research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)meth­yl]-2,3-di­hydro-1H-1,3-benzo­diazol-2-one monohydrate

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 3 December 2019; accepted 17 December 2019; online 1 January 2020)

In the title mol­ecule, C24H21N5O·H2O, the di­hydro­benzo­diazole moiety is not quite planar, while the whole mol­ecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating mol­ecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = di­hydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the di­hydro­benzo­diazole units in adjacent layers inter­calating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] inter­actions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Nitro­gen heterocyclic compounds are known to exhibit excellent biological and pharmaceutical activities (Olesen et al., 1994[Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53-59.]; Baxter & Clarke, 1992[Baxter, G. S. & Clarke, D. E. (1992). Eur. J. Pharmacol. 212, 225-229.]; Saber et al., 2020[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174.]; Rémond et al., 1997[Rémond, G., Portevin, B., Bonnet, J., Canet, E., Regoli, D. & De Nanteuil, G. (1997). Eur. J. Med. Chem. 32, 843-868.]). The benzimidazole core has several active sites and provides great responsiveness, making it an excellent heterocyclic precursor in the syntheses of the new heterocyclic compounds (Saber et al., 2018a[Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746-1750.],b[Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842-1846.]; Ouzidan et al., 2011[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362-o363.]; Saber et al., 2020[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174.]). With respect to the biological applications of benzimidazolone derivatives, it has been shown that these compounds are found to possess potent anti­oxidant (Gaba et al., 2014[Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494-505.]), anti­parasitic (Ayhan-Kılcıgil et al., 2007[Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607-611.]), anthelmintic (Navarrete-Vazquez et al., 2001[Navarrete-Vazquez, G., Cedillo, R., Hernandez-Campos, A., Yepez, L., Hernandez-Luis, F., Valdez, J., Morales, R., Cortes, R., Hernandez, M. & Castillo, R. (2001). Bioorg Med Chem. 11, 187-190.]), anti­proliferative (Ravina et al., 1993[Ravina, E., Sanchez-Alonso, R., Fueyo, J., Baltar, M. P., Bos, J., Iglesias, R. & Sanmartin, M. L. (1993). Arzneim. Forsch. 43, 684-694.]), anti-HIV (Garuti et al., 2000[Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193-2195.]), anti­convulsant (Rao et al., 2002[Rao, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2002). Farmaco, 57, 819-823.]), anti-inflammatory (Thakurdesai et al., 2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacology Online 1, 314-329.]), anti­hypertensive (Serafin et al., 1989[Serafin, B., Borkowska, G., Glowczyk, J., Kowalska, I. & Rump, S. (1989). Pol. J. Pharmcol. Pharm. 41, 89-96.]) and anti-trichinellosis (Mavrova et al., 2007[Mavrova, A. Ts, Denkova, P., Tsenov, Y. A., Anichina, K. K. & Vutchev, D. I. (2007). Bioorg. Med. Chem. 15, 6291-6297.]) activities. In addition, they are considered to be important moieties for the development of mol­ecules of pharmaceutical inter­est (Mondieig et al., 2013[Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51-61.]; Lakhrissi et al., 2008[Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421-433.]). As a continuation of our research devoted to the study of the cyclo­addition reactions involving benzimidazolone derivatives (Sebbar et al., 2016[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah Z., Ouzidan Y., Kandri, Rodi Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1-11.]; Saber et al., 2020[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174.]), we report herein the synthesis, the mol­ecular and crystal structures of the title compound along with the results of the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level in order to compare the theoretical and experimentally determined mol­ecular structures in the solid state.

[Scheme 1]

2. Structural commentary

The title mol­ecule, (I)[link], adopts a U-shaped conformation with an H20⋯C14 separation of 2.83 Å, which is very close to a normal van der Waals contact (2.90 Å). The orientation of the C11–C17 benzyl group is partly determined by an intra­molecular C13—H13⋯Cg inter­action, where Cg is the centroid of the triazole (C9/C10/N3–N5), ring C (Fig. 1[link] and Table 1[link]). The di­hydro­benzo­diazole unit is not quite planar, as indicated by the dihedral angle of 2.50 (8)° between the constituent rings A (C1–C6) and B (N1/N2/C1/C6/C7) and the deviation of atom C7 by 0.0418 (14) Å out of the mean plane through the whole unit. The benzene ring D (C12–C17) is inclined to the triazole ring C by 78.91 (11)° while the latter ring is inclined to the B ring by 64.70 (11)°. The dihedral angle between the mean planes of the B and E (C19–C24) rings is 87.67 (8)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the triazole ring C (C9/C10/N3–N5).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N3 0.87 2.04 2.892 (2) 166
O2—H2B⋯O1i 0.87 2.00 2.865 (2) 176
C10—H10⋯O2v 0.95 2.48 3.402 (3) 164
C13—H13⋯Cg 0.95 2.83 3.451 (3) 124
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Trz = triazole) hydrogen bond is shown by a red dashed line while the intra­molecular C—H⋯π(ring) inter­action is depicted by a green dashed line.

3. Supra­molecular features

In the crystal, the mol­ecules form chains with the water mol­ecule of crystallization, which extend along [201] through O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = di­hydro, Trz = triazole) hydrogen bonds (Table 1[link] and Fig. 2[link]). The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds (Table 1[link] and Fig. 2[link]). Inter­calation of the di­hydro­benzo­diazole groups between adjacent layers with concomitant head-to-tail π-stacking inter­actions between them [Cg2⋯Cg1i = 3.5694 (11) Å where Cg1 and Cg2 are the centroids of the A and B rings, respectively; symmetry code: (i) −x + 1, −y + 1, −z + 2; dihedral angle = 2.50 (10)°] leads to the final three-dimensional structure (Fig. 3[link]).

[Figure 2]
Figure 2
A partial packing diagram viewed along the a-axis direction with O—HUncoordW⋯ODhyr, O—HUncoordW⋯NTrz and C—HTrz⋯OUncoordW (UncoordW = uncoordinated water, Dhyr = di­hydro, Trz = triazole) hydrogen bonds shown, respectively, as red, pink and black dashed lines. The π-stacking inter­actions are shown as orange dashed lines.
[Figure 3]
Figure 3
A partial packing diagram projected onto (301) with inter­molecular inter­actions depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), white areas indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1 and hydrogen atom H2B indicate their roles as the respective donors and acceptors. The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.5603 to 1.3285 a.u.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bg, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action (Table 2[link]) is H⋯H, contributing 52.1% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.00 Å. The presence of C—H⋯π inter­actions give rise to pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (23.8% contribution to the HS), Fig. 6[link]c,(Table 2[link]) with triple pairs of spikes with the tips at de + di = 2.86, 2.82 and 2.85 Å. The scattered points in the pair of wings in the fingerprint plots delineated into H⋯O/O⋯H contacts (11.2% contribution), Fig. 6[link]d, have a symmetrical distribution with the edges at de + di = 1.85 Å. The H⋯N/N⋯N contacts, contributing 7.4% to the overall crystal packing, are shown in Fig. 6[link]e as widely scattered points with the tips at de + di = 2.56 Å. The C⋯C contacts, Fig. 6[link]f, have an arrow-shaped distribution of points with the tip at de = di = 1.77 Å. Finally, the C⋯N/N⋯C inter­actions (2.2%) are reflected in Fig. 6[link]g as tiny characteristic wings with the tips at de + di = 3.44 Å.

Table 2
Selected interatomic distances (Å)

O2⋯O1i 2.865 (2) C10⋯H5 2.98
O2⋯C17i 3.192 (3) C11⋯H8B 2.90
O2⋯N3 2.892 (2) C14⋯H20 2.83
O1⋯H8B 2.55 C18⋯H2 2.98
O1⋯H11B 2.81 C22⋯H16vii 2.98
O1⋯H18A 2.56 C22⋯H13vi 2.97
O1⋯H18Aii 2.87 C23⋯H16vii 2.97
O2⋯H5iii 2.64 H2⋯N4viii 2.78
O2⋯H11Bi 2.77 H2A⋯N4 2.62
O2⋯H17i 2.71 H2A⋯N3 2.04
N4⋯C13 3.200 (3) H2B⋯O1i 2.00
N2⋯H20 2.60 H2B⋯H11Bi 2.48
N4⋯H13 2.73 H3⋯H15vi 2.48
N5⋯H13 2.52 H4⋯H18Aix 2.57
C1⋯C20 3.557 (3) H5⋯H10 2.44
C2⋯C6iv 3.542 (3) H8A⋯N4v 2.67
C3⋯C7iv 3.540 (3) H8B⋯H11B 2.27
C5⋯C9 3.592 (3) H10⋯O2v 2.48
C9⋯C5 3.592 (3) H10⋯H17ix 2.46
C10⋯O2v 3.402 (3) H11A⋯C15v 2.92
C11⋯C15v 3.421 (3) H11A⋯H17 2.51
C14⋯C20 3.505 (3) H16⋯H23vii 2.44
C2⋯H18B 2.98 H16⋯H22vii 2.46
C3⋯H15vi 2.88 H18A⋯H18Aii 2.19
C8⋯H11B 2.79 H18B⋯H24 2.43
C8⋯H5 2.99 H24⋯N3viii 2.76
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+2; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y+1, -z+1; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) x-1, y, z.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 7[link]ad, respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

An N-substituted benzoimidazol-2-one analogue (Saber et al., 2018a[Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746-1750.],b[Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842-1846.]; Saber et al., 2020[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174.]) and other similar compounds have also been reported (Belaziz et al., 2012[Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.], 2013[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122.]; Bouayad et al., 2015[Bouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o735-o736.]). In derivatives of benzimidazolin-2-one in which both nitro­gen atoms form exocyclic C—N bonds, the bicyclic ring system is either planar, has a slight twist end-to-end, or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape. The closest examples to the title compound are 2 (Saber et al., 2018a[Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746-1750.]) and 3 (Saber et al., 2018b[Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842-1846.]) with 4 (Díez-Barra et al., 1997[Díez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689-7704.]) as a more distant relative. In 3[link], the C—N bond, connecting the nitro­gen atoms to form exocyclic units are 1.4632 (15) and 1.4525 (16) Å, while in the title compound, the C—N bonds are 1.4301 (15) and 1.4525 (16) Å. In the bicyclic units, they are in an anti-arrangement, and this is basically the same for 2[link]. Inter­estingly, the three bicyclic units in 4[link] are close to all being syn to one another.

[Scheme 2]

6. DFT calculations

The optimized structure of the title compound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, US]). The theoretical and experimental results are in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4[link]. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending over the whole 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)meth­yl]-2,3-di­hydro-1H-1,3-benzo­diazol-2-one hydrate ring. The energy band gap [ΔE = ELUMO - EHOMO] of the mol­ecule is 5.3468 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −6.1633 and −0.8166 eV, respectively.

Table 3
Comparison of selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C7 1.225 (2) 1.25497
N1—C7 1.384 (2) 1.40076
N1—C6 1.397 (2) 1.40603
N1—C8 1.452 (2) 1.46502
N2—C7 1.379 (2) 1.39180
N2—C1 1.395 (2) 1.40574
N2—C18 1.450 (2) 1.47028
N3—N4 1.314 (2) 1.32954
N3—C10 1.358 (3) 1.37406
N4—N5 1.347 (2) 1.38781
N5—C9 1.356 (2) 1.37548
N5—C11 1.452 (2) 1.47090
C7—N1—C6 109.72 (15) 109.64541
C7—N1—C8 123.68 (15) 122.59694
C6—N1—C8 125.96 (15) 127.83740
C7—N2—C1 109.90 (15) 109.86320
C7—N2—C18 123.91 (16) 122.77835
C1—N2—C18 125.82 (16) 128.23580
N4—N3—C10 108.55 (17) 108.75382
N3—N4—N5 107.17 (16) 107.07997
N4—N5—C9 111.14 (15) 110.25168
N4—N5—C11 118.44 (16) 118.90455

Table 4
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −34723.0011
EHOMO (eV) −6.1633
ELUMO (eV) −0.8166
Gap ΔE (eV) 5.3468
Dipole moment, μ (Debye) 5.5500
Ionization potential I (eV) 6.1633
Electron affinity, A 0.8166
Electronegativity, χ 3.4900
Hardness, η 2.6734
Electrophilicity index, ω 2.2780
Softness, σ 0.3741
Fraction of electron transferred, ΔN 0.6565
[Figure 8]
Figure 8
The energy band gap of the title compound, (I)[link].

7. Synthesis and crystallization

To a mixture of 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinoxalin-2(1H)-one (0.65 mmol) in ethanol (20 ml) was added 1-(azido­meth­yl)benzene (1.04 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue obtained was purified by column chromatography on silica gel by using as eluent a mixture (hexa­ne/ethyl acetate: 9/1). The isolated solid product was recrystallized from ethanol to afford yellow crystals (yield: in 19%).

8. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 5[link]. Hydrogen atoms were included as riding contributions in idealized positions with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula C24H21N5O·H2O
Mr 413.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.0872 (2), 21.1012 (4), 11.7134 (2)
β (°) 112.654 (1)
V3) 2072.77 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.70
Crystal size (mm) 0.18 × 0.08 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 15080, 3887, 2909
Rint 0.057
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.06
No. of reflections 3887
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016; program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

1-Benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohydrate top
Crystal data top
C24H21N5O·H2OF(000) = 872
Mr = 413.47Dx = 1.325 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.0872 (2) ÅCell parameters from 9060 reflections
b = 21.1012 (4) Åθ = 4.2–70.2°
c = 11.7134 (2) ŵ = 0.70 mm1
β = 112.654 (1)°T = 150 K
V = 2072.77 (7) Å3Plate, colourless
Z = 40.18 × 0.08 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3887 independent reflections
Radiation source: INCOATEC IµS micro–focus source2909 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10.4167 pixels mm-1θmax = 70.2°, θmin = 4.2°
ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2425
Tmin = 0.85, Tmax = 0.99l = 1413
15080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.901P]
where P = (Fo2 + 2Fc2)/3
3887 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85567 (15)0.39779 (7)0.93327 (13)0.0375 (4)
N10.58475 (17)0.39409 (7)0.89638 (14)0.0267 (3)
N20.68572 (18)0.48484 (7)0.86568 (14)0.0278 (3)
N30.3094 (2)0.22818 (9)0.68794 (17)0.0426 (5)
N40.4467 (2)0.21861 (8)0.67770 (16)0.0378 (4)
N50.55663 (19)0.25352 (8)0.76599 (15)0.0300 (4)
C10.5258 (2)0.49606 (9)0.84381 (16)0.0274 (4)
C20.4364 (2)0.55101 (10)0.81370 (18)0.0350 (5)
H20.4803980.5900410.8015400.042*
C30.2785 (3)0.54622 (11)0.80211 (19)0.0411 (5)
H30.2131950.5830080.7819730.049*
C40.2141 (2)0.48927 (12)0.8192 (2)0.0416 (5)
H40.1052430.4878170.8089610.050*
C50.3051 (2)0.43389 (11)0.85099 (18)0.0342 (5)
H50.2614240.3949020.8637120.041*
C60.4618 (2)0.43874 (9)0.86300 (16)0.0263 (4)
C70.7242 (2)0.42276 (9)0.90173 (17)0.0275 (4)
C80.5772 (2)0.32986 (9)0.93828 (18)0.0307 (4)
H8A0.5231470.3303640.9972570.037*
H8B0.6869950.3138960.9828300.037*
C90.4903 (2)0.28571 (9)0.83436 (17)0.0288 (4)
C100.3330 (2)0.26854 (10)0.7837 (2)0.0381 (5)
H100.2529570.2826300.8112110.046*
C110.7188 (2)0.25400 (10)0.77111 (19)0.0337 (5)
H11A0.7528810.2098100.7667040.040*
H11B0.7901880.2718310.8516130.040*
C120.7378 (2)0.29187 (9)0.66852 (17)0.0303 (4)
C130.6180 (3)0.32884 (10)0.58683 (19)0.0372 (5)
H130.5163420.3302550.5922040.045*
C140.6458 (3)0.36398 (11)0.4968 (2)0.0439 (5)
H140.5629510.3891010.4401570.053*
C150.7931 (3)0.36233 (12)0.4897 (2)0.0499 (6)
H150.8135710.3875480.4302650.060*
C160.9119 (3)0.32390 (14)0.5694 (2)0.0531 (7)
H161.0128850.3219230.5630170.064*
C170.8840 (3)0.28853 (12)0.6578 (2)0.0439 (6)
H170.9653240.2617790.7115550.053*
C180.8011 (2)0.53227 (10)0.86554 (18)0.0336 (5)
H18A0.9095560.5153380.9114130.040*
H18B0.7878000.5701130.9106270.040*
C190.7883 (2)0.55247 (9)0.73841 (17)0.0280 (4)
C200.7223 (3)0.51411 (11)0.6354 (2)0.0435 (5)
H200.6799630.4739240.6432460.052*
C210.7171 (3)0.53360 (12)0.5208 (2)0.0493 (6)
H210.6717870.5066840.4509370.059*
C220.7773 (3)0.59167 (12)0.5081 (2)0.0430 (5)
H220.7727140.6051820.4293940.052*
C230.8446 (3)0.63033 (11)0.6103 (2)0.0432 (5)
H230.8864870.6705360.6020070.052*
C240.8509 (2)0.61052 (10)0.7246 (2)0.0357 (5)
H240.8988750.6370780.7946660.043*
O20.10404 (17)0.18802 (8)0.44186 (14)0.0478 (4)
H2A0.1559220.1955190.5202490.072*
H2B0.0317070.1608580.4412580.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (7)0.0395 (9)0.0441 (8)0.0055 (6)0.0078 (6)0.0002 (7)
N10.0247 (8)0.0244 (8)0.0286 (8)0.0013 (6)0.0077 (6)0.0006 (6)
N20.0259 (8)0.0263 (9)0.0283 (8)0.0016 (7)0.0072 (6)0.0013 (7)
N30.0363 (9)0.0486 (12)0.0454 (11)0.0144 (9)0.0184 (8)0.0126 (9)
N40.0385 (9)0.0358 (10)0.0409 (10)0.0099 (8)0.0174 (8)0.0081 (8)
N50.0306 (8)0.0291 (9)0.0316 (9)0.0037 (7)0.0132 (7)0.0018 (7)
C10.0267 (9)0.0319 (11)0.0206 (9)0.0029 (8)0.0059 (7)0.0007 (7)
C20.0430 (11)0.0328 (12)0.0277 (10)0.0085 (9)0.0120 (9)0.0036 (8)
C30.0438 (12)0.0442 (14)0.0339 (11)0.0195 (10)0.0134 (9)0.0054 (9)
C40.0303 (10)0.0591 (15)0.0360 (12)0.0118 (10)0.0132 (9)0.0009 (10)
C50.0302 (10)0.0429 (13)0.0311 (10)0.0015 (9)0.0135 (8)0.0007 (9)
C60.0255 (9)0.0303 (11)0.0215 (9)0.0024 (8)0.0071 (7)0.0011 (8)
C70.0232 (9)0.0302 (10)0.0252 (9)0.0006 (8)0.0050 (7)0.0023 (8)
C80.0345 (10)0.0279 (11)0.0280 (10)0.0011 (8)0.0101 (8)0.0026 (8)
C90.0309 (9)0.0272 (10)0.0297 (10)0.0018 (8)0.0132 (8)0.0019 (8)
C100.0350 (11)0.0409 (13)0.0416 (12)0.0073 (9)0.0182 (9)0.0083 (10)
C110.0288 (10)0.0375 (12)0.0362 (11)0.0025 (9)0.0138 (8)0.0018 (9)
C120.0303 (10)0.0318 (11)0.0283 (10)0.0052 (8)0.0108 (8)0.0047 (8)
C130.0401 (11)0.0333 (12)0.0401 (12)0.0026 (9)0.0177 (9)0.0022 (9)
C140.0584 (14)0.0363 (13)0.0350 (12)0.0035 (11)0.0159 (10)0.0016 (9)
C150.0679 (16)0.0510 (15)0.0377 (13)0.0150 (13)0.0279 (12)0.0003 (11)
C160.0404 (12)0.0785 (19)0.0447 (14)0.0136 (13)0.0211 (11)0.0002 (13)
C170.0313 (10)0.0601 (16)0.0386 (12)0.0021 (10)0.0115 (9)0.0025 (11)
C180.0328 (10)0.0340 (11)0.0296 (10)0.0092 (9)0.0070 (8)0.0023 (9)
C190.0240 (9)0.0285 (10)0.0309 (10)0.0005 (8)0.0099 (7)0.0008 (8)
C200.0551 (14)0.0388 (13)0.0352 (12)0.0153 (11)0.0159 (10)0.0061 (10)
C210.0625 (15)0.0503 (15)0.0340 (12)0.0167 (12)0.0173 (11)0.0101 (11)
C220.0454 (12)0.0512 (15)0.0351 (12)0.0047 (11)0.0188 (10)0.0023 (10)
C230.0494 (13)0.0384 (13)0.0491 (13)0.0075 (10)0.0272 (11)0.0008 (10)
C240.0376 (11)0.0323 (11)0.0393 (12)0.0052 (9)0.0171 (9)0.0062 (9)
O20.0397 (8)0.0618 (11)0.0395 (9)0.0154 (8)0.0128 (7)0.0018 (8)
Geometric parameters (Å, º) top
O1—C71.225 (2)C11—H11B0.9900
N1—C71.384 (2)C12—C131.381 (3)
N1—C61.397 (2)C12—C171.384 (3)
N1—C81.452 (2)C13—C141.390 (3)
N2—C71.379 (2)C13—H130.9500
N2—C11.395 (2)C14—C151.373 (3)
N2—C181.450 (2)C14—H140.9500
N3—N41.314 (2)C15—C161.385 (4)
N3—C101.358 (3)C15—H150.9500
N4—N51.347 (2)C16—C171.377 (3)
N5—C91.356 (2)C16—H160.9500
N5—C111.452 (2)C17—H170.9500
C1—C21.381 (3)C18—C191.510 (3)
C1—C61.397 (3)C18—H18A0.9900
C2—C31.392 (3)C18—H18B0.9900
C2—H20.9500C19—C201.383 (3)
C3—C41.384 (3)C19—C241.386 (3)
C3—H30.9500C20—C211.387 (3)
C4—C51.397 (3)C20—H200.9500
C4—H40.9500C21—C221.373 (3)
C5—C61.379 (3)C21—H210.9500
C5—H50.9500C22—C231.382 (3)
C8—C91.494 (3)C22—H220.9500
C8—H8A0.9900C23—C241.383 (3)
C8—H8B0.9900C23—H230.9500
C9—C101.368 (3)C24—H240.9500
C10—H100.9500O2—H2A0.8700
C11—C121.507 (3)O2—H2B0.8701
C11—H11A0.9900
O2···O1i2.865 (2)C10···H52.98
O2···C17i3.192 (3)C11···H8B2.90
O2···N32.892 (2)C14···H202.83
O1···H8B2.55C18···H22.98
O1···H11B2.81C22···H16vii2.98
O1···H18A2.56C22···H13vi2.97
O1···H18Aii2.87C23···H16vii2.97
O2···H5iii2.64H2···N4viii2.78
O2···H11Bi2.77H2A···N42.62
O2···H17i2.71H2A···N32.04
N4···C133.200 (3)H2B···O1i2.00
N2···H202.60H2B···H11Bi2.48
N4···H132.73H3···H15vi2.48
N5···H132.52H4···H18Aix2.57
C1···C203.557 (3)H5···H102.44
C2···C6iv3.542 (3)H8A···N4v2.67
C3···C7iv3.540 (3)H8B···H11B2.27
C5···C93.592 (3)H10···O2v2.48
C9···C53.592 (3)H10···H17ix2.46
C10···O2v3.402 (3)H11A···C15v2.92
C11···C15v3.421 (3)H11A···H172.51
C14···C203.505 (3)H16···H23vii2.44
C2···H18B2.98H16···H22vii2.46
C3···H15vi2.88H18A···H18Aii2.19
C8···H11B2.79H18B···H242.43
C8···H52.99H24···N3viii2.76
C7—N1—C6109.72 (15)N5—C11—H11B108.9
C7—N1—C8123.68 (15)C12—C11—H11B108.9
C6—N1—C8125.96 (15)H11A—C11—H11B107.7
C7—N2—C1109.90 (15)C13—C12—C17119.63 (19)
C7—N2—C18123.91 (16)C13—C12—C11123.39 (18)
C1—N2—C18125.82 (16)C17—C12—C11116.99 (18)
N4—N3—C10108.55 (17)C12—C13—C14120.1 (2)
N3—N4—N5107.17 (16)C12—C13—H13119.9
N4—N5—C9111.14 (15)C14—C13—H13119.9
N4—N5—C11118.44 (16)C15—C14—C13119.9 (2)
C9—N5—C11130.35 (17)C15—C14—H14120.1
C2—C1—N2131.12 (19)C13—C14—H14120.1
C2—C1—C6121.84 (18)C14—C15—C16120.0 (2)
N2—C1—C6106.99 (16)C14—C15—H15120.0
C1—C2—C3116.5 (2)C16—C15—H15120.0
C1—C2—H2121.7C17—C16—C15120.2 (2)
C3—C2—H2121.7C17—C16—H16119.9
C4—C3—C2121.7 (2)C15—C16—H16119.9
C4—C3—H3119.1C16—C17—C12120.1 (2)
C2—C3—H3119.1C16—C17—H17119.9
C3—C4—C5121.65 (19)C12—C17—H17119.9
C3—C4—H4119.2N2—C18—C19114.52 (15)
C5—C4—H4119.2N2—C18—H18A108.6
C6—C5—C4116.6 (2)C19—C18—H18A108.6
C6—C5—H5121.7N2—C18—H18B108.6
C4—C5—H5121.7C19—C18—H18B108.6
C5—C6—C1121.66 (18)H18A—C18—H18B107.6
C5—C6—N1131.39 (18)C20—C19—C24118.34 (19)
C1—C6—N1106.93 (15)C20—C19—C18122.54 (18)
O1—C7—N2127.11 (18)C24—C19—C18119.06 (17)
O1—C7—N1126.52 (18)C19—C20—C21120.8 (2)
N2—C7—N1106.37 (15)C19—C20—H20119.6
N1—C8—C9112.68 (15)C21—C20—H20119.6
N1—C8—H8A109.1C22—C21—C20120.2 (2)
C9—C8—H8A109.1C22—C21—H21119.9
N1—C8—H8B109.1C20—C21—H21119.9
C9—C8—H8B109.1C21—C22—C23119.6 (2)
H8A—C8—H8B107.8C21—C22—H22120.2
N5—C9—C10103.82 (17)C23—C22—H22120.2
N5—C9—C8125.29 (17)C22—C23—C24120.0 (2)
C10—C9—C8130.88 (18)C22—C23—H23120.0
N3—C10—C9109.31 (18)C24—C23—H23120.0
N3—C10—H10125.3C23—C24—C19121.0 (2)
C9—C10—H10125.3C23—C24—H24119.5
N5—C11—C12113.37 (16)C19—C24—H24119.5
N5—C11—H11A108.9H2A—O2—H2B103.2
C12—C11—H11A108.9
C10—N3—N4—N50.7 (2)C11—N5—C9—C10177.1 (2)
N3—N4—N5—C90.3 (2)N4—N5—C9—C8178.77 (17)
N3—N4—N5—C11176.95 (17)C11—N5—C9—C81.9 (3)
C7—N2—C1—C2175.59 (19)N1—C8—C9—N586.6 (2)
C18—N2—C1—C22.4 (3)N1—C8—C9—C1092.1 (3)
C7—N2—C1—C61.9 (2)N4—N3—C10—C90.9 (3)
C18—N2—C1—C6175.07 (17)N5—C9—C10—N30.7 (2)
N2—C1—C2—C3177.86 (19)C8—C9—C10—N3178.24 (19)
C6—C1—C2—C30.7 (3)N4—N5—C11—C1273.3 (2)
C1—C2—C3—C40.4 (3)C9—N5—C11—C12103.4 (2)
C2—C3—C4—C51.1 (3)N5—C11—C12—C137.5 (3)
C3—C4—C5—C60.8 (3)N5—C11—C12—C17172.44 (19)
C4—C5—C6—C10.2 (3)C17—C12—C13—C141.9 (3)
C4—C5—C6—N1178.04 (18)C11—C12—C13—C14178.1 (2)
C2—C1—C6—C51.0 (3)C12—C13—C14—C150.6 (3)
N2—C1—C6—C5178.79 (17)C13—C14—C15—C162.4 (4)
C2—C1—C6—N1177.65 (17)C14—C15—C16—C171.7 (4)
N2—C1—C6—N10.13 (19)C15—C16—C17—C120.8 (4)
C7—N1—C6—C5176.8 (2)C13—C12—C17—C162.6 (3)
C8—N1—C6—C55.8 (3)C11—C12—C17—C16177.4 (2)
C7—N1—C6—C11.7 (2)C7—N2—C18—C19109.6 (2)
C8—N1—C6—C1172.72 (16)C1—N2—C18—C1978.2 (2)
C1—N2—C7—O1176.56 (19)N2—C18—C19—C2024.7 (3)
C18—N2—C7—O13.2 (3)N2—C18—C19—C24158.15 (18)
C1—N2—C7—N12.9 (2)C24—C19—C20—C210.8 (3)
C18—N2—C7—N1176.23 (16)C18—C19—C20—C21178.0 (2)
C6—N1—C7—O1176.65 (18)C19—C20—C21—C220.2 (4)
C8—N1—C7—O15.4 (3)C20—C21—C22—C230.7 (4)
C6—N1—C7—N22.83 (19)C21—C22—C23—C240.1 (4)
C8—N1—C7—N2174.11 (16)C22—C23—C24—C191.0 (3)
C7—N1—C8—C9111.65 (19)C20—C19—C24—C231.4 (3)
C6—N1—C8—C978.5 (2)C18—C19—C24—C23178.7 (2)
N4—N5—C9—C100.2 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+2, y+1, z+2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z+2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z+1; (viii) x+1, y+1/2, z+3/2; (ix) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the triazole ring C (C9/C10/N3–N5).
D—H···AD—HH···AD···AD—H···A
O2—H2A···N30.872.042.892 (2)166
O2—H2B···O1i0.872.002.865 (2)176
C10—H10···O2v0.952.483.402 (3)164
C13—H13···Cg0.952.833.451 (3)124
Symmetry codes: (i) x1, y+1/2, z1/2; (v) x, y+1/2, z+1/2.
Table 4. Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C71.225 (2)1.25497
N1—C71.384 (2)1.40076
N1—C61.397 (2)1.40603
N1—C81.452 (2)1.46502
N2—C71.379 (2)1.39180
N2—C11.395 (2)1.40574
N2—C181.450 (2)1.47028
N3—N41.314 (2)1.32954
N3—C101.358 (3)1.37406
N4—N51.347 (2)1.38781
N5—C91.356 (2)1.37548
N5—C111.452 (2)1.47090
C7—N1—C6109.72 (15)109.64541
C7—N1—C8123.68 (15)122.59694
C6—N1—C8125.96 (15)127.83740
C7—N2—C1109.90 (15)109.86320
C7—N2—C18123.91 (16)122.77835
C1—N2—C18125.82 (16)128.23580
N4—N3—C10108.55 (17)108.75382
N3—N4—N5107.17 (16)107.07997
N4—N5—C9111.14 (15)110.25168
N4—N5—C11118.44 (16)118.90455
Calculated energies top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy, TE (eV)-34723.0011
EHOMO (eV)-6.1633
ELUMO (eV)-0.8166
Gap ΔE (eV)5.3468
Dipole moment, µ (Debye)5.5500
Ionisation potential I (eV)6.1633
Electron affinity, A0.8166
Electronegativity, χ3.4900
Hardness, η2.6734
Electrophilicity index, ω2.2780
Softness, σ0.3741
Fraction of electron transferred, ΔN0.6565
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAyhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611.  Google Scholar
First citationBaxter, G. S. & Clarke, D. E. (1992). Eur. J. Pharmacol. 212, 225–229.  CrossRef PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.  CSD CrossRef IUCr Journals Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122.  CSD CrossRef IUCr Journals Google Scholar
First citationBouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o735–o736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDíez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689–7704.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, US  Google Scholar
First citationGaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaruti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193–2195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMavrova, A. Ts, Denkova, P., Tsenov, Y. A., Anichina, K. K. & Vutchev, D. I. (2007). Bioorg. Med. Chem. 15, 6291–6297.  CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.  CAS Google Scholar
First citationNavarrete-Vazquez, G., Cedillo, R., Hernandez-Campos, A., Yepez, L., Hernandez-Luis, F., Valdez, J., Morales, R., Cortes, R., Hernandez, M. & Castillo, R. (2001). Bioorg Med Chem. 11, 187–190.  CAS Google Scholar
First citationOlesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2002). Farmaco, 57, 819–823.  CrossRef PubMed CAS Google Scholar
First citationRavina, E., Sanchez-Alonso, R., Fueyo, J., Baltar, M. P., Bos, J., Iglesias, R. & Sanmartin, M. L. (1993). Arzneim. Forsch. 43, 684–694.  Google Scholar
First citationRémond, G., Portevin, B., Bonnet, J., Canet, E., Regoli, D. & De Nanteuil, G. (1997). Eur. J. Med. Chem. 32, 843–868.  Google Scholar
First citationSaber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842–1846.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746–1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174.  CSD CrossRef Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah Z., Ouzidan Y., Kandri, Rodi Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1–11.  Google Scholar
First citationSerafin, B., Borkowska, G., Glowczyk, J., Kowalska, I. & Rump, S. (1989). Pol. J. Pharmcol. Pharm. 41, 89–96.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacology Online 1, 314–329.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds