research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-di­methyl­imidazo[1,2-a]pyridin-3-yl)-2-(1,3-di­thio­lan-2-yl­­idene)ethanone monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie et Physique Moléculaire, UFR des Sciences des Structures de la Matière et de Technologie, Université Félix Houphouët-Boigny, 01 BP V34 Abidjan, Côte d'Ivoire, and bDépartement de Chimie Thérapeutique et Chimie Organique Pharmaceutique, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, 01 BP V34 Abidjan, Côte d'Ivoire
*Correspondence e-mail: mayaya.bibila@univ-fhb.edu.ci

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 17 October 2019; accepted 21 November 2019; online 29 November 2019)

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-di­thiol­ane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-di­thiol­ane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid mol­ecules are associated in R22(14) dimeric units by weak C—H⋯O inter­actions. O—H⋯O hydrogen bonds link the water mol­ecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of inter­molecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water mol­ecules are the main driving force in the crystal packing formation.

1. Chemical context

The imidazo[1,2-a]pyridine ring system was described for the first time in 1925 (Chichibabin, 1925[Chichibabin, A. E. (1925). Chem. Ber. 58, 1704-1706.]). Compounds with the imidazo[1,2-a]pyridine scaffold exhibit a plethora of biological activities, including acting as receptor ligands, anti-infectious agents, enzyme inhibitors etc. as well as being potential nitro­gen heterobicycle therapeutic agents, as described by recent studies (Goel et al., 2016[Goel, R., Luxami, V. & Paul, K. (2016). Curr. Top. Med. Chem. 16, 3590-3616.]; Deep et al., 2017[Deep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238-250.]; Kuthyala et al., 2018[Kuthyala, S., Nagaraja, G. K., Sheik, S., Hanumanthappa, M. & Kumar, S. M. (2018). J. Mol. Struct. pp. 381-390.]). On the other hand, compounds containing the 1,3-di­thio­lan-2-yl­idene moiety have been found to exhibit valuable pharmacological activities, including use as potent broad-spectrum fungicides (Tanaka et al., 1976[Tanaka, H., Araki, F., Harada, T. & Kurono, H. (1976). Jpn Patent No. 51151326A.], Wang et al., 1994[Wang, Y., Li, Z. H. & Gao, N. (1994). Yaoxue Xuebao, 29, 78-80.]), anti­tumor agents (Huang et al., 2009[Huang, F., Zhao, M., Zhang, X., Wang, C., Qian, K., Kuo, R. Y., Morris-Natschke, S., Lee, K. H. & Peng, S. (2009). Bioorg. Med. Chem. 17, 6085-6095.]), potent cephalosporinase inhibitors (Ohya et al., 1982[Ohya, S., Miyadera, T. & Yamazaki, M. (1982). Antimicrob. Agents Chemother. 21, 613-617.]) and anti-HIV agents (Nguyen-Ba et al., 1999[Nguyen-Ba, N., Brown, W. L., Chan, L., Lee, N., Brasili, L., Lafleur, D. & Zacharie, B. (1999). Chem. Commun. pp. 1245-1246.]; Besra et al., 2005[Besra, R. C., Rudrawar, S. & Chakraborti, A. K. (2005). Tetrahedron Lett. 46, 6213-6217.]). In light of the above, we have incorporated into our research into the design of new potentially bioactive compounds the currently attractive mol­ecular hybridization strategy, which consists of the combination of at least two pharmacophoric moieties of different bioactive substances to produce a new hybrid compound that is medically more effective than its individual components (Viegas-Junior et al. 2007[Viegas-Junior, C., Danuello, A., Bolzani, V. da S., Barreiro, E. J. & Fraga, C. A. M. (2007). Curr. Med. Chem. 14, 1829-1852.]; Meunier, 2008[Meunier, B. (2008). Acc. Chem. Res. 41, 69-77.]). Yang et al. (2012[Yang, X.-D., Wan, W. C., Deng, X.-Y., Li, Y., Yang, L.-J., Li, L. & Zhang, H.-B. (2012). Bioorg. Med. Chem. Lett. 22, 2726-2729.]) have shown that this approach is an effective way to develop novel and potent drugs for different targets.

[Scheme 1]

Herein we report the synthesis, crystal and mol­ecular structure of the title compound, an hybrid compound containing both imidazo[1,2-a]pyridine and 1,3-di­thiol­ane scaffolds. Moreover, since this compound crystallizes as a hydrate, the presence of water mol­ecules in the crystal structure is likely to alter its thermodynamic activity, which would impact its pharmacodynamic properties such as bioavailability and product performance (Khankari & Grant, 1995[Khankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61-79.]). From a crystallographic point of view, the intrusion of water mol­ecules into a solid state modifies the network of inter­molecular inter­actions between host mol­ecules by incorporating additional bonds between the organic host mol­ecules and water mol­ecules on the one hand, and between water mol­ecules on the other. To gain a better insight into the cohesive forces between host mol­ecules and intrusive water mol­ecules, and to highlight favored contacts likely to be the crystal driving force, an analysis of inter­molecular inter­actions was carried out using contact enrichment ratios (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]), a descriptor obtained from Hirshfeld surface analysis (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), which allows an in-depth analysis of the atom–atom contacts in mol­ecular crystals, providing key information on their distribution and is a powerful tool for understanding the most important forces in inter­molecular inter­actions (Jelsch & Bibila Mayaya Bisseyou, 2017[Jelsch, C. & Bibila Mayaya Bisseyou, Y. (2017). IUCrJ, 4, 158-174.]).

2. Structural commentary

Fig. 1[link] shows the asymmetric unit of the title compound, which crystallizes as monohydrate in the ortho­rhom­bic space group I41cd. The hybrid mol­ecule consists of imidazo[1,2-a]pyridine and 1,3-di­thiol­ane scaffolds linked by an —CO—CH= enone bridge. The imidazo[1,2-a]pyridine ring system is essentially planar with a maximum deviation of 0.008 (1) Å for atom N1. Its geometrical parameters are similar to those found for 1-(2-methyl­imidazo[1,2-a]pyridin-3-yl)-3,3-bis­(methyl­sulfan­yl)prop-2-enone (Bibila Mayaya Bisseyou et al., 2009[Bibila Mayaya Bisseyou, Y., Sissouma, D., Goulizan Bi, S. D., Ouattara, M. & Yao-Kakou, R. C. A. (2009). Acta Cryst. E65, o1698-o1699.]), as illus­trated by the overlay of the structures shown in Fig. 2[link]. In the 1,3-di­thiol­ane moiety, the C11 and C12 atoms of the C—C bond of the ring exhibit occupational disorder over two positions, with relative occupancies of 0.579 (14) and 0.421 (14) for the major and minor components, respectively. This disorder in the 1,3-di­thiol­ane skeleton is not uncommon and has been observed previously (Yang et al., 2007[Yang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, o4501.]; Liu et al., 2008[Liu, J.-F., Liu, X.-L. & Liu, Y.-H. (2008). Acta Cryst. E64, o1340.]). Conformational analysis of the five-membered rings based on puckering parameters reveals a half-chair form for both disorder components [Q(2) = 0.419 (7)/0.443 (9) Å, φ(2) = 303.2 (9)/128.9 (11)° for the major and minor components, respectively]. The oxygen atom of the linker moiety is involved in a weak intra­molecular C6—H6⋯O1 hydrogen bond (Table 1[link]), which generates an S(6) graph-set motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.24 2.812 (3) 119
O2W—H2W⋯N1 0.97 (1) 1.99 (2) 2.949 (3) 170 (6)
C5—H5⋯O1i 0.93 2.71 3.560 (3) 153
O2W—H1W⋯O2Wii 0.97 (1) 1.92 (2) 2.837 (2) 157 (4)
C12A—H12B⋯O2Wiii 0.97 2.66 3.577 (11) 157
Symmetry codes: (i) -x+1, -y, z; (ii) [-y+1, x-{\script{1\over 2}}, z+{\script{1\over 4}}]; (iii) [-x+1, y, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atomic labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The minor component of the disordered moiety is drawn with open bonds. Hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
An overlay diagram of the title structure (red) with 1-(2-methyl­imidazo[1,2–a]pyridin-3-yl)-3,3-bis­(methyl­sulfan­yl)prop-2-enone structure (blue). H atoms and disordered moiety are excluded for clarity.

3. Supra­molecular features

In the crystal, the host mol­ecules form inversion dimers via pairwise weak C—H⋯O inter­actions [H5⋯O1i = 2.71 Å; symmetry code as in Table 1[link], Fig. 3[link]] with an R22(14) ring motif. Salient inter­molecular inter­actions in the crystal packing are induced by the water mol­ecule. Each water mol­ecule is linked to two neighbouring water mol­ecules by O2W—H1W⋯O2Wii hydrogen bonds, generating an infinite self-assembled chain of water mol­ecules in a helical fashion along the b axis around which the host mol­ecules are linked via O2W—H2W⋯N1 hydrogen bonds and weak C12—H12D⋯O2Wii inter­actions (Fig. 4[link]). The host mol­ecules are stacked on top of each other in alternating orientations along the c-axis direction (Fig. 5[link]) and each is further involved in a cooperative contact with its adjacent homologue through a C—H⋯S inter­action (H5⋯S1i = 3.00 Å).

[Figure 3]
Figure 3
A partial packing diagram for the title compound showing the R22(14) graph-set motif generated by weak C—H⋯O hydrogen bonds plotted as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity.
[Figure 4]
Figure 4
A view along b axis showing hydrogen-bonded self-assembled chain of water mol­ecules with the hydrogen bonds between the water and host mol­ecules shown as dashed lines. For clarity, the atoms in the host mol­ecules not involved in hydrogen bonds have been omitted.
[Figure 5]
Figure 5
A view along the c axis of the crystal packing, showing the stacking of the host mol­ecules, with hydrogen bonds between water mol­ecules, and between water mol­ecules and host mol­ecules (dashed lines). For clarity, weak hydrogen contacts and some H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface (HS) mapped over dnorm in the range −0.5072 to 1.2974 a.u. and shape-index (range −1.0 to 1.0 a.u.) are displayed in Figs. 6[link] and 7[link], respectively. The red spot on the HS indicates the O2W—H2W⋯N1 hydrogen bond while the pale-red spot near H12B illustrates the weak C—H⋯O2W inter­action. The white spots represent H⋯O, H⋯S and H⋯H contacts. On the shape-index surface, convex blue regions indicate hydrogen-donor groups, while concave red regions indicate hydrogen-acceptor groups and S⋯N and S⋯C contacts and O⋯C inter­actions. The fingerprint plots show the contribution of different types of inter­molecular inter­actions (Fig. 8[link]). The largest contribution (46.9%) is from the weak van der Waals H⋯H contacts, followed by S⋯H/H⋯S (14.3%), C⋯H/H⋯C (12.4%) and O⋯H/H⋯O (6.3%) inter­actions. The fingerprint plot for the N⋯H/H⋯N contacts (5.9% contribution) shows a sharp spike pointing toward the origin of the plot, which highlights the strong hydrogen-bonding between the host mol­ecule and water mol­ecule. The C⋯C contacts, with a V-shaped distribution of points, contribute 5.7%.

[Figure 6]
Figure 6
The three-dimensional Hirshfeld surface representation of the title compound plotted over dnorm in the range −0.5086 to 1.2492 a.u.
[Figure 7]
Figure 7
The three-dimensional Hirshfeld surface mapped over shape-index.
[Figure 8]
Figure 8
(a) The overall two-dimensional fingerprint plot for title compound and (b)–(g) those delineated into H⋯H, S⋯H/H⋯S, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯N, C⋯C/C⋯C contacts, respectively.

In order to detect favoured contacts and highlight the crystal driving force, enrichment ratios were computed with MoProViewer (Guillot et al., 2014[Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.]). The enrichment ratio EXY of a chemical element pair (X, Y) is defined as the ratio between the proportion of actual crystal contacts between the different chemical species (X, Y) and the theoretical proportion of random equiprobable contacts (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). The asymmetric unit of the title compound is composed of two entities and in order to analyse all contacts present in the crystal, the host mol­ecule and a neighboring water mol­ecule not in contact each other were selected in order to obtain the integral Hirshfeld surfaces of each entity for the computation of the enrichment ratios. In addition, the hydro­phobic Hc atoms bound to carbon were distinguished from the more polar Ho water hydrogen atoms and oxygen atoms were also differentiated (O = ketone oxygen atom and OW = water oxygen atom). The results obtained are summarized in Table 2[link]. The hydro­phobic Hc atoms, which constitute the largest part of the Hirshfeld surface, exhibit Hc⋯Hc self-contacts with an enrichment ratio equal to 1.0. The hydro­phobic C⋯Hc inter­actions are unprivileged with ECHc = 0.76 and correspond to weak C—H⋯C inter­actions. These inter­actions are under-represented because competition with the S⋯Hc, OW⋯Hc and weak O⋯Hc hydrogen bonds, the first two of which appear favoured with enrichment values of 1.35 and 1.14, respectively, and the last slightly under-represented with an enrichment ratio of 0.98. The C⋯C contacts are privileged and display an enrichment value of 1.85, which highlight mol­ecules stacking one on top of the other as shown in Fig. 5[link]. This type of stacking inter­action is generally favoured in heterocyclic compounds because of the favourable electrostatic complementary orientations of mol­ecules in the crystal packing. This result is in agreement to the findings reported by Jelsch et al. (2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). These stacking inter­actions induce N⋯S, O⋯C and S⋯C contacts displaying enrichment ratios of 1.58, 2.08 and 1.33, respectively. The N⋯Ho and OW⋯Ho polar contacts with the highest enrichment ratios of 5.03 and 5.19, respectively, are the most favoured contacts. These contacts correspond to the strong O2W—H2W⋯N1 and O2W—H1W⋯O2W hydrogen bonds (Table 1[link]) observed in the crystal structure. Although crystallization is the result of concerted actions of all of the different inter­actions present within the crystal, the high enrichment value of the N⋯Ho and OW⋯Ho polar contacts reveal that these inter­molecular inter­actions are the main driving force in the crystal packing formation of the title compound.

Table 2
Inter­molecular contacts and enrichment ratios (%) on the Hirshfeld surface by atom type

The top part of the table gives the surface contribution SX of each chemical type X to the Hirshfeld surface. The next part shows the percentage contributions CXY of the actual contact types to the surface and the lower part of the table shows the EXY enrichment contact ratios. EXY ratios larger than unity are enriched contacts and those lower than unity are impoverished.

Atom type Ho C N O S Hc Ow
Surface 7.70 23.26 3.69 2.77 14.46 43.96 4.17
               
Contact              
Ho              
C   9.40          
N 3.20            
O 0.00 3.00          
S 0.70 9.00 2.00        
Hc 8.40 15.00 2.40 3.00 17.60 18.70  
OW 3.50 0.00 0.00 0.00 0.00 4.10 0.00
               
Enrichment              
OW 5.19            
N 5.03            
S 0.27 1.33 1.58        
C 0.00 1.85 0.00 2.08      
Hc 1.19 0.76 0.72 0.98 1.35 1.00 1.14

5. Database survey

A search of the Cambridge Structural Database (WebCSD; Thomas et al., 2010[Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.]) gave 66 hits for structures having an imidazo[1,2-a]pyridin-3-yl moiety and 157 entries for structures containing an 1,3-di­thio­lan-2-yl­idene scaffold. No structure containing both fragments simultaneously has been determined to date. However, there is one imidazo[1,2-a]pyridin-3-yl derivative monohydrate that closely resembles the title compound viz. 1-(2-methyl­imidazo[1,2-a]pyridin-3-yl)-3,3-bis­(methyl­sulfan­yl)prop-2-none monohydrate (CSD refcode FOVROY; Bibila Mayaya Bisseyou et al., 2009[Bibila Mayaya Bisseyou, Y., Sissouma, D., Goulizan Bi, S. D., Ouattara, M. & Yao-Kakou, R. C. A. (2009). Acta Cryst. E65, o1698-o1699.]).

6. Synthesis and crystallization

1-(2,7-Di­methyl­imidazol[1,2-a]pyridin-3-yl)ethanone (6.2 mmol) was dissolved in distilled dimethyl sulfoxide (15 ml), and the carbon di­sulfide (1.1 molar equivalents, 6.82 mmol) was added. After cooling the mixture to 273 K, sodium hydride (2.5 molar equivalents, 15.5 mmol) was added. After stirring for 30 min. at 273 K, the mixture was stirred at ambient temperature for 4 h. The solution was then cooled at 273 K and 1,2-di­chloro ethane (2.5 molar equivalents, 15.5 mmol) was added dropwise. The resulting mixture was then stirred for 24 h and then poured into 50 ml of ice-cold water. The precipitate was filtered and recrystallized from a mixture of water–dioxane (2:1) to obtain brown single crystals of the title compound suitable for X-ray diffraction analysis (yield 76%; m.p. 453 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Water H atoms were located in difference-Fourier maps and OW—H bond lengths were restrained to the target value of the neutron diffraction distance. All other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). In the 1,3-di­thiol­ane ring, the carbon atoms of the C—C bond are disordered over two positions with refined occupancy factors of 0.579 (14) and 0.421 (14). C—C bond lengths in both disordered components were restrained to the target value of 1.513 Å (Allen et al., 1987[Allen, F. H., Kennard, O. & Watson, D. G. (1987). J. Chem. Soc. Perkin Trans. II, S1-S19.]).

Table 3
Experimental details

Crystal data
Chemical formula C14H14N2OS2·H2O
Mr 308.41
Crystal system, space group Tetragonal, I41cd
Temperature (K) 293
a, c (Å) 28.3247 (7), 7.2820 (2)
V3) 5842.3 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.35 × 0.20 × 0.15
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.927, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 22803, 3672, 2765
Rint 0.044
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.04
No. of reflections 3672
No. of parameters 211
No. of restraints 43
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.29
Absolute structure Flack x determined using 1012 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al. 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.01 (4)
Computer programs: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

1-(2,7-Dimethylimidazo[1,2-a]pyridin-3-yl)-2-(1,3-dithiolan-2-ylidene)ethanone monohydrate top
Crystal data top
C14H14N2OS2·H2ODx = 1.403 Mg m3
Mr = 308.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 22217 reflections
a = 28.3247 (7) Åθ = 1.4–30.0°
c = 7.2820 (2) ŵ = 0.37 mm1
V = 5842.3 (3) Å3T = 293 K
Z = 16Parallelepiped, brown
F(000) = 25920.35 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2765 reflections with I > 2σ(I)
phi and ω scanRint = 0.044
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 30.0°, θmin = 2.0°
Tmin = 0.927, Tmax = 0.963h = 3730
22803 measured reflectionsk = 3937
3672 independent reflectionsl = 97
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0537P)2 + 1.6604P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max = 0.001
wR(F2) = 0.102Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.29 e Å3
3672 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
211 parametersExtinction coefficient: 0.0024 (6)
43 restraintsAbsolute structure: Flack x determined using 1012 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.38738 (2)0.12434 (2)0.85051 (16)0.0539 (2)
S20.39148 (2)0.22768 (2)0.85799 (17)0.0626 (2)
O10.47583 (6)0.09202 (6)0.8604 (5)0.0651 (6)
N20.57546 (6)0.09070 (6)0.8622 (5)0.0402 (4)
N10.62625 (6)0.15130 (7)0.8534 (4)0.0419 (4)
C10.58159 (8)0.16831 (8)0.8543 (6)0.0413 (5)
C20.62206 (7)0.10414 (8)0.8578 (5)0.0392 (5)
C30.65720 (8)0.06930 (8)0.8584 (5)0.0445 (5)
H30.68880.07810.85430.053*
C40.64537 (8)0.02258 (8)0.8648 (6)0.0474 (6)
C50.59688 (9)0.01044 (9)0.8715 (6)0.0559 (8)
H50.58830.02120.87750.067*
C60.56270 (9)0.04398 (9)0.8694 (7)0.0539 (7)
H60.53100.03540.87270.065*
C70.54822 (8)0.13206 (7)0.8609 (5)0.0414 (5)
C80.49691 (9)0.13052 (7)0.8601 (7)0.0451 (5)
C90.47020 (8)0.17414 (8)0.8611 (6)0.0480 (6)
H90.48630.20280.86500.058*
C100.42253 (8)0.17425 (8)0.8563 (6)0.0432 (5)
C11A0.3325 (3)0.1573 (3)0.8856 (14)0.0577 (19)0.579 (14)
H11A0.30640.14020.83090.069*0.579 (14)
H11B0.32640.16041.01610.069*0.579 (14)
C12A0.3362 (3)0.2057 (3)0.7998 (15)0.0585 (18)0.579 (14)
H12A0.31150.22620.84660.070*0.579 (14)
H12B0.33300.20350.66740.070*0.579 (14)
C11B0.3315 (4)0.1526 (4)0.792 (2)0.054 (2)0.421 (14)
H11C0.32880.15700.66070.065*0.421 (14)
H11D0.30510.13370.83440.065*0.421 (14)
C12B0.3324 (4)0.1995 (4)0.8896 (19)0.058 (3)0.421 (14)
H12C0.32620.19501.01940.069*0.421 (14)
H12D0.30800.21990.84000.069*0.421 (14)
C130.57437 (9)0.22043 (8)0.8531 (7)0.0545 (6)
H13A0.60440.23600.84440.082*
H13B0.55890.22990.96440.082*
H13C0.55520.22900.74960.082*
C140.68205 (9)0.01559 (9)0.8647 (6)0.0587 (7)
H14A0.71280.00170.85360.088*
H14B0.67660.03640.76290.088*
H14C0.68020.03310.97730.088*
O2W0.70594 (8)0.21823 (9)0.8393 (5)0.0750 (7)
H1W0.7256 (13)0.2168 (16)0.948 (4)0.097 (15)*
H2W0.6805 (13)0.1956 (14)0.859 (9)0.131 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0382 (3)0.0429 (3)0.0806 (5)0.0006 (2)0.0015 (4)0.0037 (5)
S20.0479 (4)0.0417 (3)0.0982 (6)0.0122 (3)0.0040 (5)0.0009 (5)
O10.0367 (9)0.0391 (9)0.1197 (18)0.0002 (7)0.0006 (14)0.0017 (14)
N20.0334 (9)0.0334 (9)0.0539 (11)0.0013 (7)0.0004 (12)0.0002 (12)
N10.0379 (10)0.0359 (10)0.0518 (11)0.0018 (7)0.0011 (13)0.0002 (13)
C10.0394 (12)0.0370 (11)0.0474 (13)0.0004 (9)0.0002 (16)0.0010 (15)
C20.0327 (11)0.0389 (11)0.0460 (13)0.0011 (8)0.0006 (14)0.0010 (15)
C30.0341 (11)0.0439 (12)0.0555 (14)0.0026 (9)0.0009 (14)0.0031 (15)
C40.0396 (12)0.0434 (12)0.0591 (16)0.0080 (9)0.0002 (16)0.0025 (15)
C50.0454 (13)0.0365 (13)0.086 (2)0.0029 (9)0.0000 (19)0.002 (2)
C60.0356 (12)0.0372 (12)0.089 (2)0.0026 (9)0.0004 (17)0.0012 (17)
C70.0361 (11)0.0348 (10)0.0532 (14)0.0037 (8)0.0006 (14)0.0014 (15)
C80.0355 (10)0.0414 (10)0.0583 (14)0.0024 (10)0.0007 (13)0.000 (2)
C90.0378 (11)0.0371 (11)0.0692 (16)0.0029 (9)0.0037 (17)0.0002 (15)
C100.0401 (11)0.0391 (11)0.0504 (13)0.0050 (10)0.0012 (18)0.0013 (15)
C11A0.035 (2)0.062 (3)0.075 (5)0.001 (2)0.003 (4)0.006 (4)
C12A0.042 (3)0.067 (4)0.066 (4)0.012 (3)0.005 (4)0.003 (3)
C11B0.035 (4)0.062 (4)0.066 (5)0.010 (3)0.006 (5)0.003 (5)
C12B0.043 (4)0.060 (5)0.070 (6)0.012 (3)0.009 (4)0.006 (5)
C130.0470 (13)0.0363 (12)0.0802 (19)0.0001 (10)0.0017 (18)0.0023 (18)
C140.0458 (13)0.0488 (14)0.082 (2)0.0125 (10)0.000 (2)0.005 (2)
O2W0.0606 (13)0.0720 (14)0.092 (2)0.0131 (11)0.0092 (16)0.0270 (17)
Geometric parameters (Å, º) top
S1—C101.729 (3)C1—C71.396 (3)
S1—C11B1.824 (11)C1—C131.491 (3)
S1—C11A1.831 (8)C2—C31.402 (3)
S2—C12A1.739 (8)C3—C41.366 (3)
S2—C101.750 (2)C4—C51.417 (3)
S2—C12B1.868 (12)C4—C141.500 (3)
O1—C81.243 (3)C5—C61.356 (3)
N2—C61.373 (3)C7—C81.454 (3)
N2—C21.374 (3)C8—C91.449 (3)
N2—C71.403 (3)C9—C101.351 (3)
N1—C21.342 (3)C11A—C12A1.509 (9)
N1—C11.354 (3)C11B—C12B1.506 (10)
C10—S1—C11B98.4 (3)C5—C4—C14119.8 (2)
C10—S1—C11A93.9 (3)C6—C5—C4121.4 (2)
C12A—S2—C1098.1 (3)C5—C6—N2119.2 (2)
C10—S2—C12B94.7 (4)C1—C7—N2104.01 (19)
C6—N2—C2121.39 (19)C1—C7—C8134.3 (2)
C6—N2—C7131.3 (2)N2—C7—C8121.7 (2)
C2—N2—C7107.28 (19)O1—C8—C9119.8 (2)
C2—N1—C1105.76 (18)O1—C8—C7120.4 (2)
N1—C1—C7111.77 (19)C9—C8—C7119.8 (2)
N1—C1—C13118.7 (2)C10—C9—C8121.6 (2)
C7—C1—C13129.5 (2)C9—C10—S1125.03 (19)
N1—C2—N2111.18 (19)C9—C10—S2120.27 (19)
N1—C2—C3129.7 (2)S1—C10—S2114.69 (14)
N2—C2—C3119.2 (2)C12A—C11A—S1110.3 (6)
C4—C3—C2120.5 (2)C11A—C12A—S2106.6 (6)
C3—C4—C5118.3 (2)C12B—C11B—S1105.2 (9)
C3—C4—C14121.9 (2)C11B—C12B—S2109.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.242.812 (3)119
O2W—H2W···N10.97 (1)1.99 (2)2.949 (3)170 (6)
C5—H5···O1i0.932.713.560 (3)153
O2W—H1W···O2Wii0.97 (1)1.92 (2)2.837 (2)157 (4)
C12A—H12B···O2Wiii0.972.663.577 (11)157
Symmetry codes: (i) x+1, y, z; (ii) y+1, x1/2, z+1/4; (iii) x+1, y, z1/2.
Intermolecular contacts and enrichment ratios (%) on the Hirshfeld surface by atom type top
The top part of the table gives the surface contribution SX of each chemical type X to the Hirshfeld surface. The next part shows the percentage contributions CXY of the actual contact types to the surface and the lower part of the table shows the EXY enrichment contact ratios. EXY ratios larger than unity are enriched contacts and those lower than unity are impoverished.
Atom typeHoCNOSHcOw
Surface7.7023.263.692.7714.4643.964.17
Contact
Ho
C9.40
N3.20
O0.003.00
S0.709.002.00
Hc8.4015.002.403.0017.6018.70
OW3.500.000.000.000.004.100.00
Enrichment
OW5.19
N5.03
S0.271.331.58
C0.001.850.002.08
Hc1.190.760.720.981.351.001.14
 

Acknowledgements

The authors thank the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of their diffractometer.

References

First citationAllen, F. H., Kennard, O. & Watson, D. G. (1987). J. Chem. Soc. Perkin Trans. II, S1-S19.  CrossRef Google Scholar
First citationBesra, R. C., Rudrawar, S. & Chakraborti, A. K. (2005). Tetrahedron Lett. 46, 6213–6217.  CrossRef CAS Google Scholar
First citationBibila Mayaya Bisseyou, Y., Sissouma, D., Goulizan Bi, S. D., Ouattara, M. & Yao-Kakou, R. C. A. (2009). Acta Cryst. E65, o1698–o1699.  CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChichibabin, A. E. (1925). Chem. Ber. 58, 1704–1706.  Google Scholar
First citationDeep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238–250.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoel, R., Luxami, V. & Paul, K. (2016). Curr. Top. Med. Chem. 16, 3590–3616.  CrossRef CAS PubMed Google Scholar
First citationGuillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.  CrossRef IUCr Journals Google Scholar
First citationHuang, F., Zhao, M., Zhang, X., Wang, C., Qian, K., Kuo, R. Y., Morris-Natschke, S., Lee, K. H. & Peng, S. (2009). Bioorg. Med. Chem. 17, 6085–6095.  CrossRef PubMed CAS Google Scholar
First citationJelsch, C. & Bibila Mayaya Bisseyou, Y. (2017). IUCrJ, 4, 158–174.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKhankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61–79.  CrossRef CAS Web of Science Google Scholar
First citationKuthyala, S., Nagaraja, G. K., Sheik, S., Hanumanthappa, M. & Kumar, S. M. (2018). J. Mol. Struct. pp. 381–390.  Google Scholar
First citationLiu, J.-F., Liu, X.-L. & Liu, Y.-H. (2008). Acta Cryst. E64, o1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeunier, B. (2008). Acc. Chem. Res. 41, 69–77.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen-Ba, N., Brown, W. L., Chan, L., Lee, N., Brasili, L., Lafleur, D. & Zacharie, B. (1999). Chem. Commun. pp. 1245–1246.  Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOhya, S., Miyadera, T. & Yamazaki, M. (1982). Antimicrob. Agents Chemother. 21, 613–617.  CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Araki, F., Harada, T. & Kurono, H. (1976). Jpn Patent No. 51151326A.  Google Scholar
First citationThomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationViegas-Junior, C., Danuello, A., Bolzani, V. da S., Barreiro, E. J. & Fraga, C. A. M. (2007). Curr. Med. Chem. 14, 1829–1852.  PubMed CAS Google Scholar
First citationWang, Y., Li, Z. H. & Gao, N. (1994). Yaoxue Xuebao, 29, 78–80.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, o4501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X.-D., Wan, W. C., Deng, X.-Y., Li, Y., Yang, L.-J., Li, L. & Zhang, H.-B. (2012). Bioorg. Med. Chem. Lett. 22, 2726–2729.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds