research communications
H-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohydrate
Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com
In the title molecule, C24H21N5O·H2O, the dihydrobenzodiazole moiety is not quite planar, while the whole molecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating molecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = dihydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the dihydrobenzodiazole units in adjacent layers intercalating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] interactions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; dihydrobenzodiazole; hydrogen bond; triazole; π-stacking; Hirshfeld surface.
CCDC reference: 1972575
1. Chemical context
Nitrogen et al., 1994; Baxter & Clarke, 1992; Saber et al., 2020; Rémond et al., 1997). The benzimidazole core has several active sites and provides great responsiveness, making it an excellent heterocyclic precursor in the syntheses of the new (Saber et al., 2018a,b; Ouzidan et al., 2011; Saber et al., 2020). With respect to the biological applications of benzimidazolone derivatives, it has been shown that these compounds are found to possess potent antioxidant (Gaba et al., 2014), antiparasitic (Ayhan-Kılcıgil et al., 2007), anthelmintic (Navarrete-Vazquez et al., 2001), antiproliferative (Ravina et al., 1993), anti-HIV (Garuti et al., 2000), anticonvulsant (Rao et al., 2002), anti-inflammatory (Thakurdesai et al., 2007), antihypertensive (Serafin et al., 1989) and anti-trichinellosis (Mavrova et al., 2007) activities. In addition, they are considered to be important moieties for the development of molecules of pharmaceutical interest (Mondieig et al., 2013; Lakhrissi et al., 2008). As a continuation of our research devoted to the study of the cycloaddition reactions involving benzimidazolone derivatives (Sebbar et al., 2016; Saber et al., 2020), we report herein the synthesis, the molecular and crystal structures of the title compound along with the results of the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level in order to compare the theoretical and experimentally determined molecular structures in the solid state.
are known to exhibit excellent biological and pharmaceutical activities (Olesen2. Structural commentary
The title molecule, (I), adopts a U-shaped conformation with an H20⋯C14 separation of 2.83 Å, which is very close to a normal van der Waals contact (2.90 Å). The orientation of the C11–C17 benzyl group is partly determined by an intramolecular C13—H13⋯Cg interaction, where Cg is the centroid of the triazole (C9/C10/N3–N5), ring C (Fig. 1 and Table 1). The dihydrobenzodiazole unit is not quite planar, as indicated by the dihedral angle of 2.50 (8)° between the constituent rings A (C1–C6) and B (N1/N2/C1/C6/C7) and the deviation of atom C7 by 0.0418 (14) Å out of the mean plane through the whole unit. The benzene ring D (C12–C17) is inclined to the triazole ring C by 78.91 (11)° while the latter ring is inclined to the B ring by 64.70 (11)°. The dihedral angle between the mean planes of the B and E (C19–C24) rings is 87.67 (8)°.
3. Supramolecular features
In the crystal, the molecules form chains with the water molecule of crystallization, which extend along [201] through O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = dihydro, Trz = triazole) hydrogen bonds (Table 1 and Fig. 2). The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds (Table 1 and Fig. 2). Intercalation of the dihydrobenzodiazole groups between adjacent layers with concomitant head-to-tail π-stacking interactions between them [Cg2⋯Cg1i = 3.5694 (11) Å where Cg1 and Cg2 are the centroids of the A and B rings, respectively; symmetry code: (i) −x + 1, −y + 1, −z + 2; dihedral angle = 2.50 (10)°] leads to the final three-dimensional structure (Fig. 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), white areas indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atom H2B indicate their roles as the respective donors and acceptors. The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 6b–g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction (Table 2) is H⋯H, contributing 52.1% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.00 Å. The presence of C—H⋯π interactions give rise to pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (23.8% contribution to the HS), Fig. 6c,(Table 2) with triple pairs of spikes with the tips at de + di = 2.86, 2.82 and 2.85 Å. The scattered points in the pair of wings in the fingerprint plots delineated into H⋯O/O⋯H contacts (11.2% contribution), Fig. 6d, have a symmetrical distribution with the edges at de + di = 1.85 Å. The H⋯N/N⋯N contacts, contributing 7.4% to the overall crystal packing, are shown in Fig. 6e as widely scattered points with the tips at de + di = 2.56 Å. The C⋯C contacts, Fig. 6f, have an arrow-shaped distribution of points with the tip at de = di = 1.77 Å. Finally, the C⋯N/N⋯C interactions (2.2%) are reflected in Fig. 6g as tiny characteristic wings with the tips at de + di = 3.44 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions in Fig. 7a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
An N-substituted benzoimidazol-2-one analogue (Saber et al., 2018a,b; Saber et al., 2020) and other similar compounds have also been reported (Belaziz et al., 2012, 2013; Bouayad et al., 2015). In derivatives of benzimidazolin-2-one in which both nitrogen atoms form exocyclic C—N bonds, the bicyclic ring system is either planar, has a slight twist end-to-end, or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape. The closest examples to the title compound are 2 (Saber et al., 2018a) and 3 (Saber et al., 2018b) with 4 (Díez-Barra et al., 1997) as a more distant relative. In 3, the C—N bond, connecting the nitrogen atoms to form exocyclic units are 1.4632 (15) and 1.4525 (16) Å, while in the title compound, the C—N bonds are 1.4301 (15) and 1.4525 (16) Å. In the bicyclic units, they are in an anti-arrangement, and this is basically the same for 2. Interestingly, the three bicyclic units in 4 are close to all being syn to one another.
6. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending over the whole 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one hydrate ring. The energy band gap [ΔE = ELUMO - EHOMO] of the molecule is 5.3468 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −6.1633 and −0.8166 eV, respectively.
|
|
7. Synthesis and crystallization
To a mixture of 3-methyl-1-(prop-2-ynyl)-3,4-dihydroquinoxalin-2(1H)-one (0.65 mmol) in ethanol (20 ml) was added 1-(azidomethyl)benzene (1.04 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue obtained was purified by
on silica gel by using as a mixture (hexane/ethyl acetate: 9/1). The isolated solid product was recrystallized from ethanol to afford yellow crystals (yield: in 19%).8. Refinement
The experimental details including the crystal data, data collection and . Hydrogen atoms were included as riding contributions in idealized positions with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).
are summarized in Table 5
|
Supporting information
CCDC reference: 1972575
https://doi.org/10.1107/S2056989019016876/lh5940sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019016876/lh5940Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019016876/lh5940Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019016876/lh5940Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016; program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).C24H21N5O·H2O | F(000) = 872 |
Mr = 413.47 | Dx = 1.325 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 9.0872 (2) Å | Cell parameters from 9060 reflections |
b = 21.1012 (4) Å | θ = 4.2–70.2° |
c = 11.7134 (2) Å | µ = 0.70 mm−1 |
β = 112.654 (1)° | T = 150 K |
V = 2072.77 (7) Å3 | Plate, colourless |
Z = 4 | 0.18 × 0.08 × 0.01 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3887 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2909 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.057 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 70.2°, θmin = 4.2° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −24→25 |
Tmin = 0.85, Tmax = 0.99 | l = −14→13 |
15080 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.901P] where P = (Fo2 + 2Fc2)/3 |
3887 reflections | (Δ/σ)max < 0.001 |
280 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.85567 (15) | 0.39779 (7) | 0.93327 (13) | 0.0375 (4) | |
N1 | 0.58475 (17) | 0.39409 (7) | 0.89638 (14) | 0.0267 (3) | |
N2 | 0.68572 (18) | 0.48484 (7) | 0.86568 (14) | 0.0278 (3) | |
N3 | 0.3094 (2) | 0.22818 (9) | 0.68794 (17) | 0.0426 (5) | |
N4 | 0.4467 (2) | 0.21861 (8) | 0.67770 (16) | 0.0378 (4) | |
N5 | 0.55663 (19) | 0.25352 (8) | 0.76599 (15) | 0.0300 (4) | |
C1 | 0.5258 (2) | 0.49606 (9) | 0.84381 (16) | 0.0274 (4) | |
C2 | 0.4364 (2) | 0.55101 (10) | 0.81370 (18) | 0.0350 (5) | |
H2 | 0.480398 | 0.590041 | 0.801540 | 0.042* | |
C3 | 0.2785 (3) | 0.54622 (11) | 0.80211 (19) | 0.0411 (5) | |
H3 | 0.213195 | 0.583008 | 0.781973 | 0.049* | |
C4 | 0.2141 (2) | 0.48927 (12) | 0.8192 (2) | 0.0416 (5) | |
H4 | 0.105243 | 0.487817 | 0.808961 | 0.050* | |
C5 | 0.3051 (2) | 0.43389 (11) | 0.85099 (18) | 0.0342 (5) | |
H5 | 0.261424 | 0.394902 | 0.863712 | 0.041* | |
C6 | 0.4618 (2) | 0.43874 (9) | 0.86300 (16) | 0.0263 (4) | |
C7 | 0.7242 (2) | 0.42276 (9) | 0.90173 (17) | 0.0275 (4) | |
C8 | 0.5772 (2) | 0.32986 (9) | 0.93828 (18) | 0.0307 (4) | |
H8A | 0.523147 | 0.330364 | 0.997257 | 0.037* | |
H8B | 0.686995 | 0.313896 | 0.982830 | 0.037* | |
C9 | 0.4903 (2) | 0.28571 (9) | 0.83436 (17) | 0.0288 (4) | |
C10 | 0.3330 (2) | 0.26854 (10) | 0.7837 (2) | 0.0381 (5) | |
H10 | 0.252957 | 0.282630 | 0.811211 | 0.046* | |
C11 | 0.7188 (2) | 0.25400 (10) | 0.77111 (19) | 0.0337 (5) | |
H11A | 0.752881 | 0.209810 | 0.766704 | 0.040* | |
H11B | 0.790188 | 0.271831 | 0.851613 | 0.040* | |
C12 | 0.7378 (2) | 0.29187 (9) | 0.66852 (17) | 0.0303 (4) | |
C13 | 0.6180 (3) | 0.32884 (10) | 0.58683 (19) | 0.0372 (5) | |
H13 | 0.516342 | 0.330255 | 0.592204 | 0.045* | |
C14 | 0.6458 (3) | 0.36398 (11) | 0.4968 (2) | 0.0439 (5) | |
H14 | 0.562951 | 0.389101 | 0.440157 | 0.053* | |
C15 | 0.7931 (3) | 0.36233 (12) | 0.4897 (2) | 0.0499 (6) | |
H15 | 0.813571 | 0.387548 | 0.430265 | 0.060* | |
C16 | 0.9119 (3) | 0.32390 (14) | 0.5694 (2) | 0.0531 (7) | |
H16 | 1.012885 | 0.321923 | 0.563017 | 0.064* | |
C17 | 0.8840 (3) | 0.28853 (12) | 0.6578 (2) | 0.0439 (6) | |
H17 | 0.965324 | 0.261779 | 0.711555 | 0.053* | |
C18 | 0.8011 (2) | 0.53227 (10) | 0.86554 (18) | 0.0336 (5) | |
H18A | 0.909556 | 0.515338 | 0.911413 | 0.040* | |
H18B | 0.787800 | 0.570113 | 0.910627 | 0.040* | |
C19 | 0.7883 (2) | 0.55247 (9) | 0.73841 (17) | 0.0280 (4) | |
C20 | 0.7223 (3) | 0.51411 (11) | 0.6354 (2) | 0.0435 (5) | |
H20 | 0.679963 | 0.473924 | 0.643246 | 0.052* | |
C21 | 0.7171 (3) | 0.53360 (12) | 0.5208 (2) | 0.0493 (6) | |
H21 | 0.671787 | 0.506684 | 0.450937 | 0.059* | |
C22 | 0.7773 (3) | 0.59167 (12) | 0.5081 (2) | 0.0430 (5) | |
H22 | 0.772714 | 0.605182 | 0.429394 | 0.052* | |
C23 | 0.8446 (3) | 0.63033 (11) | 0.6103 (2) | 0.0432 (5) | |
H23 | 0.886487 | 0.670536 | 0.602007 | 0.052* | |
C24 | 0.8509 (2) | 0.61052 (10) | 0.7246 (2) | 0.0357 (5) | |
H24 | 0.898875 | 0.637078 | 0.794666 | 0.043* | |
O2 | 0.10404 (17) | 0.18802 (8) | 0.44186 (14) | 0.0478 (4) | |
H2A | 0.155922 | 0.195519 | 0.520249 | 0.072* | |
H2B | 0.031707 | 0.160858 | 0.441258 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0242 (7) | 0.0395 (9) | 0.0441 (8) | 0.0055 (6) | 0.0078 (6) | −0.0002 (7) |
N1 | 0.0247 (8) | 0.0244 (8) | 0.0286 (8) | 0.0013 (6) | 0.0077 (6) | −0.0006 (6) |
N2 | 0.0259 (8) | 0.0263 (9) | 0.0283 (8) | −0.0016 (7) | 0.0072 (6) | 0.0013 (7) |
N3 | 0.0363 (9) | 0.0486 (12) | 0.0454 (11) | −0.0144 (9) | 0.0184 (8) | −0.0126 (9) |
N4 | 0.0385 (9) | 0.0358 (10) | 0.0409 (10) | −0.0099 (8) | 0.0174 (8) | −0.0081 (8) |
N5 | 0.0306 (8) | 0.0291 (9) | 0.0316 (9) | −0.0037 (7) | 0.0132 (7) | −0.0018 (7) |
C1 | 0.0267 (9) | 0.0319 (11) | 0.0206 (9) | 0.0029 (8) | 0.0059 (7) | −0.0007 (7) |
C2 | 0.0430 (11) | 0.0328 (12) | 0.0277 (10) | 0.0085 (9) | 0.0120 (9) | 0.0036 (8) |
C3 | 0.0438 (12) | 0.0442 (14) | 0.0339 (11) | 0.0195 (10) | 0.0134 (9) | 0.0054 (9) |
C4 | 0.0303 (10) | 0.0591 (15) | 0.0360 (12) | 0.0118 (10) | 0.0132 (9) | 0.0009 (10) |
C5 | 0.0302 (10) | 0.0429 (13) | 0.0311 (10) | 0.0015 (9) | 0.0135 (8) | −0.0007 (9) |
C6 | 0.0255 (9) | 0.0303 (11) | 0.0215 (9) | 0.0024 (8) | 0.0071 (7) | −0.0011 (8) |
C7 | 0.0232 (9) | 0.0302 (10) | 0.0252 (9) | −0.0006 (8) | 0.0050 (7) | −0.0023 (8) |
C8 | 0.0345 (10) | 0.0279 (11) | 0.0280 (10) | 0.0011 (8) | 0.0101 (8) | 0.0026 (8) |
C9 | 0.0309 (9) | 0.0272 (10) | 0.0297 (10) | −0.0018 (8) | 0.0132 (8) | 0.0019 (8) |
C10 | 0.0350 (11) | 0.0409 (13) | 0.0416 (12) | −0.0073 (9) | 0.0182 (9) | −0.0083 (10) |
C11 | 0.0288 (10) | 0.0375 (12) | 0.0362 (11) | 0.0025 (9) | 0.0138 (8) | 0.0018 (9) |
C12 | 0.0303 (10) | 0.0318 (11) | 0.0283 (10) | −0.0052 (8) | 0.0108 (8) | −0.0047 (8) |
C13 | 0.0401 (11) | 0.0333 (12) | 0.0401 (12) | 0.0026 (9) | 0.0177 (9) | 0.0022 (9) |
C14 | 0.0584 (14) | 0.0363 (13) | 0.0350 (12) | 0.0035 (11) | 0.0159 (10) | 0.0016 (9) |
C15 | 0.0679 (16) | 0.0510 (15) | 0.0377 (13) | −0.0150 (13) | 0.0279 (12) | −0.0003 (11) |
C16 | 0.0404 (12) | 0.0785 (19) | 0.0447 (14) | −0.0136 (13) | 0.0211 (11) | 0.0002 (13) |
C17 | 0.0313 (10) | 0.0601 (16) | 0.0386 (12) | −0.0021 (10) | 0.0115 (9) | 0.0025 (11) |
C18 | 0.0328 (10) | 0.0340 (11) | 0.0296 (10) | −0.0092 (9) | 0.0070 (8) | −0.0023 (9) |
C19 | 0.0240 (9) | 0.0285 (10) | 0.0309 (10) | −0.0005 (8) | 0.0099 (7) | −0.0008 (8) |
C20 | 0.0551 (14) | 0.0388 (13) | 0.0352 (12) | −0.0153 (11) | 0.0159 (10) | −0.0061 (10) |
C21 | 0.0625 (15) | 0.0503 (15) | 0.0340 (12) | −0.0167 (12) | 0.0173 (11) | −0.0101 (11) |
C22 | 0.0454 (12) | 0.0512 (15) | 0.0351 (12) | −0.0047 (11) | 0.0188 (10) | 0.0023 (10) |
C23 | 0.0494 (13) | 0.0384 (13) | 0.0491 (13) | −0.0075 (10) | 0.0272 (11) | 0.0008 (10) |
C24 | 0.0376 (11) | 0.0323 (11) | 0.0393 (12) | −0.0052 (9) | 0.0171 (9) | −0.0062 (9) |
O2 | 0.0397 (8) | 0.0618 (11) | 0.0395 (9) | −0.0154 (8) | 0.0128 (7) | 0.0018 (8) |
O1—C7 | 1.225 (2) | C11—H11B | 0.9900 |
N1—C7 | 1.384 (2) | C12—C13 | 1.381 (3) |
N1—C6 | 1.397 (2) | C12—C17 | 1.384 (3) |
N1—C8 | 1.452 (2) | C13—C14 | 1.390 (3) |
N2—C7 | 1.379 (2) | C13—H13 | 0.9500 |
N2—C1 | 1.395 (2) | C14—C15 | 1.373 (3) |
N2—C18 | 1.450 (2) | C14—H14 | 0.9500 |
N3—N4 | 1.314 (2) | C15—C16 | 1.385 (4) |
N3—C10 | 1.358 (3) | C15—H15 | 0.9500 |
N4—N5 | 1.347 (2) | C16—C17 | 1.377 (3) |
N5—C9 | 1.356 (2) | C16—H16 | 0.9500 |
N5—C11 | 1.452 (2) | C17—H17 | 0.9500 |
C1—C2 | 1.381 (3) | C18—C19 | 1.510 (3) |
C1—C6 | 1.397 (3) | C18—H18A | 0.9900 |
C2—C3 | 1.392 (3) | C18—H18B | 0.9900 |
C2—H2 | 0.9500 | C19—C20 | 1.383 (3) |
C3—C4 | 1.384 (3) | C19—C24 | 1.386 (3) |
C3—H3 | 0.9500 | C20—C21 | 1.387 (3) |
C4—C5 | 1.397 (3) | C20—H20 | 0.9500 |
C4—H4 | 0.9500 | C21—C22 | 1.373 (3) |
C5—C6 | 1.379 (3) | C21—H21 | 0.9500 |
C5—H5 | 0.9500 | C22—C23 | 1.382 (3) |
C8—C9 | 1.494 (3) | C22—H22 | 0.9500 |
C8—H8A | 0.9900 | C23—C24 | 1.383 (3) |
C8—H8B | 0.9900 | C23—H23 | 0.9500 |
C9—C10 | 1.368 (3) | C24—H24 | 0.9500 |
C10—H10 | 0.9500 | O2—H2A | 0.8700 |
C11—C12 | 1.507 (3) | O2—H2B | 0.8701 |
C11—H11A | 0.9900 | ||
O2···O1i | 2.865 (2) | C10···H5 | 2.98 |
O2···C17i | 3.192 (3) | C11···H8B | 2.90 |
O2···N3 | 2.892 (2) | C14···H20 | 2.83 |
O1···H8B | 2.55 | C18···H2 | 2.98 |
O1···H11B | 2.81 | C22···H16vii | 2.98 |
O1···H18A | 2.56 | C22···H13vi | 2.97 |
O1···H18Aii | 2.87 | C23···H16vii | 2.97 |
O2···H5iii | 2.64 | H2···N4viii | 2.78 |
O2···H11Bi | 2.77 | H2A···N4 | 2.62 |
O2···H17i | 2.71 | H2A···N3 | 2.04 |
N4···C13 | 3.200 (3) | H2B···O1i | 2.00 |
N2···H20 | 2.60 | H2B···H11Bi | 2.48 |
N4···H13 | 2.73 | H3···H15vi | 2.48 |
N5···H13 | 2.52 | H4···H18Aix | 2.57 |
C1···C20 | 3.557 (3) | H5···H10 | 2.44 |
C2···C6iv | 3.542 (3) | H8A···N4v | 2.67 |
C3···C7iv | 3.540 (3) | H8B···H11B | 2.27 |
C5···C9 | 3.592 (3) | H10···O2v | 2.48 |
C9···C5 | 3.592 (3) | H10···H17ix | 2.46 |
C10···O2v | 3.402 (3) | H11A···C15v | 2.92 |
C11···C15v | 3.421 (3) | H11A···H17 | 2.51 |
C14···C20 | 3.505 (3) | H16···H23vii | 2.44 |
C2···H18B | 2.98 | H16···H22vii | 2.46 |
C3···H15vi | 2.88 | H18A···H18Aii | 2.19 |
C8···H11B | 2.79 | H18B···H24 | 2.43 |
C8···H5 | 2.99 | H24···N3viii | 2.76 |
C7—N1—C6 | 109.72 (15) | N5—C11—H11B | 108.9 |
C7—N1—C8 | 123.68 (15) | C12—C11—H11B | 108.9 |
C6—N1—C8 | 125.96 (15) | H11A—C11—H11B | 107.7 |
C7—N2—C1 | 109.90 (15) | C13—C12—C17 | 119.63 (19) |
C7—N2—C18 | 123.91 (16) | C13—C12—C11 | 123.39 (18) |
C1—N2—C18 | 125.82 (16) | C17—C12—C11 | 116.99 (18) |
N4—N3—C10 | 108.55 (17) | C12—C13—C14 | 120.1 (2) |
N3—N4—N5 | 107.17 (16) | C12—C13—H13 | 119.9 |
N4—N5—C9 | 111.14 (15) | C14—C13—H13 | 119.9 |
N4—N5—C11 | 118.44 (16) | C15—C14—C13 | 119.9 (2) |
C9—N5—C11 | 130.35 (17) | C15—C14—H14 | 120.1 |
C2—C1—N2 | 131.12 (19) | C13—C14—H14 | 120.1 |
C2—C1—C6 | 121.84 (18) | C14—C15—C16 | 120.0 (2) |
N2—C1—C6 | 106.99 (16) | C14—C15—H15 | 120.0 |
C1—C2—C3 | 116.5 (2) | C16—C15—H15 | 120.0 |
C1—C2—H2 | 121.7 | C17—C16—C15 | 120.2 (2) |
C3—C2—H2 | 121.7 | C17—C16—H16 | 119.9 |
C4—C3—C2 | 121.7 (2) | C15—C16—H16 | 119.9 |
C4—C3—H3 | 119.1 | C16—C17—C12 | 120.1 (2) |
C2—C3—H3 | 119.1 | C16—C17—H17 | 119.9 |
C3—C4—C5 | 121.65 (19) | C12—C17—H17 | 119.9 |
C3—C4—H4 | 119.2 | N2—C18—C19 | 114.52 (15) |
C5—C4—H4 | 119.2 | N2—C18—H18A | 108.6 |
C6—C5—C4 | 116.6 (2) | C19—C18—H18A | 108.6 |
C6—C5—H5 | 121.7 | N2—C18—H18B | 108.6 |
C4—C5—H5 | 121.7 | C19—C18—H18B | 108.6 |
C5—C6—C1 | 121.66 (18) | H18A—C18—H18B | 107.6 |
C5—C6—N1 | 131.39 (18) | C20—C19—C24 | 118.34 (19) |
C1—C6—N1 | 106.93 (15) | C20—C19—C18 | 122.54 (18) |
O1—C7—N2 | 127.11 (18) | C24—C19—C18 | 119.06 (17) |
O1—C7—N1 | 126.52 (18) | C19—C20—C21 | 120.8 (2) |
N2—C7—N1 | 106.37 (15) | C19—C20—H20 | 119.6 |
N1—C8—C9 | 112.68 (15) | C21—C20—H20 | 119.6 |
N1—C8—H8A | 109.1 | C22—C21—C20 | 120.2 (2) |
C9—C8—H8A | 109.1 | C22—C21—H21 | 119.9 |
N1—C8—H8B | 109.1 | C20—C21—H21 | 119.9 |
C9—C8—H8B | 109.1 | C21—C22—C23 | 119.6 (2) |
H8A—C8—H8B | 107.8 | C21—C22—H22 | 120.2 |
N5—C9—C10 | 103.82 (17) | C23—C22—H22 | 120.2 |
N5—C9—C8 | 125.29 (17) | C22—C23—C24 | 120.0 (2) |
C10—C9—C8 | 130.88 (18) | C22—C23—H23 | 120.0 |
N3—C10—C9 | 109.31 (18) | C24—C23—H23 | 120.0 |
N3—C10—H10 | 125.3 | C23—C24—C19 | 121.0 (2) |
C9—C10—H10 | 125.3 | C23—C24—H24 | 119.5 |
N5—C11—C12 | 113.37 (16) | C19—C24—H24 | 119.5 |
N5—C11—H11A | 108.9 | H2A—O2—H2B | 103.2 |
C12—C11—H11A | 108.9 | ||
C10—N3—N4—N5 | −0.7 (2) | C11—N5—C9—C10 | 177.1 (2) |
N3—N4—N5—C9 | 0.3 (2) | N4—N5—C9—C8 | −178.77 (17) |
N3—N4—N5—C11 | −176.95 (17) | C11—N5—C9—C8 | −1.9 (3) |
C7—N2—C1—C2 | 175.59 (19) | N1—C8—C9—N5 | 86.6 (2) |
C18—N2—C1—C2 | 2.4 (3) | N1—C8—C9—C10 | −92.1 (3) |
C7—N2—C1—C6 | −1.9 (2) | N4—N3—C10—C9 | 0.9 (3) |
C18—N2—C1—C6 | −175.07 (17) | N5—C9—C10—N3 | −0.7 (2) |
N2—C1—C2—C3 | −177.86 (19) | C8—C9—C10—N3 | 178.24 (19) |
C6—C1—C2—C3 | −0.7 (3) | N4—N5—C11—C12 | 73.3 (2) |
C1—C2—C3—C4 | −0.4 (3) | C9—N5—C11—C12 | −103.4 (2) |
C2—C3—C4—C5 | 1.1 (3) | N5—C11—C12—C13 | 7.5 (3) |
C3—C4—C5—C6 | −0.8 (3) | N5—C11—C12—C17 | −172.44 (19) |
C4—C5—C6—C1 | −0.2 (3) | C17—C12—C13—C14 | −1.9 (3) |
C4—C5—C6—N1 | 178.04 (18) | C11—C12—C13—C14 | 178.1 (2) |
C2—C1—C6—C5 | 1.0 (3) | C12—C13—C14—C15 | −0.6 (3) |
N2—C1—C6—C5 | 178.79 (17) | C13—C14—C15—C16 | 2.4 (4) |
C2—C1—C6—N1 | −177.65 (17) | C14—C15—C16—C17 | −1.7 (4) |
N2—C1—C6—N1 | 0.13 (19) | C15—C16—C17—C12 | −0.8 (4) |
C7—N1—C6—C5 | −176.8 (2) | C13—C12—C17—C16 | 2.6 (3) |
C8—N1—C6—C5 | −5.8 (3) | C11—C12—C17—C16 | −177.4 (2) |
C7—N1—C6—C1 | 1.7 (2) | C7—N2—C18—C19 | 109.6 (2) |
C8—N1—C6—C1 | 172.72 (16) | C1—N2—C18—C19 | −78.2 (2) |
C1—N2—C7—O1 | −176.56 (19) | N2—C18—C19—C20 | −24.7 (3) |
C18—N2—C7—O1 | −3.2 (3) | N2—C18—C19—C24 | 158.15 (18) |
C1—N2—C7—N1 | 2.9 (2) | C24—C19—C20—C21 | −0.8 (3) |
C18—N2—C7—N1 | 176.23 (16) | C18—C19—C20—C21 | −178.0 (2) |
C6—N1—C7—O1 | 176.65 (18) | C19—C20—C21—C22 | −0.2 (4) |
C8—N1—C7—O1 | 5.4 (3) | C20—C21—C22—C23 | 0.7 (4) |
C6—N1—C7—N2 | −2.83 (19) | C21—C22—C23—C24 | −0.1 (4) |
C8—N1—C7—N2 | −174.11 (16) | C22—C23—C24—C19 | −1.0 (3) |
C7—N1—C8—C9 | −111.65 (19) | C20—C19—C24—C23 | 1.4 (3) |
C6—N1—C8—C9 | 78.5 (2) | C18—C19—C24—C23 | 178.7 (2) |
N4—N5—C9—C10 | 0.2 (2) |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+2; (iii) x, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z+2; (v) x, −y+1/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y+1, −z+1; (viii) −x+1, y+1/2, −z+3/2; (ix) x−1, y, z. |
Cg is the centroid of the triazole ring C (C9/C10/N3–N5). |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N3 | 0.87 | 2.04 | 2.892 (2) | 166 |
O2—H2B···O1i | 0.87 | 2.00 | 2.865 (2) | 176 |
C10—H10···O2v | 0.95 | 2.48 | 3.402 (3) | 164 |
C13—H13···Cg | 0.95 | 2.83 | 3.451 (3) | 124 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (v) x, −y+1/2, z+1/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C7 | 1.225 (2) | 1.25497 |
N1—C7 | 1.384 (2) | 1.40076 |
N1—C6 | 1.397 (2) | 1.40603 |
N1—C8 | 1.452 (2) | 1.46502 |
N2—C7 | 1.379 (2) | 1.39180 |
N2—C1 | 1.395 (2) | 1.40574 |
N2—C18 | 1.450 (2) | 1.47028 |
N3—N4 | 1.314 (2) | 1.32954 |
N3—C10 | 1.358 (3) | 1.37406 |
N4—N5 | 1.347 (2) | 1.38781 |
N5—C9 | 1.356 (2) | 1.37548 |
N5—C11 | 1.452 (2) | 1.47090 |
C7—N1—C6 | 109.72 (15) | 109.64541 |
C7—N1—C8 | 123.68 (15) | 122.59694 |
C6—N1—C8 | 125.96 (15) | 127.83740 |
C7—N2—C1 | 109.90 (15) | 109.86320 |
C7—N2—C18 | 123.91 (16) | 122.77835 |
C1—N2—C18 | 125.82 (16) | 128.23580 |
N4—N3—C10 | 108.55 (17) | 108.75382 |
N3—N4—N5 | 107.17 (16) | 107.07997 |
N4—N5—C9 | 111.14 (15) | 110.25168 |
N4—N5—C11 | 118.44 (16) | 118.90455 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy, TE (eV) | -34723.0011 |
EHOMO (eV) | -6.1633 |
ELUMO (eV) | -0.8166 |
Gap ΔE (eV) | 5.3468 |
Dipole moment, µ (Debye) | 5.5500 |
Ionisation potential I (eV) | 6.1633 |
Electron affinity, A | 0.8166 |
Electronegativity, χ | 3.4900 |
Hardness, η | 2.6734 |
Electrophilicity index, ω | 2.2780 |
Softness, σ | 0.3741 |
Fraction of electron transferred, ΔN | 0.6565 |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. Google Scholar
Baxter, G. S. & Clarke, D. E. (1992). Eur. J. Pharmacol. 212, 225–229. CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. CSD CrossRef IUCr Journals Google Scholar
Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122. CSD CrossRef IUCr Journals Google Scholar
Bouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o735–o736. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Díez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689–7704. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, US Google Scholar
Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505. Web of Science CrossRef CAS PubMed Google Scholar
Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193–2195. Web of Science CrossRef PubMed CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. Web of Science CrossRef PubMed CAS Google Scholar
Mavrova, A. Ts, Denkova, P., Tsenov, Y. A., Anichina, K. K. & Vutchev, D. I. (2007). Bioorg. Med. Chem. 15, 6291–6297. CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61. CAS Google Scholar
Navarrete-Vazquez, G., Cedillo, R., Hernandez-Campos, A., Yepez, L., Hernandez-Luis, F., Valdez, J., Morales, R., Cortes, R., Hernandez, M. & Castillo, R. (2001). Bioorg Med Chem. 11, 187–190. CAS Google Scholar
Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59. CrossRef CAS PubMed Web of Science Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rao, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2002). Farmaco, 57, 819–823. CrossRef PubMed CAS Google Scholar
Ravina, E., Sanchez-Alonso, R., Fueyo, J., Baltar, M. P., Bos, J., Iglesias, R. & Sanmartin, M. L. (1993). Arzneim. Forsch. 43, 684–694. Google Scholar
Rémond, G., Portevin, B., Bonnet, J., Canet, E., Regoli, D. & De Nanteuil, G. (1997). Eur. J. Med. Chem. 32, 843–868. Google Scholar
Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842–1846. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746–1750. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174. CSD CrossRef Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah Z., Ouzidan Y., Kandri, Rodi Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1–11. Google Scholar
Serafin, B., Borkowska, G., Glowczyk, J., Kowalska, I. & Rump, S. (1989). Pol. J. Pharmcol. Pharm. 41, 89–96. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacology Online 1, 314–329. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.