research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-(3-iodo­phen­yl)-1-(4-iodo­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Bristol, Cantock's Close, Bristol, England, BS8 1TS, England, and bDepartment of Chemistry & Biochemistry, Gonzaga University, 502 E Boone Ave, Spokane, WA 99258, USA
*Correspondence e-mail: simon.hall@bristol.ac.uk

Edited by H. Ishida, Okayama University, Japan (Received 13 November 2019; accepted 5 December 2019; online 1 January 2020)

The title compound, C15H10I2O, is a halogenated chalcone formed from two iodine substituted rings, one para-substituted and the other meta-substituted, linked through a prop-2-en-1-one spacer. In the mol­ecule, the mean planes of the 3-iodo­phenyl and the 4-iodo­phenyl groups are twisted by 46.51 (15)°. The calculated electrostatic potential surfaces show the presence of σ-holes on both substituted iodines. In the crystal, the mol­ecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Between the sheets, weak inter­molecular C—H⋯π inter­actions are observed. Hirshfeld surface analysis showed that the most significant contacts in the structure are C⋯H/H⋯C (31.9%), followed by H⋯H (21.4%), I⋯H/H⋯I (18.4%). I⋯I (14.5%) and O⋯H/H⋯O (8.1%).

1. Chemical context

Chalcones are aromatic ketones which have shown potential as anti­bacterial, anti­fungal and anti-inflammatory agents (D'silva et al., 2011[D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326-5369.]). These mol­ecules are essential to the biosynthesis of flavonoids through a conjugate ring-closure to form flavone and have also attracted attention for their potential use in opto- and organic electronics (Shetty et al., 2016[Shetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.], 2017[Shetty, T. C. S., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306-317.]). As a family of mol­ecules, substituted chalcones can be readily synthesized via a Claisen–Schmidt condensation reaction between an appropriately functionalized aceto­phenone and benzaldehyde. Substitutions on each of the benzene rings are currently being investigated in order to inter­rogate how the electronic properties of the crystal are altered. The iodo-substituted rings present in the title compound allows for the formation of iodine channels in the crystal, a conformation which may afford a change in the crystal's electrical properties.

[Scheme 1]

2. Structural commentary

The title compound comprises two aromatic rings, 4-iodo­phenyl (1-Ring) and 3-iodo­phenyl (3-Ring), which are connected, respectively, to atoms C1 and C3 of the –CO—CH=CH– enone bridge (Fig. 1[link]). The backbone torsion angles are C5—C4—C1—C2 = 151.6 (4)°, C4—C1—C2—C3 = 171.9 (4)°, C1—C2—C3—C10 = 176.4 (4)° and C2—C3—C10—C11 = 170.4 (5)°. The mean planes of the 3-iodo­phenyl and 4-iodo­phenyl groups are twisted by 46.51 (15)° relative to each other. The H atoms of the propenone group are trans-configured.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Electrostatic potential surfaces [Fig. 2[link](a)–(c)] show the presence of σ-holes on both substituted iodines, I1 and I2, which allow for halogen bonding of a bifurcated type II. Partial packing diagrams are shown in Fig. 3[link](a)–(c). Inter­estingly, these halogen bonds form exclusively between equivalent iodine atoms, either parapara or metameta. The geometries of the halogen bonds are I1⋯I1iv = 4.0980 (9) Å, C7—I1⋯I1iv = 113.85 (13)°, I1⋯I1v =4.0980 (9) Å and C7—I⋯I1v = 154.47 (13)° for the parapara I⋯I bonds, and I2⋯I2vi = 3.9805 (8) Å, C12—I2⋯I2vi = 108.20 (13)°, I2⋯I2vii = 3.9805 (8) Å and C12—I2⋯I2vii = 157.30 (13)° for the metameta I⋯I bonds [symmetry codes: (iv) x, [{1\over 2}] − y, −[{1\over 2}] + z; (v) x, [{1\over 2}] − y, [{1\over 2}] + z; (vi) x, [{3\over 2}] − y, [{1\over 2}] + z; (vii) x, [{3\over 2}] − y, −[{1\over 2}] + z]. A sheet structure is formed parallel to the bc plane. There are also three weak C—H⋯π inter­actions (Table 1[link]) between the sheets.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.95 2.78 3.406 (5) 124
C8—H8⋯Cg1ii 0.95 2.85 3.491 (5) 126
C14—H14⋯Cg2iii 0.95 2.77 3.440 (5) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Electrostatic potential mapped onto an electron density isosurface with isovalue 0.02 e Å−3, calculated using B3LYP at the LANL2DZ level. Red and blue regions show negative and positive electric potentials, respectively. (a) shows the potential of the substituted chalcone mol­ecule. (b) and (c) show the σ-holes on 1-Ring and 3-Ring, respectively.
[Figure 3]
Figure 3
(a) A packing diagram of the title compound in the unit cell. Red, green and blue axes indicate a, b and c, respectively. (b) Metameta and parapara halogen bonds indicated by dashed lines. (c) Three weak C—H⋯π inter­actions (dashed lines; C5—H5⋯Cg1i, C8—H8⋯Cg1ii and C14—H14⋯Cg2iii). Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 2 − z; (iii) 1 − x, 1 − y, 2 − z; (iv) x, [{1\over 2}] − y, −[{1\over 2}] + z; (v) x, [{1\over 2}] − y, [{1\over 2}] + z; (vi) x, [{3\over 2}] − y, [{1\over 2}] + z; (vii) x, [{3\over 2}] − y, −[{1\over 2}] + z..]

Hirshfeld surfaces, mapped over dnorm, shape-index and de, and two-dimensional fingerprint plots of the title compound were calculated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.]). Hirshfeld surfaces [Fig. 4[link](a) and (c)] highlight the relationship between the contact distance and the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The Hirshfeld surface mapped over the shape-index [Fig. 4[link](b)] shows depressions on both 1-Ring and 3-Ring, which is indicative of C—H⋯π inter­actions. Two-dimensional fingerprint plots are used to illustrate the inter­molecular contacts between mol­ecules within the crystal structure. The fingerprint plots of all significant inter­actions are shown in Fig. 5[link](a)–(f). C⋯H/H⋯C contacts [Fig. 5[link](b)] make the largest contribution (31.9%) and show a pair of spikes at de + di = ∼2.8 Å, representative of inter­molecular C—H⋯π inter­actions. The O⋯H/H⋯O plot also contains a pair of spikes at de + di = ∼2.7 Å [Fig. 5[link](f)]. The negligible contributions from other contacts, not included in Fig. 5[link], are as follows: C⋯C (3.1%), C⋯O/O⋯C (2.1%) and C⋯I/I⋯C (0.5%).

[Figure 4]
Figure 4
Hirshfeld surfaces of the title compound, mapped with (a) dnorm, where white regions represent inter­actions equal to, and blue regions represent inter­actions shorter than the sum of their van der Waals radii, (b) the shape-index, and (c) de, where the circled areas indicate the C—H⋯π inter­actions.
[Figure 5]
Figure 5
Hirshfeld surfaces and fingerprint plots showing percentage of contacts of (a) all inter­actions, (b) C⋯H/H⋯C, (c) H⋯H, (d) I⋯H/H⋯I, (e) I⋯I and (f) O⋯H/H⋯O. inter­actions.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed that existing similar structures include (2E)-1-(4-bromo­phen­yl)-3-(4-fluoro­phen­yl)prop-2-en-1-one (refcode NURCIN; Dutkiewicz et al., 2010[Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243-o1244.]), 1-(4-bromo­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (LEPYIP; Yang et al., 2006[Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195-198.]), 1,3-bis­(4-bromo­phen­yl)prop-2-en-1-one (LEHROG; Ng et al., 2006[Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421-o1423.]), (E)-1-(4-bromo­phen­yl)-3-(4-iodo­phen­yl)prop-2-en-1-one (IWALAV; Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]) and 3-(3-bromo­phen­yl)-1-(4-bromo­phen­yl)prop-2-en-1-one (ODEDEH; Teh et al., 2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399-o2400.]). Four compounds (NURCIN, LEPYIP, LEHROG and IWALAV) contain only para-substituted rings. Within these structures, halogen bonds exist only between bromine and iodine species, and never between equivalent halogens. 3-(3-Bromo­phen­yl)-1-(4-bromo­phen­yl)prop-2-en-1-one contains one meta-substituted ring and one para-substituted ring: each halogen bond exists between rings with the same substitution, either parapara or metameta, as seen in the title compound.

5. Synthesis and crystallization

4′-Iodo­aceto­phenone (0.773 g, 3.14 mmol), 3-iodo­benzaldehyde (0.697 g, 3.00), anhydrous zinc chloride (0.615 g, 4.51 mmol) and absolute ethanol (1.5 ml) were added to a microwave vessel with a stir bar. Using a microwave reactor, the reaction mixture was heated to 468 K for 15 minutes. Upon cooling the reaction, yellowish solids were collected by vacuum filtration and washed with 95% ethanol. The resulting solid was recrystallized from 95% ethanol (0.603 g, 44% yield, yellow crystals, m.p. 442.5–443.7 K). 1H NMR (400 MHz, DMSO-d6, referenced to TMS): δ (ppm) 8.37 (1H, s), 8.0–7.94 (5H, m), 7.88 (1H, d, J = 8 Hz), 7.81 (1H, d, J = 8 Hz), 7.68 (1H, d, J = 16 Hz), 7.26 (1H, t, J = 8 Hz). 13C NMR (100 MHz, DMSO-d6, referenced to solvent, 39.52 ppm): δ (ppm) 188.44, 142.75, 139.04, 137.72, 136.95, 136.66, 136.61, 130.89, 130.38, 128.73, 122.81, 102.14, 95.57. Single crystals suitable for X-ray diffraction were obtained by the slow evaporation technique from an acetone solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H10I2O
Mr 460.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 7.2650 (7), 32.864 (3), 5.8446 (6)
β (°) 92.277 (2)
V3) 1394.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.50
Crystal size (mm) 0.57 × 0.29 × 0.08
 
Data collection
Diffractometer Bruker APEXII kappa CCD area detector
Absorption correction Numerical (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, WI, USA.])
Tmin, Tmax 0.065, 0.189
No. of measured, independent and observed [I > 2σ(I)] reflections 18346, 3215, 2960
Rint 0.021
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.073, 1.27
No. of reflections 3215
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −1.31
Computer programs: SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, WI, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-3-(3-Iodophenyl)-1-(4-iodophenyl)prop-2-en-1-one top
Crystal data top
C15H10I2OF(000) = 856
Mr = 460.03Dx = 2.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2650 (7) ÅCell parameters from 8513 reflections
b = 32.864 (3) Åθ = 2.5–27.5°
c = 5.8446 (6) ŵ = 4.50 mm1
β = 92.277 (2)°T = 200 K
V = 1394.3 (2) Å3Plate, clear colourless
Z = 40.57 × 0.29 × 0.08 mm
Data collection top
Bruker APEXII kappa CCD area detector
diffractometer
3215 independent reflections
Radiation source: fine-focus sealed tube2960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: numerical
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.065, Tmax = 0.189k = 4237
18346 measured reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0034P)2 + 6.4729P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 1.27Δρmax = 1.14 e Å3
3215 reflectionsΔρmin = 1.30 e Å3
164 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00062 (7)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.8336 (6)0.43230 (13)0.5707 (7)0.0250 (9)
C90.9114 (6)0.42521 (14)0.7892 (8)0.0278 (9)
H90.9398300.4474240.8884490.033*
C80.9474 (6)0.38548 (14)0.8617 (8)0.0289 (9)
H81.0038660.3805531.0085330.035*
C70.9004 (6)0.35322 (14)0.7183 (8)0.0292 (9)
C60.8265 (6)0.35974 (14)0.4992 (8)0.0298 (10)
H60.7974880.3374290.4008790.036*
C50.7955 (6)0.39954 (14)0.4252 (8)0.0285 (9)
H50.7479350.4043970.2739580.034*
C10.7892 (6)0.47421 (14)0.4874 (8)0.0284 (9)
C20.7447 (6)0.50560 (14)0.6605 (8)0.0294 (9)
H20.7295790.4978370.8152210.035*
C30.7258 (6)0.54438 (13)0.5999 (8)0.0268 (9)
H30.7493730.5507810.4453020.032*
C100.6729 (6)0.57825 (13)0.7450 (7)0.0251 (9)
C110.6878 (6)0.61791 (13)0.6589 (8)0.0273 (9)
H110.7401920.6222480.5145650.033*
C120.6264 (6)0.65086 (13)0.7836 (8)0.0289 (9)
C130.5540 (6)0.64548 (15)0.9989 (8)0.0322 (10)
H130.5137410.6681011.0849000.039*
C140.5424 (6)0.60607 (15)1.0845 (8)0.0311 (10)
H140.4934460.6019521.2309910.037*
C150.6003 (6)0.57271 (14)0.9618 (8)0.0280 (9)
H150.5909510.5461311.0242240.034*
I10.92866 (6)0.29371 (2)0.84509 (7)0.04484 (12)
I20.63173 (6)0.70888 (2)0.63477 (6)0.04434 (12)
O10.7830 (5)0.48192 (10)0.2821 (6)0.0376 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.022 (2)0.027 (2)0.026 (2)0.0011 (17)0.0023 (16)0.0009 (17)
C90.027 (2)0.028 (2)0.028 (2)0.0020 (18)0.0031 (18)0.0029 (17)
C80.028 (2)0.034 (2)0.024 (2)0.0032 (19)0.0031 (17)0.0017 (18)
C70.027 (2)0.026 (2)0.034 (2)0.0048 (18)0.0022 (18)0.0026 (18)
C60.029 (2)0.029 (2)0.031 (2)0.0003 (18)0.0001 (18)0.0077 (18)
C50.028 (2)0.033 (2)0.024 (2)0.0036 (18)0.0010 (17)0.0009 (17)
C10.023 (2)0.031 (2)0.031 (2)0.0005 (17)0.0008 (18)0.0024 (18)
C20.033 (2)0.028 (2)0.027 (2)0.0004 (18)0.0022 (18)0.0019 (17)
C30.026 (2)0.029 (2)0.026 (2)0.0005 (18)0.0003 (17)0.0016 (17)
C100.021 (2)0.030 (2)0.025 (2)0.0016 (17)0.0045 (16)0.0015 (17)
C110.027 (2)0.029 (2)0.026 (2)0.0048 (18)0.0012 (17)0.0022 (17)
C120.031 (2)0.024 (2)0.031 (2)0.0037 (18)0.0077 (18)0.0016 (17)
C130.028 (2)0.035 (2)0.033 (2)0.0014 (19)0.0018 (19)0.0073 (19)
C140.028 (2)0.041 (3)0.024 (2)0.002 (2)0.0003 (18)0.0015 (19)
C150.025 (2)0.030 (2)0.028 (2)0.0001 (18)0.0048 (17)0.0043 (18)
I10.0555 (2)0.02652 (17)0.0520 (2)0.00766 (15)0.00426 (16)0.00411 (14)
I20.0618 (3)0.02421 (16)0.0466 (2)0.00405 (15)0.00256 (16)0.00229 (14)
O10.051 (2)0.0340 (18)0.0278 (17)0.0045 (16)0.0029 (15)0.0051 (14)
Geometric parameters (Å, º) top
C4—C91.395 (6)C2—C31.328 (6)
C4—C51.393 (6)C3—H30.9500
C4—C11.492 (6)C3—C101.460 (6)
C9—H90.9500C10—C111.403 (6)
C9—C81.394 (6)C10—C151.403 (6)
C8—H80.9500C11—H110.9500
C8—C71.386 (6)C11—C121.388 (6)
C7—C61.386 (6)C12—C131.394 (7)
C7—I12.099 (4)C12—I22.097 (4)
C6—H60.9500C13—H130.9500
C6—C51.393 (6)C13—C141.392 (7)
C5—H50.9500C14—H140.9500
C1—C21.490 (6)C14—C151.385 (7)
C1—O11.225 (5)C15—H150.9500
C2—H20.9500
C9—C4—C1121.8 (4)C3—C2—H2119.8
C5—C4—C9119.5 (4)C2—C3—H3116.4
C5—C4—C1118.6 (4)C2—C3—C10127.1 (4)
C4—C9—H9120.0C10—C3—H3116.4
C8—C9—C4119.9 (4)C11—C10—C3118.3 (4)
C8—C9—H9120.0C11—C10—C15118.8 (4)
C9—C8—H8120.2C15—C10—C3122.8 (4)
C7—C8—C9119.6 (4)C10—C11—H11119.8
C7—C8—H8120.2C12—C11—C10120.4 (4)
C8—C7—I1118.8 (3)C12—C11—H11119.8
C6—C7—C8121.2 (4)C11—C12—C13121.0 (4)
C6—C7—I1120.0 (3)C11—C12—I2118.7 (3)
C7—C6—H6120.5C13—C12—I2120.2 (3)
C7—C6—C5118.9 (4)C12—C13—H13120.9
C5—C6—H6120.5C14—C13—C12118.2 (4)
C4—C5—C6120.7 (4)C14—C13—H13120.9
C4—C5—H5119.6C13—C14—H14119.1
C6—C5—H5119.6C15—C14—C13121.8 (4)
C2—C1—C4117.9 (4)C15—C14—H14119.1
O1—C1—C4120.6 (4)C10—C15—H15120.1
O1—C1—C2121.4 (4)C14—C15—C10119.8 (4)
C1—C2—H2119.8C14—C15—H15120.1
C3—C2—C1120.4 (4)
C4—C9—C8—C71.9 (7)C2—C3—C10—C11170.4 (5)
C4—C1—C2—C3171.9 (4)C2—C3—C10—C1512.5 (7)
C9—C4—C5—C62.9 (7)C3—C10—C11—C12175.2 (4)
C9—C4—C1—C228.3 (6)C3—C10—C15—C14176.0 (4)
C9—C4—C1—O1154.5 (5)C10—C11—C12—C131.9 (7)
C9—C8—C7—C63.3 (7)C10—C11—C12—I2175.0 (3)
C9—C8—C7—I1173.2 (3)C11—C10—C15—C141.0 (6)
C8—C7—C6—C51.5 (7)C11—C12—C13—C140.9 (7)
C7—C6—C5—C41.6 (7)C12—C13—C14—C150.0 (7)
C5—C4—C9—C81.1 (7)C13—C14—C15—C100.0 (7)
C5—C4—C1—C2151.6 (4)C15—C10—C11—C121.9 (6)
C5—C4—C1—O125.6 (7)I1—C7—C6—C5175.0 (3)
C1—C4—C9—C8178.8 (4)I2—C12—C13—C14175.9 (3)
C1—C4—C5—C6177.0 (4)O1—C1—C2—C310.9 (7)
C1—C2—C3—C10176.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.952.783.406 (5)124
C8—H8···Cg1ii0.952.853.491 (5)126
C14—H14···Cg2iii0.952.773.440 (5)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

GU co-authors thank E. Mermann-Jozwiak, J. Hazen, S. Economu, M. Fellin, B. Hendricks, R. Meehan, & G. Warren for their assistance, as well as the Howard Hughes Medical Institute through its Undergraduate Science Education Program for supporting equipment acquisition.

Funding information

UoB co-authors acknowledge the Engineering and Physical Sciences Research Council UK (grant EP/G036780/1) and the Centre for Doctoral Training in Condensed Matter Physics for project funding. SRH and JP acknowledge MagnaPharm, a collaborative research project funded by the European Union's Horizon 2020 Research and Innovation programme (grant No. 736899).

References

First citationBruker (2016). SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, WI, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationD'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369.  Google Scholar
First citationDutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421–o1423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetty, T. C. S., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.  Google Scholar
First citationShetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.  Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399–o2400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds