research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of catena-poly[[bis­[(2,2′;6′,2′′-terpyridine)­manganese(II)]-μ4-penta­thio­di­anti­monato] tetra­hydrate] showing a 1D MnSbS network

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 21 November 2019; accepted 3 December 2019; online 1 January 2020)

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). Acta Cryst. C71, 3–8] format was performed.

1. Chemical context

Inorganic–organic chalcogenidometallates are an important class of compounds that have been systematically investigated for several decades (Sheldrick & Wachhold, 1998[Sheldrick, W. S. & Wachhold, M. (1998). Coord Chem Rev. 176, 211-322.]; Dehnen & Melullis, 2007[Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259-1280.]; Zhou et al., 2009[Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221-1247.]; Seidlhofer et al., 2010[Seidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937-975.]; Wang et al., 2016[Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41-68.]; Zhou, 2016[Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.]; Zhu & Dai, 2017[Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.]). Therefore, a variety of compounds have been reported and some of them have potential for applications in different fields (Seidlhofer et al., 2011[Seidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554-5560.]; Nie et al., 2014[Nie, L., Xiong, W. W., Li, P., Han, J., Zhang, G., Yin, S., Zhao, Y., Xu, R. & Zhang, Q. (2014). J. Solid State Chem. 220, 118-123.], 2016[Nie, L., Zhang, Y., Xiong, W. W., Lim, T. T., Quingyu Yan, R. X. & Zhang, Q. (2016). Inorg. Chem. Front. 3, 111-116.], 2017[Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front. 4, 945-959.]; Yue et al.; 2014[Yue, C. Y., Lei, X. W., Liu, R. Q., Zhang, H. P., Zhai, X. R., Li, W. P., Zhou, M., Zhao, Z. F., Ma, Y. X. & Yang, Y. D. (2014). Cryst. Growth Des. 14, 2411-2421.]). In this context, thio­anti­monates and thio­selenates are of special inter­est because they consist of primary building units that show a variety of coordination numbers, which can be traced back to the lone electron pair of anti­mony (Bensch et al., 1997[Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773-1774.]; Spetzler et al., 2004[Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.]; Stähler et al., 2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]; Lühmann et al., 2008[Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687-1695.]). These primary building units can be further linked into discrete anions or networks of different dimensionality (Jia et al., 2004[Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477-2483.]; Powell et al., 2005[Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414-3419.]; Zhang et al., 2007[Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.]; Liu & Zhou, 2011[Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.]). This is the main reason why we have been inter­ested in this class of compounds for many years.

In the course of these investigations we have prepared compounds with the general composition Mn2LSb2S5 or Mn2L2Sb2S5 with L as an mono-coordinating or a bis-chelating amine ligand such as, for example, methyl­amine, ethyl­amine, ethyl­enedi­amine or 1,3-di­amino­propane (Bensch & Schur, 1996[Bensch, W. & Schur, M. (1996). Eur. J. Solid State Chem. 33, 1149-1160.]; Schur & Bensch, 2002[Schur, M. & Bensch, W. (2002). Z. Naturforsch. B, 57, 1-7.]; Schur et al., 2001[Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79-84.]). All of these compounds consist of SbS3 pyramids as primary building units as well as MnS6 and MnS4N2 distorted octa­hedra. These units are linked to form Mn2Sb2S4 hetero-cubane-like units that share common corners, edges and faces with a neighbouring heterocubane unit. These secondary building units are inter­connected into layers. Within the MnSbS network, the SbS3 pyramids are linked via common edges into chains. Thus, no discrete [Sb2S5]4− anions are present. The N atoms of the amine ligands in these compounds are coordinated to the MnII ions and are always in the cis-position, thus arranged to form extended networks via Mn—S bond formation. Similar compounds have also been reported with 1,3-di­amino­pentane, di­ethyl­enetri­amine and N-methyl-1,3-di­amino­propane as ligands (Puls et al., 2006[Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239-1243.]; Engelke et al., 2004[Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869-876.]). It is noted that di­ethyl­enetri­amine acts as a bis-chelating ligand, because the central N atom is not involved in the Mn coordination.

To reduce the dimensionality of the MnSbS network that might allow access to discrete [Sb2S5]4− anions, we used the tetra­dentate ligand tris­(2-amino­eth­yl)amine for the synthesis of such MnSbS compounds. In this case, a compound with the composition Mn2(tris­(2-amino­eth­yl)amine)2Sb2S5 was obtained, in which all four N atoms of the amine ligand are involved in the Mn coordination (Schaefer et al., 2004[Schaefer, M., Näther, C., Lehnert, N. & Bensch, W. (2004). Inorg. Chem. 43, 2914-2921.]). In this case, only two of the six coordination sites of the MnII cations are accessible for Mn—S bond formation. This compound consists of discrete [Sb2S5]4− anions, in which two SbS3 pyramids are joined together via a common sulfur atom, which is in contrast to the compound mentioned above, where the SbS3 units are linked by common sulfur edges into chains. These anions are connected to two [Mn(tris­(2-amino­eth­yl)amine)]2+ cations via the cis-coordinating terminal S atoms, forming discrete units instead of the condensed networks with mono-coordinating or bis-chelating ligands.

[Scheme 1]

Based on these results, the question arose as to what kind of compound would be obtained with a tris-chelate ligand, in which all three N atoms are coordinated to the MnII ions but no such compound was obtained. In this context it is noted that all of these thio­anti­monates were prepared under solvothermal conditions using the elements as educts, but in future work we developed an alternative synthetic route using Na3SbS3 as reactant, for which the synthesis of such compounds is easier. Therefore, the tris-chelating ligand 2,2′;6′,2′′-terpyridine was reacted with Na3SbS3, leading to the formation of a new manganese thio­anti­monate with the composition Mn2(terpyridine)2Sb2S5.4(H2O) in which discrete [Sb2S5]4− anions are present that link the [Mn(terpyridine)]2+ cations into a one-dimensional MnSbS network. X-ray powder measurements prove that the major phase consists of the title compound, but that some amorphous and a very small amount of an unknown crystalline phase is present (see Fig. S1 in the supporting information). This compound decomposes on storage, presumably because of the loss of the water mol­ecules.

2. Structural commentary

The asymmetric unit of the title compound consists of one [Sb2S5]4− anion, two [Mn(terpyridine)]2+ cations and four solvent water mol­ecules in general positions (Fig. 1[link]). Each MnII ion is fivefold coordinated by the three N atoms of the terpyridine ligand and two S atoms of two [Sb2S5]4− anions that are related by symmetry (Fig. 2[link]). The Mn—N and Mn—S distances are very similar for both independent MnII ions and correspond to literature values (Table 1[link]). The Mn coordination environment is highly distorted with the three N atoms of the neutral terpyridine ligand and the MnII ion in the same plane and the two S atoms above and below this plane, leading to an irregular coordination (Fig. 1[link] and Table 1[link]). The [Sb2S5]4− anion consists of two trigonal–pyramidal SbS3 units that are linked by common corners (Fig. 3[link]: top). The Sb—S bond lengths to the bridging S atom S3 are significantly longer than that to the terminal S atoms (Table 1[link]). Two such anions are linked into eight-membered Mn2Sb2S4 rings that are located on centers of inversion and show a chair-like conformation. Two crystallographically independent rings are present that either contain Mn1 or Mn2 and which show a significantly different conformation (Fig. 3[link]: top and Table 1[link]). The MnII ions are each linked by two [Mn(terpyridine)]2+ cations into chains in the c-axis direction (Fig. 3[link]: bottom). It is noted that this topology of the MnSbS network is completely different from that observed in all other Mn2Sb2S5 compounds with N-donor coligands (see above and Database survey).

Table 1
Selected geometric parameters (Å, °)

Sb1—S2 2.391 (2) S2—Mn1i 2.414 (3)
Sb1—S1 2.404 (2) S4—Mn2 2.411 (3)
Sb1—S3 2.445 (2) S5—Mn2ii 2.405 (3)
Sb2—S5 2.396 (2) Mn1—N2 2.228 (7)
Sb2—S4 2.402 (2) Mn1—N3 2.258 (7)
Sb2—S3 2.467 (3) Mn1—N1 2.285 (8)
S1—Mn1 2.419 (3)    
       
S2—Sb1—S1 100.84 (9) N2—Mn1—N3 71.6 (3)
S2—Sb1—S3 97.77 (8) N2—Mn1—N1 71.9 (3)
S1—Sb1—S3 98.41 (8) N3—Mn1—N1 143.5 (3)
S5—Sb2—S4 99.08 (9) N2—Mn1—S2i 118.1 (2)
S5—Sb2—S3 93.00 (8) N3—Mn1—S2i 93.7 (2)
S4—Sb2—S3 96.64 (9) N1—Mn1—S2i 105.6 (2)
Sb1—S1—Mn1 102.22 (9) N2—Mn1—S1 122.2 (2)
Sb1—S2—Mn1i 100.17 (10) N3—Mn1—S1 103.9 (2)
Sb1—S3—Sb2 100.47 (9) N1—Mn1—S1 93.1 (2)
Sb2—S4—Mn2 109.95 (10) S2i—Mn1—S1 119.71 (10)
Sb2—S5—Mn2ii 98.38 (10)    
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms are included to complete the coordination of the MnII ions [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].
[Figure 2]
Figure 2
View of the Mn coordination sphere for Mn1 (top) and Mn2 (bottom). Symmetry codes used to generate symmetry-equivalent atoms: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].
[Figure 3]
Figure 3
View of the eight-membered Mn2Sb2S4 rings for Mn1 (top: left) and Mn2 (top: right) as well as of the Mn2Sb2S5 chains (bottom). Symmetry codes used to generate symmetry-equivalent atoms: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2].

3. Supra­molecular features

In the crystal of the title compound, the MnSbS chains are linked to the solvent water mol­ecules by strong inter­molecular O—H⋯S hydrogen bonds (Fig. 4[link] and Table 2[link]). The water mol­ecules of neighbouring chains are inter­linked by additional water mol­ecules via strong inter­molecular O—H⋯O hydrogen bonds into a three-dimensional network (Fig. 4[link] and Table 2[link]). There are additional C—H⋯S and C—H⋯O inter­actions, but most of the C—H⋯S and C—H⋯O angles are far from linearity and thus, they should represent relatively weak inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S1 0.84 2.63 3.239 (10) 131
O1—H1B⋯S2 0.84 2.44 3.283 (11) 180
O2—H2A⋯O1 0.84 2.20 2.897 (19) 140
O2—H2B⋯O3 0.84 2.04 2.87 (2) 170
O3—H3A⋯S4iii 0.84 2.71 3.490 (14) 154
O3—H3B⋯S5iii 0.84 2.82 3.427 (14) 131
O4—H4A⋯O1 0.84 2.23 3.07 (2) 180
O4—H4B⋯S4ii 0.84 2.33 3.165 (17) 180
C4—H4⋯S3iv 0.95 2.81 3.747 (12) 170
C7—H7⋯S3iv 0.95 2.93 3.831 (12) 158
C9—H9⋯S3v 0.95 2.97 3.690 (10) 134
C9—H9⋯S5v 0.95 3.02 3.706 (11) 130
C12—H12⋯S1v 0.95 2.86 3.657 (10) 142
C21—H21⋯O4 0.95 2.34 3.15 (2) 143
C24—H24⋯S5vi 0.95 2.83 3.652 (15) 145
C29—H29⋯O4vii 0.95 2.12 2.98 (3) 150
C32—H32⋯S4viii 0.95 2.97 3.599 (13) 125
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) -x+1, -y, -z+1; (vi) x, y+1, z; (vii) x-1, y, z; (viii) -x, -y+1, -z+2.
[Figure 4]
Figure 4
Crystal packing of the title compound viewed along the b axis with inter­molecular O—H⋯O and O—H⋯S hydrogen bonds shown as dashed lines.

4. Database survey

There are a number of other manganese thio­anti­monates with the general formula Mn2LSb2S5 or Mn2L2Sb2S5 (L = amine ligand) reported in the literature that contain neutral Mn2Sb2S5 units and additional N-donor coligands. This includes Mn2(methyl­amino)2Sb2S5 and Mn2(1,3-di­amino­propane)Sb2S5 as well as Mn2(ethyl­enedi­amine)2Sb2S5 Mn2(ethyl­amino)2Sb2S5, with the latter showing a reversible phase transition (Bensch & Schur, 1996[Bensch, W. & Schur, M. (1996). Eur. J. Solid State Chem. 33, 1149-1160.]; Schur & Bensch, 2002[Schur, M. & Bensch, W. (2002). Z. Naturforsch. B, 57, 1-7.]; Schur et al., 2001[Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79-84.]). This also includes Mn2(1,3-di­amino­pentene)Sb2S5 and two further compounds with di­ethyl­enetri­amine and N-methyl-1,3-di­amino­propane as ligands (Puls, et al., 2006[Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239-1243.]; Engelke et al., 2004[Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869-876.]). Amongst these Mn compounds, there are some others with different transition metal cations such as, for example, CuII or CoII (Spetzler et al., 2005[Spetzler, V., Näther, C. & Bensch, W. (2005). Inorg. Chem. 44, 5805-5812.]; Stähler & Bensch, 2001[Stähler, R. & Bensch, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2518-2522.]).

For reviews of chalcogenido thio­metallates including thio­anti­monates, see: Sheldrick & Wachhold (1998[Sheldrick, W. S. & Wachhold, M. (1998). Coord Chem Rev. 176, 211-322.]); Dehnen & Melullis (2007[Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259-1280.]); Zhou et al. (2009[Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221-1247.]); Seidlhofer et al. (2010[Seidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937-975.]); Wang et al. (2016[Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41-68.]); Zhou (2016[Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.]); Zhu & Dai (2017[Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.]).

5. Synthesis and crystallization

General: Na3SbS3 was prepared by the reaction of anhydrous Na2S (ABCR, 95%), Sb (99.5%, Sigma Aldrich) and sulfur (99%, ABCR) in a molar ratio of 3:2:3 at 870 K in a silica glass ampoule according to a literature procedure (Pompe & Pfitzner, 2013[Pompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296-300.]). The pale-yellow compound is sensitive to air and moisture and must be stored under a nitro­gen atmosphere.

Mn(terpy)2(ClO4)2] was prepared according to the literature (Rao et al., 1976[Rao, M., Hughes, M. C. & Macero, D. J. (1976). Inorg. Chim. Acta, 18, 127-131.]). 0.5 mmol of Mn(ClO4)2·6H2O (ABCR 99%) was dissolved in 25 mL of dry ethanol. Another solution containing 1.2 mmol of 2,2′;6′,2′′-terpyridine (ABCR 97%) was added to the the first solution. Upon mixing, a yellow solid precipitated that was filtered off and recrystallized from dry ethanol.

Synthesis:

Single crystals of the title compound were obtained by adding 2 mL of H2O in a glass tube to a mixture of 72.0 mg (0.1 mmol) Mn(terpy)2(ClO4)2 and 57.4 mg (0.2 mmol) of Na3SbS3. The slurry was heated to 413 K for 2 h. After cooling to room temperature, small red needles with a yield of 10% were obtained together with a very small amount of an unknown crystalline phase and of a colourless solid that is amorphous against X-rays.

Experimental methods:

The XRPD measurements were performed by using a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation that was equipped with a linear, position-sensitive MYTHEN detector from Stoe & Cie.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. Some of the water H atoms were located in a difference-Fourier map; their bond lengths were set to ideal values and finally they were refined isotropically with Uiso(H) = 1.5Ueq(O). The water H atoms that could not be located in a difference-Fourier map were included in idealized calculated positions that gave the most sensible geometry as donors for hydrogen bonds.

Table 3
Experimental details

Crystal data
Chemical formula [Mn2Sb2S5(C15H11N3)2]·4H2O
Mr 1052.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 11.9227 (5), 12.1592 (6), 14.9217 (7)
α, β, γ (°) 104.293 (3), 101.701 (3), 112.585 (3)
V3) 1825.27 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.47
Crystal size (mm) 0.13 × 0.08 × 0.06
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.624, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 7084, 7084, 5834
(sin θ/λ)max−1) 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.182, 1.07
No. of reflections 7084
No. of parameters 444
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.98
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The crystal studied was twinned by non-merohedry around a pseudo twofold rotation axis, with a matrix close to 0 [\overline{1}] 0 [\overline{1}] 0 0 0 0 [\overline{1}] but refinement in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) assuming this kind of twinning lead to only very poor reliability factors. Therefore, both individual domains were indexed separately and the overlapping reflections were removed. In this case, relatively good reliability factors were observed but the completeness was only 68.6%. Thus, the data were integrated neglecting the twinning, corrected for absorption and merged. Afterwards the twin law was determined and the data were transformed into HKLF-5 format (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), leading to full completeness and acceptable reliability factors.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[bis[(2,2';6',2''-terpyridine)manganese(II)]-µ4-pentathiodiantimonato] tetrahydrate] top
Crystal data top
[Mn2Sb2S5(C15H11N3)2]·4H2OZ = 2
Mr = 1052.28F(000) = 1032
Triclinic, P1Dx = 1.915 Mg m3
a = 11.9227 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1592 (6) ÅCell parameters from 12925 reflections
c = 14.9217 (7) Åθ = 1.5–26.2°
α = 104.293 (3)°µ = 2.47 mm1
β = 101.701 (3)°T = 200 K
γ = 112.585 (3)°Block, red
V = 1825.27 (15) Å30.13 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
5834 reflections with I > 2σ(I)
ω scansθmax = 26.2°, θmin = 1.5°
Absorption correction: numerical
(X-Red and X-Shape; Stoe & Cie, 2008)
h = 1414
Tmin = 0.624, Tmax = 0.748k = 1414
7084 measured reflectionsl = 918
7084 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.1094P)2 + 7.9201P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.08 e Å3
7084 reflectionsΔρmin = 0.98 e Å3
444 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0156 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.37778 (6)0.39853 (6)0.56716 (4)0.0362 (2)
Sb20.43666 (6)0.42290 (5)0.83131 (4)0.0347 (2)
S10.5789 (2)0.3987 (2)0.63453 (17)0.0391 (5)
S20.4300 (3)0.6161 (2)0.64977 (18)0.0409 (5)
S30.2644 (2)0.3063 (2)0.67019 (19)0.0410 (5)
S40.3019 (2)0.4485 (2)0.9261 (2)0.0460 (6)
S50.4355 (2)0.2315 (2)0.84793 (19)0.0428 (5)
Mn10.62903 (13)0.32502 (12)0.48902 (10)0.0347 (3)
N10.8453 (8)0.4535 (7)0.5649 (6)0.0404 (17)
N20.7276 (8)0.2017 (7)0.4772 (6)0.0368 (16)
N30.4774 (7)0.1195 (7)0.4132 (6)0.0364 (16)
C10.8982 (10)0.5779 (9)0.6095 (7)0.043 (2)
H10.8439050.6180640.6063050.052*
C21.0295 (11)0.6544 (10)0.6615 (9)0.053 (3)
H21.0639760.7440430.6927270.064*
C31.1084 (12)0.5942 (11)0.6657 (10)0.057 (3)
H31.1984160.6429380.6995850.068*
C41.0541 (10)0.4624 (11)0.6200 (9)0.052 (3)
H41.1059880.4196060.6237730.063*
C50.9220 (10)0.3942 (9)0.5685 (8)0.041 (2)
C60.8559 (9)0.2540 (9)0.5134 (8)0.041 (2)
C70.9208 (11)0.1819 (10)0.4992 (10)0.054 (3)
H71.0120200.2202660.5265380.065*
C80.8517 (12)0.0550 (11)0.4452 (9)0.057 (3)
H80.8953770.0050870.4324840.069*
C90.7186 (11)0.0023 (10)0.4085 (8)0.049 (2)
H90.6698970.0911730.3716580.059*
C100.6575 (9)0.0760 (8)0.4277 (7)0.0361 (19)
C110.5173 (10)0.0297 (8)0.3953 (6)0.0357 (18)
C120.4295 (11)0.1001 (9)0.3504 (7)0.044 (2)
H120.4599320.1622780.3403450.052*
C130.3003 (11)0.1376 (9)0.3211 (7)0.045 (2)
H130.2402240.2253240.2890090.054*
C140.2583 (11)0.0453 (10)0.3390 (8)0.050 (2)
H140.1690080.0681830.3202570.060*
C150.3504 (10)0.0818 (9)0.3851 (7)0.043 (2)
H150.3218250.1452790.3973160.052*
Mn20.37319 (16)0.67226 (14)1.01113 (11)0.0413 (4)
N210.4598 (13)0.7905 (9)0.9250 (7)0.062 (3)
N220.2544 (11)0.7693 (9)0.9747 (6)0.054 (2)
N230.2195 (9)0.6283 (8)1.0844 (6)0.0436 (18)
C210.5691 (16)0.8057 (11)0.9108 (9)0.069 (4)
H210.6087570.7575930.9314660.083*
C220.630 (2)0.8900 (13)0.8665 (10)0.090 (6)
H220.7099570.9000420.8588410.109*
C230.573 (3)0.9559 (12)0.8351 (10)0.105 (8)
H230.6117341.0121900.8037110.126*
C240.460 (2)0.9413 (13)0.8487 (9)0.091 (7)
H240.4178080.9869530.8267400.110*
C250.4057 (19)0.8587 (11)0.8951 (8)0.074 (5)
C260.2881 (17)0.8444 (11)0.9202 (8)0.070 (4)
C270.209 (3)0.9006 (17)0.8945 (10)0.113 (9)
H270.2283650.9507930.8547990.135*
C280.105 (3)0.8844 (19)0.9258 (12)0.109 (8)
H280.0540540.9242780.9083440.131*
C290.0757 (17)0.8124 (17)0.9811 (11)0.086 (5)
H290.0037050.8005051.0027080.103*
C300.1548 (13)0.7546 (11)1.0064 (9)0.057 (3)
C310.1317 (10)0.6736 (11)1.0656 (8)0.051 (3)
C320.0314 (12)0.6440 (12)1.0990 (10)0.064 (3)
H320.0282910.6766711.0857170.076*
C330.0169 (11)0.5651 (14)1.1530 (10)0.070 (4)
H330.0542690.5421271.1762700.085*
C340.1030 (12)0.5205 (12)1.1730 (9)0.058 (3)
H340.0941790.4665821.2103610.069*
C350.2051 (11)0.5563 (12)1.1371 (8)0.051 (2)
H350.2672490.5267461.1516850.061*
O10.7367 (10)0.7040 (9)0.7526 (8)0.087 (3)
H1A0.7470330.6385280.7342700.131*
H1B0.6582730.6815080.7262190.131*
O20.9205 (14)0.8717 (13)0.6860 (10)0.102 (4)
H2A0.8488350.8429340.6945660.153*
H2B0.9818450.9441240.7208650.153*
O31.1152 (14)1.1177 (13)0.8230 (13)0.124 (5)
H3A1.1500951.1944730.8277430.186*
H3B1.1787151.1048130.8420720.186*
O40.8058 (16)0.7512 (19)0.9728 (15)0.146 (7)
H4A0.7871240.7384600.9125750.219*
H4B0.7774940.6983310.9998350.219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0422 (4)0.0341 (3)0.0340 (3)0.0206 (3)0.0104 (3)0.0116 (2)
Sb20.0375 (3)0.0307 (3)0.0394 (3)0.0173 (2)0.0150 (3)0.0136 (2)
S10.0417 (12)0.0417 (12)0.0393 (12)0.0262 (10)0.0118 (10)0.0127 (10)
S20.0495 (13)0.0332 (11)0.0444 (12)0.0229 (10)0.0145 (10)0.0154 (9)
S30.0427 (12)0.0335 (11)0.0476 (13)0.0167 (10)0.0142 (10)0.0179 (10)
S40.0438 (13)0.0386 (12)0.0571 (15)0.0202 (10)0.0247 (12)0.0106 (11)
S50.0453 (13)0.0337 (11)0.0514 (13)0.0215 (10)0.0121 (11)0.0160 (10)
Mn10.0358 (7)0.0303 (7)0.0394 (7)0.0173 (6)0.0120 (6)0.0116 (6)
N10.034 (4)0.033 (4)0.048 (4)0.014 (3)0.010 (3)0.012 (3)
N20.043 (4)0.034 (4)0.046 (4)0.026 (3)0.020 (4)0.016 (3)
N30.035 (4)0.028 (4)0.039 (4)0.012 (3)0.009 (3)0.008 (3)
C10.038 (5)0.035 (5)0.047 (5)0.015 (4)0.010 (4)0.005 (4)
C20.043 (6)0.038 (5)0.062 (7)0.008 (4)0.014 (5)0.011 (5)
C30.043 (6)0.045 (6)0.068 (7)0.016 (5)0.013 (5)0.007 (5)
C40.035 (5)0.048 (6)0.064 (7)0.017 (5)0.011 (5)0.013 (5)
C50.040 (5)0.036 (5)0.054 (6)0.023 (4)0.018 (4)0.014 (4)
C60.036 (5)0.034 (5)0.054 (6)0.020 (4)0.014 (4)0.009 (4)
C70.038 (5)0.038 (5)0.080 (8)0.021 (4)0.008 (5)0.012 (5)
C80.055 (7)0.039 (5)0.066 (7)0.028 (5)0.006 (6)0.003 (5)
C90.058 (6)0.032 (5)0.058 (6)0.030 (5)0.013 (5)0.006 (4)
C100.040 (5)0.026 (4)0.044 (5)0.020 (4)0.011 (4)0.009 (4)
C110.051 (5)0.027 (4)0.032 (4)0.020 (4)0.013 (4)0.011 (3)
C120.061 (6)0.032 (4)0.037 (5)0.020 (4)0.013 (4)0.014 (4)
C130.053 (6)0.024 (4)0.043 (5)0.010 (4)0.012 (4)0.005 (4)
C140.040 (5)0.045 (6)0.052 (6)0.014 (4)0.010 (5)0.008 (5)
C150.052 (6)0.035 (5)0.042 (5)0.022 (4)0.018 (4)0.009 (4)
Mn20.0557 (9)0.0386 (8)0.0376 (7)0.0287 (7)0.0152 (7)0.0150 (6)
N210.106 (9)0.040 (5)0.042 (5)0.031 (5)0.032 (5)0.020 (4)
N220.070 (6)0.048 (5)0.038 (4)0.038 (5)0.004 (4)0.005 (4)
N230.050 (5)0.046 (4)0.043 (4)0.032 (4)0.014 (4)0.013 (4)
C210.110 (11)0.034 (5)0.048 (6)0.017 (6)0.039 (7)0.007 (5)
C220.142 (16)0.051 (7)0.051 (7)0.011 (9)0.050 (9)0.015 (6)
C230.21 (2)0.034 (6)0.038 (7)0.022 (10)0.041 (11)0.014 (5)
C240.19 (2)0.040 (6)0.034 (6)0.042 (9)0.030 (9)0.012 (5)
C250.145 (14)0.036 (6)0.029 (5)0.038 (7)0.017 (7)0.010 (4)
C260.127 (13)0.045 (6)0.034 (5)0.049 (7)0.001 (7)0.009 (5)
C270.23 (3)0.085 (11)0.036 (6)0.113 (15)0.001 (10)0.011 (7)
C280.19 (2)0.106 (13)0.061 (9)0.122 (16)0.006 (11)0.017 (9)
C290.091 (11)0.097 (11)0.070 (9)0.073 (10)0.006 (8)0.007 (8)
C300.065 (7)0.045 (6)0.052 (6)0.038 (6)0.006 (5)0.001 (5)
C310.040 (5)0.055 (6)0.048 (6)0.032 (5)0.001 (4)0.002 (5)
C320.040 (6)0.052 (6)0.077 (8)0.020 (5)0.001 (6)0.007 (6)
C330.032 (6)0.073 (8)0.067 (8)0.012 (5)0.008 (5)0.013 (7)
C340.057 (7)0.059 (7)0.049 (6)0.022 (6)0.021 (5)0.012 (5)
C350.044 (6)0.066 (7)0.043 (5)0.027 (5)0.015 (4)0.018 (5)
O10.068 (6)0.054 (5)0.090 (7)0.022 (5)0.012 (5)0.011 (5)
O20.109 (10)0.092 (8)0.107 (9)0.055 (8)0.033 (8)0.026 (7)
O30.096 (10)0.078 (8)0.200 (16)0.028 (7)0.071 (10)0.056 (9)
O40.109 (12)0.157 (16)0.190 (18)0.066 (11)0.034 (12)0.096 (14)
Geometric parameters (Å, º) top
Sb1—S22.391 (2)C15—H150.9500
Sb1—S12.404 (2)Mn2—N222.233 (9)
Sb1—S32.445 (2)Mn2—N212.257 (9)
Sb2—S52.396 (2)Mn2—N232.278 (9)
Sb2—S42.402 (2)N21—C211.31 (2)
Sb2—S32.467 (3)N21—C251.334 (18)
S1—Mn12.419 (3)N22—C301.331 (17)
S2—Mn1i2.414 (3)N22—C261.368 (17)
S4—Mn22.411 (3)N23—C351.301 (14)
S5—Mn2ii2.405 (3)N23—C311.371 (13)
Mn1—N22.228 (7)C21—C221.405 (17)
Mn1—N32.258 (7)C21—H210.9500
Mn1—N12.285 (8)C22—C231.34 (3)
N1—C11.315 (13)C22—H220.9500
N1—C51.366 (13)C23—C241.36 (3)
N2—C61.336 (13)C23—H230.9500
N2—C101.339 (12)C24—C251.39 (2)
N3—C151.339 (13)C24—H240.9500
N3—C111.341 (12)C25—C261.48 (2)
C1—C21.397 (15)C26—C271.40 (2)
C1—H10.9500C27—C281.37 (3)
C2—C31.396 (17)C27—H270.9500
C2—H20.9500C28—C291.34 (3)
C3—C41.393 (16)C28—H280.9500
C3—H30.9500C29—C301.422 (17)
C4—C51.397 (15)C29—H290.9500
C4—H40.9500C30—C311.465 (18)
C5—C61.488 (13)C31—C321.344 (18)
C6—C71.382 (14)C32—C331.38 (2)
C7—C81.360 (15)C32—H320.9500
C7—H70.9500C33—C341.35 (2)
C8—C91.383 (17)C33—H330.9500
C8—H80.9500C34—C351.390 (16)
C9—C101.415 (13)C34—H340.9500
C9—H90.9500C35—H350.9500
C10—C111.469 (14)O1—H1A0.8400
C11—C121.400 (13)O1—H1B0.8401
C12—C131.364 (16)O2—H2A0.8400
C12—H120.9500O2—H2B0.8400
C13—C141.385 (16)O3—H3A0.8400
C13—H130.9500O3—H3B0.8400
C14—C151.390 (14)O4—H4A0.8399
C14—H140.9500O4—H4B0.8401
S2—Sb1—S1100.84 (9)N3—C15—C14123.4 (10)
S2—Sb1—S397.77 (8)N3—C15—H15118.3
S1—Sb1—S398.41 (8)C14—C15—H15118.3
S5—Sb2—S499.08 (9)N22—Mn2—N2172.0 (4)
S5—Sb2—S393.00 (8)N22—Mn2—N2371.3 (4)
S4—Sb2—S396.64 (9)N21—Mn2—N23143.0 (4)
Sb1—S1—Mn1102.22 (9)N22—Mn2—S5ii123.9 (3)
Sb1—S2—Mn1i100.17 (10)N21—Mn2—S5ii96.5 (3)
Sb1—S3—Sb2100.47 (9)N23—Mn2—S5ii100.3 (2)
Sb2—S4—Mn2109.95 (10)N22—Mn2—S4122.1 (3)
Sb2—S5—Mn2ii98.38 (10)N21—Mn2—S4111.3 (3)
N2—Mn1—N371.6 (3)N23—Mn2—S491.9 (2)
N2—Mn1—N171.9 (3)S5ii—Mn2—S4113.34 (10)
N3—Mn1—N1143.5 (3)C21—N21—C25117.5 (12)
N2—Mn1—S2i118.1 (2)C21—N21—Mn2122.8 (9)
N3—Mn1—S2i93.7 (2)C25—N21—Mn2119.3 (11)
N1—Mn1—S2i105.6 (2)C30—N22—C26121.8 (11)
N2—Mn1—S1122.2 (2)C30—N22—Mn2120.2 (8)
N3—Mn1—S1103.9 (2)C26—N22—Mn2118.0 (10)
N1—Mn1—S193.1 (2)C35—N23—C31118.4 (10)
S2i—Mn1—S1119.71 (10)C35—N23—Mn2124.1 (7)
C1—N1—C5118.9 (9)C31—N23—Mn2117.3 (7)
C1—N1—Mn1124.3 (7)N21—C21—C22122.8 (16)
C5—N1—Mn1116.7 (6)N21—C21—H21118.6
C6—N2—C10120.5 (8)C22—C21—H21118.6
C6—N2—Mn1120.2 (6)C23—C22—C21119 (2)
C10—N2—Mn1119.2 (6)C23—C22—H22120.5
C15—N3—C11118.1 (8)C21—C22—H22120.5
C15—N3—Mn1124.1 (6)C22—C23—C24119.1 (14)
C11—N3—Mn1117.8 (6)C22—C23—H23120.5
N1—C1—C2123.8 (10)C24—C23—H23120.5
N1—C1—H1118.1C23—C24—C25119.3 (17)
C2—C1—H1118.1C23—C24—H24120.4
C3—C2—C1117.6 (10)C25—C24—H24120.4
C3—C2—H2121.2N21—C25—C24122.3 (18)
C1—C2—H2121.2N21—C25—C26114.6 (11)
C4—C3—C2119.6 (11)C24—C25—C26123.1 (15)
C4—C3—H3120.2N22—C26—C27117.3 (18)
C2—C3—H3120.2N22—C26—C25116.1 (11)
C3—C4—C5118.7 (11)C27—C26—C25126.6 (15)
C3—C4—H4120.7C28—C27—C26121.2 (17)
C5—C4—H4120.7C28—C27—H27119.4
N1—C5—C4121.5 (9)C26—C27—H27119.4
N1—C5—C6115.7 (9)C29—C28—C27120.4 (15)
C4—C5—C6122.9 (9)C29—C28—H28119.8
N2—C6—C7121.7 (9)C27—C28—H28119.8
N2—C6—C5115.1 (8)C28—C29—C30118.4 (18)
C7—C6—C5123.2 (9)C28—C29—H29120.8
C8—C7—C6118.7 (10)C30—C29—H29120.8
C8—C7—H7120.7N22—C30—C29120.8 (14)
C6—C7—H7120.7N22—C30—C31115.7 (9)
C7—C8—C9120.9 (10)C29—C30—C31123.4 (14)
C7—C8—H8119.5C32—C31—N23121.6 (12)
C9—C8—H8119.5C32—C31—C30123.1 (11)
C8—C9—C10117.7 (9)N23—C31—C30115.3 (10)
C8—C9—H9121.2C31—C32—C33118.7 (12)
C10—C9—H9121.2C31—C32—H32120.6
N2—C10—C9120.4 (9)C33—C32—H32120.6
N2—C10—C11115.1 (8)C34—C33—C32120.5 (12)
C9—C10—C11124.4 (9)C34—C33—H33119.8
N3—C11—C12121.3 (10)C32—C33—H33119.8
N3—C11—C10115.9 (8)C33—C34—C35117.7 (13)
C12—C11—C10122.8 (9)C33—C34—H34121.2
C13—C12—C11120.2 (10)C35—C34—H34121.2
C13—C12—H12119.9N23—C35—C34123.1 (12)
C11—C12—H12119.9N23—C35—H35118.5
C12—C13—C14118.8 (9)C34—C35—H35118.5
C12—C13—H13120.6H1A—O1—H1B106.5
C14—C13—H13120.6H2A—O2—H2B123.6
C13—C14—C15118.2 (10)H3A—O3—H3B102.7
C13—C14—H14120.9H4A—O4—H4B127.9
C15—C14—H14120.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S10.842.633.239 (10)131
O1—H1B···S20.842.443.283 (11)180
O2—H2A···O10.842.202.897 (19)140
O2—H2B···O30.842.042.87 (2)170
O3—H3A···S4iii0.842.713.490 (14)154
O3—H3B···S5iii0.842.823.427 (14)131
O4—H4A···O10.842.233.07 (2)180
O4—H4B···S4ii0.842.333.165 (17)180
C4—H4···S3iv0.952.813.747 (12)170
C7—H7···S3iv0.952.933.831 (12)158
C9—H9···S3v0.952.973.690 (10)134
C9—H9···S5v0.953.023.706 (11)130
C12—H12···S1v0.952.863.657 (10)142
C21—H21···O40.952.343.15 (2)143
C24—H24···S5vi0.952.833.652 (15)145
C29—H29···O4vii0.952.122.98 (3)150
C32—H32···S4viii0.952.973.599 (13)125
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x1, y, z; (viii) x, y+1, z+2.
 

Acknowledgements

Financial support by the state of Schleswig–Holstein is gratefully acknowledged.

References

First citationBensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.  CSD CrossRef Web of Science Google Scholar
First citationBensch, W. & Schur, M. (1996). Eur. J. Solid State Chem. 33, 1149–1160.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.  Web of Science CrossRef CAS Google Scholar
First citationEngelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869–876.  Web of Science CrossRef CAS Google Scholar
First citationJia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.  Google Scholar
First citationLühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.  Google Scholar
First citationNie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front. 4, 945-959.  Google Scholar
First citationNie, L., Xiong, W. W., Li, P., Han, J., Zhang, G., Yin, S., Zhao, Y., Xu, R. & Zhang, Q. (2014). J. Solid State Chem. 220, 118–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationNie, L., Zhang, Y., Xiong, W. W., Lim, T. T., Quingyu Yan, R. X. & Zhang, Q. (2016). Inorg. Chem. Front. 3, 111-116.  Web of Science CSD CrossRef CAS Google Scholar
First citationPompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296–300.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPowell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.  Web of Science CSD CrossRef CAS Google Scholar
First citationPuls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, M., Hughes, M. C. & Macero, D. J. (1976). Inorg. Chim. Acta, 18, 127–131.  CrossRef CAS Google Scholar
First citationSchaefer, M., Näther, C., Lehnert, N. & Bensch, W. (2004). Inorg. Chem. 43, 2914–2921.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchur, M. & Bensch, W. (2002). Z. Naturforsch. B, 57, 1–7.  CrossRef CAS Google Scholar
First citationSchur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79–84.  CrossRef CAS Google Scholar
First citationSeidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554–5560.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937–975.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S. & Wachhold, M. (1998). Coord Chem Rev. 176, 211-322.  Web of Science CrossRef CAS Google Scholar
First citationSpetzler, V., Näther, C. & Bensch, W. (2005). Inorg. Chem. 44, 5805–5812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationStähler, R. & Bensch, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2518–2522.  Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, C. Y., Lei, X. W., Liu, R. Q., Zhang, H. P., Zhai, X. R., Li, W. P., Zhou, M., Zhao, Z. F., Ma, Y. X. & Yang, Y. D. (2014). Cryst. Growth Des. 14, 2411–2421.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.  Web of Science CSD CrossRef Google Scholar
First citationZhou, J. (2016). Coord. Chem. Rev. 315, 112–134.  Web of Science CrossRef CAS Google Scholar
First citationZhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221–1247.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds