0.2016 (2) | 0.5514 (2) | 0.0448 (6) | |
H5A | 0.5257 | 0.1937 | 0.5257 | 0.054* | |
C6 | 0.33165 (12) | 0.4887 (2) | 0.2775 (2) | 0.0360 (5) | |
H6A | 0.3577 | 0.4259 | 0.2513 | 0.043* | |
C7 | 0.25194 (13) | 0.5129 (3) | 0.2028 (2) | 0.0469 (6) | |
H7A | 0.2255 | 0.4687 | 0.1274 | 0.056* | |
C8 | 0.21197 (12) | 0.6030 (2) | 0.2410 (2) | 0.0404 (6) | |
H8A | 0.1584 | 0.6218 | 0.1919 | 0.048* | |
C9 | 0.25326 (12) | 0.6644 (2) | 0.3534 (2) | 0.0370 (5) | |
H9A | 0.2276 | 0.7240 | 0.3832 | 0.044* | |
C10 | 0.33304 (12) | 0.6372 (2) | 0.42193 (19) | 0.0331 (5) | |
H10A | 0.3605 | 0.6809 | 0.4974 | 0.040* | |
S1 | 0.5000 | 0.68569 (6) | 0.7500 | 0.01886 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0187 (2) | 0.0246 (2) | 0.0198 (2) | 0.00353 (15) | 0.00935 (15) | −0.00111 (15) |
O1 | 0.0358 (8) | 0.0582 (11) | 0.0268 (8) | 0.0111 (8) | 0.0128 (6) | −0.0138 (7) |
O2 | 0.0303 (8) | 0.0391 (9) | 0.0562 (10) | −0.0150 (7) | 0.0148 (7) | 0.0026 (8) |
N1 | 0.0321 (9) | 0.0314 (10) | 0.0290 (9) | 0.0009 (8) | 0.0141 (8) | 0.0004 (8) |
N2 | 0.0212 (8) | 0.0300 (9) | 0.0261 (9) | 0.0040 (7) | 0.0105 (7) | 0.0013 (7) |
C1 | 0.0583 (16) | 0.0482 (16) | 0.0638 (16) | 0.0080 (13) | 0.0445 (14) | 0.0116 (13) |
C2 | 0.0691 (19) | 0.070 (2) | 0.079 (2) | −0.0043 (16) | 0.0536 (17) | 0.0158 (16) |
C3 | 0.083 (2) | 0.0493 (17) | 0.0534 (16) | −0.0231 (15) | 0.0364 (15) | 0.0029 (13) |
C4 | 0.085 (2) | 0.0324 (14) | 0.0665 (18) | −0.0050 (13) | 0.0420 (16) | −0.0024 (13) |
C5 | 0.0510 (14) | 0.0351 (13) | 0.0563 (15) | −0.0006 (11) | 0.0309 (12) | 0.0000 (11) |
C6 | 0.0268 (11) | 0.0426 (13) | 0.0359 (11) | 0.0071 (10) | 0.0114 (9) | −0.0080 (10) |
C7 | 0.0286 (12) | 0.0580 (16) | 0.0401 (13) | 0.0042 (11) | 0.0021 (10) | −0.0160 (12) |
C8 | 0.0214 (11) | 0.0496 (14) | 0.0440 (13) | 0.0096 (10) | 0.0085 (10) | 0.0030 (11) |
C9 | 0.0304 (11) | 0.0438 (14) | 0.0399 (12) | 0.0135 (10) | 0.0183 (10) | 0.0025 (10) |
C10 | 0.0282 (11) | 0.0406 (12) | 0.0289 (11) | 0.0058 (9) | 0.0110 (9) | −0.0033 (9) |
S1 | 0.0181 (3) | 0.0204 (3) | 0.0206 (3) | 0.000 | 0.0108 (3) | 0.000 |
Co1—O1i | 2.0679 (13) | C3—C4 | 1.367 (4) |
Co1—O1 | 2.0679 (13) | C3—H3A | 0.9300 |
Co1—N1 | 2.1803 (17) | C4—C5 | 1.373 (3) |
Co1—N1i | 2.1803 (17) | C4—H4A | 0.9300 |
Co1—N2 | 2.2105 (15) | C5—H5A | 0.9300 |
Co1—N2i | 2.2105 (15) | C6—C7 | 1.379 (3) |
O1—S1 | 1.4715 (14) | C6—H6A | 0.9300 |
O2—S1 | 1.4511 (14) | C7—C8 | 1.373 (3) |
N1—C5 | 1.327 (3) | C7—H7A | 0.9300 |
N1—C1 | 1.335 (3) | C8—C9 | 1.368 (3) |
N2—C6 | 1.331 (3) | C8—H8A | 0.9300 |
N2—C10 | 1.342 (2) | C9—C10 | 1.375 (3) |
C1—C2 | 1.373 (4) | C9—H9A | 0.9300 |
C1—H1A | 0.9300 | C10—H10A | 0.9300 |
C2—C3 | 1.359 (4) | S1—O2ii | 1.4511 (14) |
C2—H2A | 0.9300 | S1—O1ii | 1.4715 (14) |
O1i—Co1—O1 | 180.0 | C2—C3—H3A | 121.0 |
O1i—Co1—N1 | 91.13 (6) | C4—C3—H3A | 121.0 |
O1—Co1—N1 | 88.87 (6) | C3—C4—C5 | 119.3 (3) |
O1i—Co1—N1i | 88.87 (6) | C3—C4—H4A | 120.3 |
O1—Co1—N1i | 91.13 (6) | C5—C4—H4A | 120.3 |
N1—Co1—N1i | 180.0 | N1—C5—C4 | 123.3 (2) |
O1i—Co1—N2 | 91.66 (6) | N1—C5—H5A | 118.3 |
O1—Co1—N2 | 88.34 (6) | C4—C5—H5A | 118.3 |
N1—Co1—N2 | 86.45 (6) | N2—C6—C7 | 123.24 (19) |
N1i—Co1—N2 | 93.55 (6) | N2—C6—H6A | 118.4 |
O1i—Co1—N2i | 88.33 (6) | C7—C6—H6A | 118.4 |
O1—Co1—N2i | 91.67 (6) | C8—C7—C6 | 119.3 (2) |
N1—Co1—N2i | 93.55 (6) | C8—C7—H7A | 120.3 |
N1i—Co1—N2i | 86.45 (6) | C6—C7—H7A | 120.3 |
N2—Co1—N2i | 180.0 | C9—C8—C7 | 118.1 (2) |
S1—O1—Co1 | 168.95 (11) | C9—C8—H8A | 120.9 |
C5—N1—C1 | 116.6 (2) | C7—C8—H8A | 120.9 |
C5—N1—Co1 | 122.80 (14) | C8—C9—C10 | 119.39 (19) |
C1—N1—Co1 | 120.61 (16) | C8—C9—H9A | 120.3 |
C6—N2—C10 | 116.66 (17) | C10—C9—H9A | 120.3 |
C6—N2—Co1 | 120.20 (13) | N2—C10—C9 | 123.22 (19) |
C10—N2—Co1 | 123.03 (13) | N2—C10—H10A | 118.4 |
N1—C1—C2 | 123.1 (2) | C9—C10—H10A | 118.4 |
N1—C1—H1A | 118.5 | O2—S1—O2ii | 112.67 (14) |
C2—C1—H1A | 118.5 | O2—S1—O1 | 110.03 (9) |
C3—C2—C1 | 119.5 (2) | O2ii—S1—O1 | 108.71 (8) |
C3—C2—H2A | 120.2 | O2—S1—O1ii | 108.71 (8) |
C1—C2—H2A | 120.2 | O2ii—S1—O1ii | 110.03 (9) |
C2—C3—C4 | 118.1 (2) | O1—S1—O1ii | 106.52 (14) |
C5—N1—C1—C2 | −1.5 (4) | N2—C6—C7—C8 | −1.4 (4) |
Co1—N1—C1—C2 | 178.7 (2) | C6—C7—C8—C9 | −0.7 (4) |
N1—C1—C2—C3 | 1.5 (5) | C7—C8—C9—C10 | 1.9 (3) |
C1—C2—C3—C4 | 0.4 (5) | C6—N2—C10—C9 | −0.8 (3) |
C2—C3—C4—C5 | −2.1 (4) | Co1—N2—C10—C9 | −176.96 (16) |
C1—N1—C5—C4 | −0.3 (4) | C8—C9—C10—N2 | −1.2 (3) |
Co1—N1—C5—C4 | 179.4 (2) | Co1—O1—S1—O2 | −16.8 (5) |
C3—C4—C5—N1 | 2.2 (4) | Co1—O1—S1—O2ii | 107.0 (5) |
C10—N2—C6—C7 | 2.1 (3) | Co1—O1—S1—O1ii | −134.5 (5) |
Co1—N2—C6—C7 | 178.36 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O1i | 0.93 | 2.51 | 3.106 (2) | 122 |
C6—H6A···O2i | 0.93 | 2.51 | 3.429 (3) | 171 |
C10—H10A···O1 | 0.93 | 2.48 | 3.046 (2) | 120 |
C10—H10A···O2ii | 0.93 | 2.43 | 3.353 (3) | 171 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2. |
[Co(SO4)2(C5H6N)6] | Z = 1 |
Mr = 784.58 | F(000) = 402 |
Triclinic, P1 | Dx = 1.606 Mg m−3 |
a = 9.5795 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7612 (5) Å | Cell parameters from 9920 reflections |
c = 10.7219 (6) Å | θ = 2.6–25.7° |
α = 98.488 (2)° | µ = 1.21 mm−1 |
β = 107.697 (2)° | T = 200 K |
γ = 115.948 (2)° | PLATE, purple |
V = 811.46 (8) Å3 | 0.25 × 0.20 × 0.02 mm |
Bruker APEXIII photon2 diffractometer | 5906 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 25.7°, θmin = 3.1° |
Tmin = 0.661, Tmax = 0.745 | h = −11→11 |
22679 measured reflections | k = −11→11 |
6013 independent reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1142P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.072 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.79 e Å−3 |
6013 reflections | Δρmin = −0.29 e Å−3 |
434 parameters | Absolute structure: Refined as an inversion twin |
3 restraints | Absolute structure parameter: 0.165 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. BASF 0.16482 |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.84425 (5) | 0.55261 (5) | 0.61510 (4) | 0.01356 (12) | |
Co2 | 0.24785 (6) | 0.13866 (6) | 0.10725 (5) | 0.01665 (13) | |
S1 | 1.17468 (11) | 0.89862 (10) | 0.89114 (9) | 0.01596 (19) | |
S2 | 0.51931 (11) | 0.19943 (10) | 0.33225 (9) | 0.0164 (2) | |
O1 | 1.1869 (4) | 0.8903 (3) | 1.0308 (3) | 0.0257 (6) | |
O2 | 1.3166 (4) | 0.9028 (4) | 0.8658 (4) | 0.0307 (7) | |
O3 | 1.1721 (4) | 1.0501 (3) | 0.8887 (3) | 0.0241 (6) | |
O4 | 1.0118 (3) | 0.7597 (3) | 0.7855 (3) | 0.0244 (6) | |
O5 | 0.6576 (4) | 0.3553 (3) | 0.4393 (3) | 0.0217 (6) | |
O6 | 0.5406 (4) | 0.0691 (4) | 0.3655 (3) | 0.0301 (7) | |
O7 | 0.3509 (3) | 0.1777 (3) | 0.3224 (3) | 0.0223 (6) | |
O8 | 0.5184 (4) | 0.2064 (4) | 0.1943 (3) | 0.0230 (6) | |
N1 | 0.7283 (4) | 0.4360 (4) | 0.7445 (4) | 0.0204 (7) | |
N2 | 0.6741 (4) | 0.6487 (4) | 0.5820 (4) | 0.0215 (7) | |
N3 | 0.9613 (4) | 0.6672 (4) | 0.4849 (3) | 0.0200 (7) | |
N4 | 1.0052 (4) | 0.4460 (4) | 0.6447 (3) | 0.0176 (7) | |
N5 | 0.3110 (5) | 0.3784 (4) | 0.1165 (4) | 0.0246 (7) | |
N6 | 0.0033 (4) | 0.0704 (4) | 0.0989 (4) | 0.0229 (7) | |
C1 | 0.6334 (6) | 0.2757 (5) | 0.7094 (5) | 0.0272 (9) | |
H1A | 0.6163 | 0.2109 | 0.6247 | 0.033* | |
C2 | 0.5587 (6) | 0.1993 (6) | 0.7905 (5) | 0.0336 (10) | |
H2A | 0.4927 | 0.0850 | 0.7619 | 0.040* | |
C3 | 0.5820 (6) | 0.2929 (7) | 0.9138 (5) | 0.0369 (11) | |
H3A | 0.5347 | 0.2447 | 0.9728 | 0.044* | |
C4 | 0.6773 (6) | 0.4601 (7) | 0.9487 (5) | 0.0370 (11) | |
H4A | 0.6929 | 0.5281 | 1.0310 | 0.044* | |
C5 | 0.7486 (6) | 0.5257 (5) | 0.8629 (4) | 0.0286 (9) | |
H5A | 0.8152 | 0.6397 | 0.8889 | 0.034* | |
C6 | 0.5027 (6) | 0.5482 (6) | 0.5237 (5) | 0.0306 (10) | |
H6A | 0.4581 | 0.4352 | 0.4991 | 0.037* | |
C7 | 0.3906 (7) | 0.6036 (7) | 0.4988 (6) | 0.0488 (15) | |
H7A | 0.2711 | 0.5296 | 0.4589 | 0.059* | |
C8 | 0.4526 (8) | 0.7670 (8) | 0.5321 (7) | 0.0532 (16) | |
H8A | 0.3771 | 0.8074 | 0.5150 | 0.064* | |
C9 | 0.6240 (8) | 0.8687 (7) | 0.5899 (6) | 0.0464 (14) | |
H9A | 0.6701 | 0.9819 | 0.6137 | 0.056* | |
C10 | 0.7326 (6) | 0.8065 (6) | 0.6143 (5) | 0.0296 (10) | |
H10A | 0.8524 | 0.8793 | 0.6554 | 0.036* | |
C11 | 1.0601 (5) | 0.8273 (5) | 0.5168 (4) | 0.0246 (9) | |
H11A | 1.0821 | 0.8958 | 0.6019 | 0.030* | |
C12 | 1.1313 (6) | 0.8974 (6) | 0.4317 (5) | 0.0316 (10) | |
H12A | 1.1984 | 1.0113 | 0.4572 | 0.038* | |
C13 | 1.1031 (6) | 0.7992 (7) | 0.3097 (5) | 0.0355 (11) | |
H13A | 1.1498 | 0.8437 | 0.2491 | 0.043* | |
C14 | 1.0062 (6) | 0.6355 (6) | 0.2778 (5) | 0.0354 (11) | |
H14A | 0.9873 | 0.5649 | 0.1953 | 0.042* | |
C15 | 0.9365 (5) | 0.5741 (5) | 0.3658 (5) | 0.0277 (9) | |
H15A | 0.8676 | 0.4604 | 0.3410 | 0.033* | |
C16 | 1.1720 (6) | 0.5345 (6) | 0.7278 (6) | 0.0349 (11) | |
H16A | 1.2212 | 0.6471 | 0.7689 | 0.042* | |
C17 | 1.2763 (6) | 0.4698 (7) | 0.7568 (6) | 0.0461 (14) | |
H17A | 1.3939 | 0.5371 | 0.8169 | 0.055* | |
C18 | 1.2079 (7) | 0.3067 (7) | 0.6978 (6) | 0.0444 (13) | |
H18A | 1.2760 | 0.2588 | 0.7180 | 0.053* | |
C19 | 1.0382 (7) | 0.2158 (6) | 0.6090 (6) | 0.0429 (13) | |
H19A | 0.9879 | 0.1040 | 0.5632 | 0.051* | |
C20 | 0.9411 (6) | 0.2882 (5) | 0.5866 (5) | 0.0295 (10) | |
H20A | 0.8230 | 0.2227 | 0.5272 | 0.035* | |
C21 | 0.1897 (7) | 0.4092 (6) | 0.0510 (6) | 0.0390 (11) | |
H21A | 0.0781 | 0.3207 | −0.0062 | 0.047* | |
C22 | 0.2193 (8) | 0.5635 (7) | 0.0626 (7) | 0.0458 (13) | |
H22A | 0.1299 | 0.5798 | 0.0139 | 0.055* | |
C23 | 0.3786 (8) | 0.6921 (6) | 0.1451 (6) | 0.0475 (15) | |
H23A | 0.4017 | 0.7994 | 0.1571 | 0.057* | |
C24 | 0.5055 (8) | 0.6619 (6) | 0.2107 (6) | 0.0456 (13) | |
H24A | 0.6186 | 0.7487 | 0.2666 | 0.055* | |
C25 | 0.4666 (6) | 0.5049 (5) | 0.1944 (5) | 0.0337 (10) | |
H25A | 0.5548 | 0.4861 | 0.2408 | 0.040* | |
C26 | −0.1383 (6) | −0.0208 (6) | −0.0188 (5) | 0.0321 (10) | |
H26A | −0.1291 | −0.0677 | −0.0979 | 0.039* | |
C27 | −0.2969 (6) | −0.0497 (6) | −0.0301 (5) | 0.0384 (11) | |
H27A | −0.3944 | −0.1150 | −0.1154 | 0.046* | |
C28 | −0.3120 (6) | 0.0175 (6) | 0.0842 (6) | 0.0368 (11) | |
H28A | −0.4192 | 0.0019 | 0.0782 | 0.044* | |
C29 | −0.1684 (7) | 0.1076 (7) | 0.2070 (6) | 0.0441 (13) | |
H29A | −0.1751 | 0.1530 | 0.2882 | 0.053* | |
C30 | −0.0132 (6) | 0.1308 (6) | 0.2096 (5) | 0.0338 (10) | |
H30A | 0.0855 | 0.1927 | 0.2945 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0131 (2) | 0.0118 (2) | 0.0131 (2) | 0.00517 (18) | 0.00466 (18) | 0.00285 (17) |
Co2 | 0.0152 (2) | 0.0145 (2) | 0.0156 (2) | 0.00629 (19) | 0.00422 (19) | 0.00207 (18) |
S1 | 0.0135 (4) | 0.0128 (4) | 0.0152 (4) | 0.0041 (3) | 0.0040 (3) | 0.0009 (3) |
S2 | 0.0148 (4) | 0.0132 (4) | 0.0148 (4) | 0.0049 (4) | 0.0032 (4) | 0.0021 (4) |
O1 | 0.0351 (17) | 0.0227 (15) | 0.0163 (14) | 0.0150 (13) | 0.0074 (13) | 0.0052 (12) |
O2 | 0.0177 (14) | 0.0232 (15) | 0.0453 (19) | 0.0067 (12) | 0.0157 (14) | 0.0028 (14) |
O3 | 0.0320 (16) | 0.0164 (14) | 0.0256 (15) | 0.0124 (13) | 0.0133 (13) | 0.0082 (12) |
O4 | 0.0158 (13) | 0.0201 (14) | 0.0213 (15) | 0.0030 (12) | 0.0036 (12) | −0.0055 (11) |
O5 | 0.0182 (14) | 0.0174 (14) | 0.0173 (14) | 0.0036 (11) | 0.0036 (12) | 0.0004 (11) |
O6 | 0.0295 (16) | 0.0180 (15) | 0.0332 (18) | 0.0114 (13) | 0.0037 (14) | 0.0064 (13) |
O7 | 0.0165 (14) | 0.0273 (15) | 0.0192 (14) | 0.0085 (12) | 0.0073 (11) | 0.0066 (12) |
O8 | 0.0239 (14) | 0.0275 (15) | 0.0170 (14) | 0.0131 (13) | 0.0092 (12) | 0.0045 (12) |
N1 | 0.0187 (16) | 0.0204 (17) | 0.0201 (17) | 0.0082 (14) | 0.0082 (14) | 0.0073 (14) |
N2 | 0.0273 (18) | 0.0250 (18) | 0.0211 (17) | 0.0173 (15) | 0.0134 (15) | 0.0102 (14) |
N3 | 0.0195 (16) | 0.0214 (17) | 0.0191 (17) | 0.0099 (14) | 0.0084 (14) | 0.0073 (14) |
N4 | 0.0171 (16) | 0.0174 (16) | 0.0188 (17) | 0.0083 (13) | 0.0093 (14) | 0.0052 (13) |
N5 | 0.0304 (19) | 0.0205 (18) | 0.0229 (18) | 0.0129 (16) | 0.0116 (15) | 0.0061 (15) |
N6 | 0.0189 (17) | 0.0236 (17) | 0.0243 (18) | 0.0103 (14) | 0.0092 (14) | 0.0038 (14) |
C1 | 0.031 (2) | 0.026 (2) | 0.033 (2) | 0.0157 (19) | 0.0180 (19) | 0.0152 (19) |
C2 | 0.031 (2) | 0.028 (2) | 0.040 (3) | 0.0087 (19) | 0.018 (2) | 0.020 (2) |
C3 | 0.029 (2) | 0.052 (3) | 0.034 (3) | 0.016 (2) | 0.020 (2) | 0.026 (2) |
C4 | 0.034 (3) | 0.047 (3) | 0.023 (2) | 0.014 (2) | 0.015 (2) | 0.008 (2) |
C5 | 0.029 (2) | 0.029 (2) | 0.020 (2) | 0.0102 (19) | 0.0091 (18) | 0.0037 (18) |
C6 | 0.023 (2) | 0.029 (2) | 0.036 (3) | 0.0144 (19) | 0.0078 (19) | 0.0027 (19) |
C7 | 0.024 (2) | 0.052 (3) | 0.055 (4) | 0.024 (2) | 0.001 (2) | −0.004 (3) |
C8 | 0.046 (3) | 0.056 (4) | 0.061 (4) | 0.043 (3) | 0.005 (3) | 0.007 (3) |
C9 | 0.053 (3) | 0.039 (3) | 0.058 (4) | 0.037 (3) | 0.017 (3) | 0.012 (3) |
C10 | 0.036 (2) | 0.028 (2) | 0.029 (2) | 0.022 (2) | 0.010 (2) | 0.0090 (19) |
C11 | 0.031 (2) | 0.022 (2) | 0.026 (2) | 0.0147 (18) | 0.0138 (18) | 0.0113 (17) |
C12 | 0.033 (2) | 0.032 (2) | 0.041 (3) | 0.018 (2) | 0.022 (2) | 0.023 (2) |
C13 | 0.032 (2) | 0.049 (3) | 0.032 (3) | 0.019 (2) | 0.020 (2) | 0.025 (2) |
C14 | 0.030 (2) | 0.043 (3) | 0.025 (2) | 0.012 (2) | 0.015 (2) | 0.006 (2) |
C15 | 0.025 (2) | 0.026 (2) | 0.029 (2) | 0.0082 (18) | 0.0159 (19) | 0.0061 (18) |
C16 | 0.023 (2) | 0.026 (2) | 0.047 (3) | 0.0133 (19) | 0.008 (2) | −0.001 (2) |
C17 | 0.024 (2) | 0.043 (3) | 0.055 (3) | 0.021 (2) | 0.000 (2) | −0.001 (3) |
C18 | 0.042 (3) | 0.045 (3) | 0.060 (4) | 0.035 (3) | 0.018 (3) | 0.017 (3) |
C19 | 0.038 (3) | 0.028 (2) | 0.064 (4) | 0.022 (2) | 0.016 (3) | 0.013 (2) |
C20 | 0.024 (2) | 0.024 (2) | 0.037 (2) | 0.0139 (18) | 0.0080 (19) | 0.0077 (19) |
C21 | 0.035 (3) | 0.036 (3) | 0.051 (3) | 0.020 (2) | 0.017 (2) | 0.024 (2) |
C22 | 0.057 (3) | 0.048 (3) | 0.069 (4) | 0.041 (3) | 0.041 (3) | 0.037 (3) |
C23 | 0.079 (4) | 0.030 (3) | 0.058 (4) | 0.035 (3) | 0.045 (3) | 0.023 (3) |
C24 | 0.055 (3) | 0.025 (2) | 0.045 (3) | 0.011 (2) | 0.020 (3) | 0.010 (2) |
C25 | 0.038 (3) | 0.021 (2) | 0.032 (2) | 0.011 (2) | 0.010 (2) | 0.0063 (19) |
C26 | 0.024 (2) | 0.035 (2) | 0.030 (2) | 0.013 (2) | 0.0077 (19) | 0.004 (2) |
C27 | 0.020 (2) | 0.041 (3) | 0.039 (3) | 0.012 (2) | 0.003 (2) | 0.004 (2) |
C28 | 0.023 (2) | 0.044 (3) | 0.051 (3) | 0.020 (2) | 0.019 (2) | 0.020 (2) |
C29 | 0.038 (3) | 0.060 (3) | 0.046 (3) | 0.031 (3) | 0.025 (2) | 0.013 (3) |
C30 | 0.021 (2) | 0.044 (3) | 0.030 (2) | 0.017 (2) | 0.0062 (18) | 0.004 (2) |
Co1—O4 | 2.070 (3) | C6—C7 | 1.376 (7) |
Co1—O5 | 2.080 (3) | C6—H6A | 0.9500 |
Co1—N2 | 2.179 (3) | C7—C8 | 1.377 (9) |
Co1—N1 | 2.180 (3) | C7—H7A | 0.9500 |
Co1—N4 | 2.183 (3) | C8—C9 | 1.356 (9) |
Co1—N3 | 2.185 (3) | C8—H8A | 0.9500 |
Co2—N6 | 2.104 (3) | C9—C10 | 1.398 (6) |
Co2—O7 | 2.113 (3) | C9—H9A | 0.9500 |
Co2—N5 | 2.123 (3) | C10—H10A | 0.9500 |
Co2—O3i | 2.141 (3) | C11—C12 | 1.385 (6) |
Co2—O1i | 2.185 (3) | C11—H11A | 0.9500 |
Co2—O8 | 2.208 (3) | C12—C13 | 1.375 (7) |
Co2—S1i | 2.7061 (11) | C12—H12A | 0.9500 |
Co2—S2 | 2.7107 (10) | C13—C14 | 1.370 (7) |
S1—O2 | 1.450 (3) | C13—H13A | 0.9500 |
S1—O4 | 1.476 (3) | C14—C15 | 1.378 (7) |
S1—O1 | 1.483 (3) | C14—H14A | 0.9500 |
S1—O3 | 1.493 (3) | C15—H15A | 0.9500 |
S1—Co2ii | 2.7062 (11) | C16—C17 | 1.384 (7) |
S2—O6 | 1.451 (3) | C16—H16A | 0.9500 |
S2—O5 | 1.477 (3) | C17—C18 | 1.379 (8) |
S2—O8 | 1.488 (3) | C17—H17A | 0.9500 |
S2—O7 | 1.500 (3) | C18—C19 | 1.372 (8) |
O1—Co2ii | 2.185 (3) | C18—H18A | 0.9500 |
O3—Co2ii | 2.141 (3) | C19—C20 | 1.383 (6) |
N1—C5 | 1.337 (6) | C19—H19A | 0.9500 |
N1—C1 | 1.337 (6) | C20—H20A | 0.9500 |
N2—C10 | 1.333 (6) | C21—C22 | 1.383 (7) |
N2—C6 | 1.355 (6) | C21—H21A | 0.9500 |
N3—C15 | 1.340 (5) | C22—C23 | 1.364 (9) |
N3—C11 | 1.344 (5) | C22—H22A | 0.9500 |
N4—C16 | 1.339 (6) | C23—C24 | 1.383 (9) |
N4—C20 | 1.340 (6) | C23—H23A | 0.9500 |
N5—C25 | 1.331 (6) | C24—C25 | 1.379 (7) |
N5—C21 | 1.344 (6) | C24—H24A | 0.9500 |
N6—C30 | 1.331 (6) | C25—H25A | 0.9500 |
N6—C26 | 1.340 (6) | C26—C27 | 1.381 (7) |
C1—C2 | 1.388 (6) | C26—H26A | 0.9500 |
C1—H1A | 0.9500 | C27—C28 | 1.380 (8) |
C2—C3 | 1.384 (8) | C27—H27A | 0.9500 |
C2—H2A | 0.9500 | C28—C29 | 1.378 (8) |
C3—C4 | 1.395 (8) | C28—H28A | 0.9500 |
C3—H3A | 0.9500 | C29—C30 | 1.393 (7) |
C4—C5 | 1.378 (7) | C29—H29A | 0.9500 |
C4—H4A | 0.9500 | C30—H30A | 0.9500 |
C5—H5A | 0.9500 | ||
O4—Co1—O5 | 173.43 (12) | C2—C1—H1A | 118.3 |
O4—Co1—N2 | 85.60 (13) | C3—C2—C1 | 118.7 (4) |
O5—Co1—N2 | 87.84 (12) | C3—C2—H2A | 120.6 |
O4—Co1—N1 | 89.17 (13) | C1—C2—H2A | 120.6 |
O5—Co1—N1 | 90.86 (12) | C2—C3—C4 | 117.9 (4) |
N2—Co1—N1 | 87.48 (13) | C2—C3—H3A | 121.0 |
O4—Co1—N4 | 96.45 (12) | C4—C3—H3A | 121.0 |
O5—Co1—N4 | 90.12 (12) | C5—C4—C3 | 119.4 (5) |
N2—Co1—N4 | 177.57 (14) | C5—C4—H4A | 120.3 |
N1—Co1—N4 | 91.24 (12) | C3—C4—H4A | 120.3 |
O4—Co1—N3 | 91.19 (13) | N1—C5—C4 | 122.9 (4) |
O5—Co1—N3 | 88.85 (12) | N1—C5—H5A | 118.5 |
N2—Co1—N3 | 93.18 (12) | C4—C5—H5A | 118.5 |
N1—Co1—N3 | 179.27 (14) | N2—C6—C7 | 122.5 (5) |
N4—Co1—N3 | 88.08 (12) | N2—C6—H6A | 118.8 |
N6—Co2—O7 | 92.49 (12) | C7—C6—H6A | 118.8 |
N6—Co2—N5 | 93.63 (13) | C6—C7—C8 | 119.6 (5) |
O7—Co2—N5 | 98.33 (13) | C6—C7—H7A | 120.2 |
N6—Co2—O3i | 96.90 (13) | C8—C7—H7A | 120.2 |
O7—Co2—O3i | 162.62 (11) | C9—C8—C7 | 118.4 (5) |
N5—Co2—O3i | 95.64 (12) | C9—C8—H8A | 120.8 |
N6—Co2—O1i | 93.88 (13) | C7—C8—H8A | 120.8 |
O7—Co2—O1i | 98.98 (11) | C8—C9—C10 | 119.8 (5) |
N5—Co2—O1i | 160.79 (12) | C8—C9—H9A | 120.1 |
O3i—Co2—O1i | 65.90 (10) | C10—C9—H9A | 120.1 |
N6—Co2—O8 | 158.65 (12) | N2—C10—C9 | 122.3 (5) |
O7—Co2—O8 | 66.37 (10) | N2—C10—H10A | 118.8 |
N5—Co2—O8 | 92.48 (13) | C9—C10—H10A | 118.8 |
O3i—Co2—O8 | 102.84 (11) | N3—C11—C12 | 123.2 (4) |
O1i—Co2—O8 | 86.87 (11) | N3—C11—H11A | 118.4 |
N6—Co2—S1i | 101.38 (10) | C12—C11—H11A | 118.4 |
O7—Co2—S1i | 130.13 (8) | C13—C12—C11 | 118.9 (4) |
N5—Co2—S1i | 127.73 (10) | C13—C12—H12A | 120.6 |
O3i—Co2—S1i | 33.37 (7) | C11—C12—H12A | 120.6 |
O1i—Co2—S1i | 33.18 (8) | C14—C13—C12 | 118.5 (4) |
O8—Co2—S1i | 90.91 (8) | C14—C13—H13A | 120.8 |
N6—Co2—S2 | 125.39 (10) | C12—C13—H13A | 120.8 |
O7—Co2—S2 | 33.41 (8) | C13—C14—C15 | 119.6 (5) |
N5—Co2—S2 | 99.84 (10) | C13—C14—H14A | 120.2 |
O3i—Co2—S2 | 133.35 (8) | C15—C14—H14A | 120.2 |
O1i—Co2—S2 | 90.12 (8) | N3—C15—C14 | 123.0 (4) |
O8—Co2—S2 | 33.27 (7) | N3—C15—H15A | 118.5 |
S1i—Co2—S2 | 110.52 (3) | C14—C15—H15A | 118.5 |
O2—S1—O4 | 110.31 (18) | N4—C16—C17 | 123.2 (4) |
O2—S1—O1 | 112.58 (19) | N4—C16—H16A | 118.4 |
O4—S1—O1 | 109.17 (18) | C17—C16—H16A | 118.4 |
O2—S1—O3 | 111.06 (18) | C18—C17—C16 | 119.4 (5) |
O4—S1—O3 | 109.08 (18) | C18—C17—H17A | 120.3 |
O1—S1—O3 | 104.45 (16) | C16—C17—H17A | 120.3 |
O2—S1—Co2ii | 117.43 (14) | C19—C18—C17 | 117.9 (4) |
O4—S1—Co2ii | 132.24 (12) | C19—C18—H18A | 121.1 |
O1—S1—Co2ii | 53.72 (11) | C17—C18—H18A | 121.1 |
O3—S1—Co2ii | 52.05 (12) | C18—C19—C20 | 119.5 (5) |
O6—S2—O5 | 110.02 (17) | C18—C19—H19A | 120.2 |
O6—S2—O8 | 112.20 (18) | C20—C19—H19A | 120.2 |
O5—S2—O8 | 109.12 (17) | N4—C20—C19 | 123.2 (4) |
O6—S2—O7 | 111.68 (18) | N4—C20—H20A | 118.4 |
O5—S2—O7 | 108.93 (17) | C19—C20—H20A | 118.4 |
O8—S2—O7 | 104.72 (17) | N5—C21—C22 | 123.3 (5) |
O6—S2—Co2 | 120.94 (13) | N5—C21—H21A | 118.4 |
O5—S2—Co2 | 128.99 (12) | C22—C21—H21A | 118.4 |
O8—S2—Co2 | 54.46 (11) | C23—C22—C21 | 119.1 (5) |
O7—S2—Co2 | 50.87 (11) | C23—C22—H22A | 120.5 |
S1—O1—Co2ii | 93.10 (14) | C21—C22—H22A | 120.5 |
S1—O3—Co2ii | 94.57 (14) | C22—C23—C24 | 118.2 (4) |
S1—O4—Co1 | 159.38 (19) | C22—C23—H23A | 120.9 |
S2—O5—Co1 | 169.67 (19) | C24—C23—H23A | 120.9 |
S2—O7—Co2 | 95.72 (15) | C25—C24—C23 | 119.5 (5) |
S2—O8—Co2 | 92.27 (14) | C25—C24—H24A | 120.3 |
C5—N1—C1 | 117.6 (4) | C23—C24—H24A | 120.3 |
C5—N1—Co1 | 119.9 (3) | N5—C25—C24 | 123.0 (5) |
C1—N1—Co1 | 122.6 (3) | N5—C25—H25A | 118.5 |
C10—N2—C6 | 117.3 (4) | C24—C25—H25A | 118.5 |
C10—N2—Co1 | 122.1 (3) | N6—C26—C27 | 122.9 (5) |
C6—N2—Co1 | 120.6 (3) | N6—C26—H26A | 118.5 |
C15—N3—C11 | 116.8 (4) | C27—C26—H26A | 118.5 |
C15—N3—Co1 | 119.0 (3) | C28—C27—C26 | 119.1 (4) |
C11—N3—Co1 | 124.2 (3) | C28—C27—H27A | 120.4 |
C16—N4—C20 | 116.7 (4) | C26—C27—H27A | 120.4 |
C16—N4—Co1 | 121.3 (3) | C29—C28—C27 | 118.7 (4) |
C20—N4—Co1 | 121.9 (3) | C29—C28—H28A | 120.7 |
C25—N5—C21 | 117.0 (4) | C27—C28—H28A | 120.7 |
C25—N5—Co2 | 122.4 (3) | C28—C29—C30 | 118.5 (5) |
C21—N5—Co2 | 120.4 (3) | C28—C29—H29A | 120.7 |
C30—N6—C26 | 117.5 (4) | C30—C29—H29A | 120.7 |
C30—N6—Co2 | 119.9 (3) | N6—C30—C29 | 123.2 (4) |
C26—N6—Co2 | 122.3 (3) | N6—C30—H30A | 118.4 |
N1—C1—C2 | 123.4 (4) | C29—C30—H30A | 118.4 |
N1—C1—H1A | 118.3 | ||
O2—S1—O1—Co2ii | 108.27 (16) | Co1—N2—C10—C9 | 178.3 (4) |
O4—S1—O1—Co2ii | −128.88 (15) | C8—C9—C10—N2 | 0.4 (9) |
O3—S1—O1—Co2ii | −12.33 (17) | C15—N3—C11—C12 | 1.7 (6) |
O2—S1—O3—Co2ii | −109.00 (18) | Co1—N3—C11—C12 | −179.2 (3) |
O4—S1—O3—Co2ii | 129.22 (15) | N3—C11—C12—C13 | −1.4 (7) |
O1—S1—O3—Co2ii | 12.61 (17) | C11—C12—C13—C14 | −0.4 (7) |
O2—S1—O4—Co1 | 1.7 (7) | C12—C13—C14—C15 | 1.6 (7) |
O1—S1—O4—Co1 | −122.5 (6) | C11—N3—C15—C14 | −0.3 (6) |
O3—S1—O4—Co1 | 124.0 (6) | Co1—N3—C15—C14 | −179.5 (4) |
Co2ii—S1—O4—Co1 | 179.6 (5) | C13—C14—C15—N3 | −1.4 (7) |
O6—S2—O5—Co1 | −43.6 (11) | C20—N4—C16—C17 | −1.2 (8) |
O8—S2—O5—Co1 | −167.1 (11) | Co1—N4—C16—C17 | 175.5 (4) |
O7—S2—O5—Co1 | 79.2 (11) | N4—C16—C17—C18 | 0.4 (9) |
Co2—S2—O5—Co1 | 133.7 (10) | C16—C17—C18—C19 | 1.7 (9) |
O6—S2—O7—Co2 | −112.94 (17) | C17—C18—C19—C20 | −2.8 (9) |
O5—S2—O7—Co2 | 125.34 (15) | C16—N4—C20—C19 | 0.0 (7) |
O8—S2—O7—Co2 | 8.72 (18) | Co1—N4—C20—C19 | −176.7 (4) |
O6—S2—O8—Co2 | 113.01 (16) | C18—C19—C20—N4 | 2.0 (8) |
O5—S2—O8—Co2 | −124.80 (14) | C25—N5—C21—C22 | −0.8 (8) |
O7—S2—O8—Co2 | −8.31 (17) | Co2—N5—C21—C22 | 174.2 (4) |
C5—N1—C1—C2 | −1.2 (6) | N5—C21—C22—C23 | −0.5 (8) |
Co1—N1—C1—C2 | 180.0 (3) | C21—C22—C23—C24 | 1.8 (8) |
N1—C1—C2—C3 | 0.4 (7) | C22—C23—C24—C25 | −1.9 (8) |
C1—C2—C3—C4 | 1.2 (7) | C21—N5—C25—C24 | 0.7 (7) |
C2—C3—C4—C5 | −2.1 (7) | Co2—N5—C25—C24 | −174.2 (4) |
C1—N1—C5—C4 | 0.3 (7) | C23—C24—C25—N5 | 0.6 (8) |
Co1—N1—C5—C4 | 179.2 (4) | C30—N6—C26—C27 | 2.0 (7) |
C3—C4—C5—N1 | 1.3 (7) | Co2—N6—C26—C27 | −171.6 (4) |
C10—N2—C6—C7 | −0.5 (7) | N6—C26—C27—C28 | −0.1 (8) |
Co1—N2—C6—C7 | −178.9 (4) | C26—C27—C28—C29 | −1.8 (8) |
N2—C6—C7—C8 | 0.8 (9) | C27—C28—C29—C30 | 1.8 (8) |
C6—C7—C8—C9 | −0.5 (10) | C26—N6—C30—C29 | −2.1 (7) |
C7—C8—C9—C10 | −0.1 (10) | Co2—N6—C30—C29 | 171.7 (4) |
C6—N2—C10—C9 | −0.1 (7) | C28—C29—C30—N6 | 0.2 (8) |
Symmetry codes: (i) x−1, y−1, z−1; (ii) x+1, y+1, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O6 | 0.95 | 2.63 | 3.563 (6) | 167 |
C2—H2A···O2iii | 0.95 | 2.52 | 3.219 (5) | 131 |
C5—H5A···O4 | 0.95 | 2.42 | 3.009 (5) | 120 |
C6—H6A···O5 | 0.95 | 2.56 | 3.054 (5) | 112 |
C6—H6A···O7 | 0.95 | 2.47 | 3.322 (6) | 149 |
C10—H10A···O4 | 0.95 | 2.53 | 3.010 (5) | 112 |
C12—H12A···O7iv | 0.95 | 2.60 | 3.271 (5) | 128 |
C15—H15A···O5 | 0.95 | 2.45 | 3.017 (5) | 118 |
C16—H16A···O2 | 0.95 | 2.19 | 3.139 (6) | 176 |
C20—H20A···O5 | 0.95 | 2.51 | 3.091 (5) | 119 |
C20—H20A···O6 | 0.95 | 2.32 | 3.272 (5) | 175 |
C25—H25A···O8 | 0.95 | 2.55 | 3.162 (5) | 123 |
C30—H30A···O7 | 0.95 | 2.54 | 3.116 (5) | 119 |
Symmetry codes: (iii) x−1, y−1, z; (iv) x+1, y+1, z. |
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).
References
Bethe, H. A. (1929). Ann. Phys. 395, 133–208. CrossRef Google Scholar
Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203–206. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Howe, J. L. (1898). Science, 8, 945–947. PubMed Google Scholar
Johnson, N. O., Turk, J. T., Bull, W. E. & Mayfield, H. G. (1977). Inorg. Chim. Acta, 25, 235–239. CrossRef CAS Google Scholar
Memon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O'Brien, P. & Raftery, J. (2006). Dalton Trans. pp. 4499–4505. Web of Science CSD CrossRef Google Scholar
Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574. CSD CrossRef IUCr Journals Google Scholar
Reitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267–280. CrossRef CAS Google Scholar
Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Werner, A. (1893). Z. Anorg. Chem. 3, 267–330. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.