research communications
H-1,2,6-thiadiazine-4-carboxylate
Hirshfeld analysis and a molecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxadiazol-3-yl]methyl}-2aChemRar Research and Development Institute, 7 Nobel St, Innovation Center, Skolkovo Territory, Moscow, 143026, Russian Federation, bV.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine, cChemical Diversity Research Institute, 2A Rabochaya St, Khimki, Moscow Region, 141400, Russian Federation, and dUniversity of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
*Correspondence e-mail: mod@chemdiv.com
The title compound, C15H22N4O5S, was prepared via alkylation of 3-(chloromethyl)-5-(pentan-3-yl)-1,2,4-oxadiazole in anhydrous dioxane in the presence of triethylamine. The thiadiazine ring has an with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxadiazole ring is inclined to the mean plane of the thiadiazine ring by 77.45 (11)°. In the crystal, molecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the intermolecular contacts present in the crystal. Molecular were use to evaluate the title compound as a potential system that interacts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.
Keywords: crystal structure; 2H-1,2,6-thiadiazine 1,1-dioxide; hepatitis B; HBV; hydrogen bonding; Hirshfeld surface analysis; molecular docking study.
CCDC reference: 1968398
1. Chemical context
Derivatives of 2H-1,2,6-thiadiazine 1,1-dioxide demonstrate antiviral (Martínez et al., 1999; Esteban et al., 1997, 1995), cannabinoid (Cano et al., 2007), antidiabetic (Goyal & Bhargava, 1989; Jain & Malik, 1983), anti-HIV-1 (Breining et al., 1995) and antiparasitic (Arán et al., 1986) activities. In addition, such derivatives are patent protected as pain relievers and antipyretic drugs (Giraldez et al., 1989). Heterocyclic homologues of 2H-1,2,6-thiadiazine-1,1-dioxides are inhibitors of human cytomegalovirus (Martínez et al., 2003), Cruzi triposome (Álvarez et al., 2010) and diuretics (Goya et al., 1992). In a continuation of our efforts to obtain new HBV inhibitors for the treatment and prevention of human HBV infections (Ivachtchenko et al., 2019; Ivashchenko et al., 2019; Kovalenko et al., 2019), we initiated the design, synthesis, and anti-hepatitis B virus activity testing of the new 2H-1,2,6-thiadiazine 1,1-dioxide derivative, ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxadiazol-3-yl]methyl}-2H-1,2,6-thiadiazine-4-carboxylate (3).
One of the main methods of 2H-1,2,6-thiadiazine 1,1-dioxide synthesis is the intermolecular of sulfamide with the corresponding 1,3-diketone (Cheone, 2001; Alberola et al., 1991), as shown in Fig. 1. The synthesis of the title compound (3) is illustrated in Fig. 2. The starting product 1 was converted to compound 3 by alkylation of 3-(chloromethyl)-5-(pentan-3-yl)-1,2,4-oxadiazole (2) in anhydrous dioxane in the presence of triethylamine.
Single-crystal X-ray
and different spectroscopic techniques confirm the assigned chemical structure of the title compound. Molecular docking simulations were also carried out.2. Structural commentary
The molecular structure of compound 3, is illustrated in Fig. 3. The thiadazine ring (S1/N3/N4/C4–C6) has an [puckering parameters: amplitude Q = 0.3314 (17) Å, θ = 114.2 (3)°, φ = 182.5 (4)°], with atom S1 displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxadiazole ring (O1/N1/N2/C1/C2; r.m.s. deviation = 0.008 Å) is inclined to the mean plane of the thiadiazine ring by 77.45 (11)°. The oxadiazole ring is almost normal to the C4—N3 endocyclic bond, with the C4—N3—C3—C2 torsion angle being 92.4 (3)°, and it is twisted with respect to the N3-C3 exocyclic bond, with the N3—C3—C2—N2 torsion angle being 127.1 (2)°. The ester substituent is not completely planar and it is twisted in relation to the C4—C5 endocyclic bond; the C4—C5—C8—O4 torsion angle is 23.7 (4)° as a result of steric repulsion between the hydrogen atom of the thiadiazine-dioxide ring and the oxygen atom of the ester substituent. The iso-pentyl group has an all-trans conformation [the C13—C12—C11—C14 and C12—C11—C14—C15 torsion angles are 173.4 (3) and −175.5 (3)°, respectively] and is oriented in such a way that the N1—C1—C11—H11 torsion angle is −6.7°. The ethyl groups of this substituent have -sc and +sc-conformations in relation to the C1—C11 bond [C1—C11—C12—C13 = −62.4 (3)° and C1—C11—C14—C15 = 61.6 (4)°].
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction (Table 1 and Fig. 4). There are no other significant intermolecular interactions present in the crystal.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, August 2019; Groom et al., 2016) for the 1,2,6-thiadiazine 1,1-dioxide skeleton yielded 37 hits. Only one structure involves a carboxylate in position 4, viz. methyl 2,3-dimethyl-5-(trichloromethyl)-2H-1,2,6-thiadiazine-4-carboxylate-1,1-dioxide (CSD refcode ZECWAI; Onys'ko et al., 2017). The thiadiazine ring has the usual with the S atom displaced by 0.679 (1) Å from the mean plane through the other five atoms [cf. 0.488 (1) Å in the title compound]. The acetate group is inclined to this mean plane by 51.3 (2)° compared to 28.98 (18)° in the title compound.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The molecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surface (Fig. 5), mapped over a fixed colour scale of −0.484 (red) to 1.652 (blue). There are four red spots in the dnorm surface indicating the regions of donor–acceptor interactions or short contacts. A list of short contacts in the crystal of compound 3 are given in Table 2.
The intermolecular interactions in the crystal of the title compound are shown on the two-dimensional fingerprint plots presented in Fig. 6. The contribution of the O⋯H/H⋯O contacts, corresponding to the C—H⋯O interactions, is represented by a pair of sharp spikes. The interactions appear in the middle of the scattered points in the two-dimensional fingerprint plot with a contribution to the overall Hirshfeld surface of 27.5% (Fig. 6c). The fingerprint plots indicate that the principal contributions are from H⋯H (48.7%; Fig. 6b), O⋯H/H⋯O (27.5%; Fig. 6c), N⋯H/H⋯N (14.9%; Fig. 6d) and C⋯H/H⋯C (5.2%; Fig. 6e) contacts.
6. Molecular docking evaluation
The title molecule (3) was investigated as a potential system that can interact effectively with the capsid of the Hepatitis B virus (HBV). We performed molecular modelling of the interaction of title molecule with core HBV proteins including 5E0I, 5GMZ, 5WRE and 5T2P. The crystal structures of these proteins were obtained at high resolution (1.5–2 Å), all necessary information about the crystal structures being downloaded from the Protein Data bank (Berman et al., 2000; accessed on 24 July 2019). The pharmacophore model was generated by using the Ligandscout 4.3 program (Wolber & Langer, 2005; accessed on 24 July 2019). All of the above-mentioned protein structures contain six chains (designated as A, B, C, D, E, F). The docking poses of ligands (reference molecules) were extracted from the obtained crystallographic data. For the correct choice of appropriate chain and poses for molecular modelling (docking), all the reference ligands were re-docked. According to our calculations, the minimal values of the residual mean-square deviations (r.m.s.d.) for the geometry were obtained for poses in the D chains (r.m.s.d. < 1 Å). Hence, the active-site selection and corresponding pharmacophore analyses were performed for the D chains of the above-mentioned proteins. The most significant information is collected in Table 3.
|
As can be seen from Table 3, our system demonstrated rather large values of binding affinity for all the proteins. The corresponding graphical representation describes the pharmacophore environment of the ligands (Fig. 7, left) and poses in proteins (Fig. 7, right). The red lines designate hydrogen-bond acceptors, while yellow lines designated hydrophobic interactions.
It should be noted that the geometrical configuration of the title molecule (as ligand immersed to protein) essentially depends on the pharmacophore surroundings. The most significant geometrical parameters (torsion angles) obtained from the docking procedure are compared with results of the non-empirical calculations and X-ray data in Table 4. The calculated structure of the title compound is illustrated in Fig. 8. The ab initio calculations were performed by using density functional theory with M062x functional and cc-pVDZ basis set.
|
The obtained data demonstrate significant geometrical relaxation associated with immersion of the molecule in a protein.
7. in vitro HBV replication model
The biological activity of the title compound 3 was studied using an experimental in vitro hepatitis B virus infection model maintaining a full virus replication cycle. This model based on the human hepatoma line HepG2 stably transfected with the NTCP gene (Sun et al., 2016) was developed in our laboratories for identification of viral entry inhibitors able to prevent development of resistant HBV forms (Ivachtchenko et al., 2019b). Compound 3 demonstrated 80% inhibition of HBV replication (in 10 µM concentration) in this model and could be considered to be a promising candidate for the development of a potent anti-HBV medicine capable of preventing the development of resistant HBV forms (Donkers et al., 2017).
8. Synthesis and crystallization
The synthesis of the title compound is illustrated in Fig. 2. 3-(Chloromethyl)-5-(pentan-3-yl)-1,2,4-oxadiazole (2) (1.1 mmol, 208 mg) was added to a solution of ethyl 5-methyl-2H-1,2,6-thiadiazine-4-carboxylate 1,1-dioxide (1) (1.0 mmol, 218 mg) and NEt3 (1.1 mmol) in 1 ml of DXN (2,6-dimethyl-1,3-dioxan-4-yl acetate) and the resulting mixture was heated at 353 K for 12 h. After cooling to room temperature, the solution was diluted with water (50 ml) and extracted with CH2Cl2, dried over MgSO4, filtered and concentrated in vacuo. The product, compound 3, was purified by crystallization from acetonitrile giving a white crystalline powder (yield 308 mg, 83%; m.p. 338–339 K). Further crystallization by slow evaporation of an acetonitrile solution yielded colourless irregularly shaped crystals.
9. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1968398
https://doi.org/10.1107/S2056989019015986/su5529sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015986/su5529Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015986/su5529Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXL (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C15H22N4O5S | Dx = 1.341 Mg m−3 |
Mr = 370.42 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3271 reflections |
a = 12.4962 (5) Å | θ = 3.6–23.3° |
b = 9.9237 (4) Å | µ = 0.21 mm−1 |
c = 29.5925 (15) Å | T = 293 K |
V = 3669.7 (3) Å3 | Block, colourless |
Z = 8 | 0.4 × 0.2 × 0.1 mm |
F(000) = 1568 |
Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 3211 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2510 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −11→11 |
Tmin = 0.466, Tmax = 1.000 | l = −25→35 |
26547 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.053P)2 + 1.1666P] where P = (Fo2 + 2Fc2)/3 |
3211 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.66349 (5) | 0.40561 (6) | 0.31677 (2) | 0.0462 (2) | |
O1 | 0.74895 (14) | 0.29562 (18) | 0.46836 (6) | 0.0577 (5) | |
O2 | 0.60666 (16) | 0.31342 (17) | 0.34444 (7) | 0.0646 (6) | |
O3 | 0.76374 (15) | 0.3626 (2) | 0.30037 (8) | 0.0726 (6) | |
O4 | 0.47430 (16) | 0.86020 (18) | 0.34934 (7) | 0.0668 (6) | |
O5 | 0.35185 (14) | 0.7296 (2) | 0.31536 (7) | 0.0654 (6) | |
N1 | 0.65072 (15) | 0.4628 (2) | 0.44365 (7) | 0.0472 (5) | |
N2 | 0.80748 (16) | 0.3561 (2) | 0.43291 (8) | 0.0514 (5) | |
N3 | 0.68614 (14) | 0.54419 (19) | 0.34784 (7) | 0.0415 (5) | |
N4 | 0.58953 (16) | 0.4585 (2) | 0.27686 (7) | 0.0495 (5) | |
C1 | 0.65689 (19) | 0.3647 (2) | 0.47179 (9) | 0.0463 (6) | |
C2 | 0.74512 (17) | 0.4525 (2) | 0.42013 (8) | 0.0402 (5) | |
C3 | 0.77420 (18) | 0.5405 (2) | 0.38103 (9) | 0.0467 (6) | |
H3A | 0.788916 | 0.631017 | 0.391704 | 0.056* | |
H3B | 0.838461 | 0.506142 | 0.366693 | 0.056* | |
C4 | 0.61014 (18) | 0.6400 (2) | 0.34937 (8) | 0.0427 (6) | |
H4 | 0.615584 | 0.705875 | 0.371592 | 0.051* | |
C5 | 0.52574 (18) | 0.6464 (2) | 0.32039 (8) | 0.0412 (6) | |
C6 | 0.52217 (19) | 0.5588 (2) | 0.28224 (9) | 0.0457 (6) | |
C7 | 0.4479 (2) | 0.5814 (3) | 0.24327 (10) | 0.0660 (8) | |
H7A | 0.471161 | 0.528646 | 0.217909 | 0.099* | |
H7B | 0.448204 | 0.675101 | 0.235238 | 0.099* | |
H7C | 0.376781 | 0.554846 | 0.251685 | 0.099* | |
C8 | 0.4500 (2) | 0.7587 (3) | 0.32946 (9) | 0.0497 (6) | |
C9 | 0.2702 (2) | 0.8316 (4) | 0.32370 (14) | 0.0881 (11) | |
H9A | 0.275933 | 0.864784 | 0.354432 | 0.106* | |
H9B | 0.279751 | 0.906902 | 0.303192 | 0.106* | |
C10 | 0.1671 (3) | 0.7707 (5) | 0.31670 (19) | 0.1275 (19) | |
H10A | 0.163950 | 0.732718 | 0.286891 | 0.191* | |
H10B | 0.112282 | 0.837879 | 0.319856 | 0.191* | |
H10C | 0.156092 | 0.700900 | 0.338674 | 0.191* | |
C11 | 0.5779 (2) | 0.3135 (3) | 0.50547 (10) | 0.0601 (7) | |
H11 | 0.517153 | 0.375927 | 0.506023 | 0.072* | |
C12 | 0.5362 (3) | 0.1749 (3) | 0.49009 (12) | 0.0756 (9) | |
H12A | 0.596527 | 0.113804 | 0.487578 | 0.091* | |
H12B | 0.489029 | 0.139689 | 0.513284 | 0.091* | |
C13 | 0.4770 (3) | 0.1756 (4) | 0.44585 (14) | 0.0939 (12) | |
H13A | 0.522406 | 0.211801 | 0.422662 | 0.141* | |
H13B | 0.413982 | 0.230344 | 0.448575 | 0.141* | |
H13C | 0.456836 | 0.085211 | 0.438077 | 0.141* | |
C14 | 0.6254 (3) | 0.3084 (3) | 0.55267 (11) | 0.0799 (10) | |
H14A | 0.572775 | 0.269913 | 0.573035 | 0.096* | |
H14B | 0.686816 | 0.248710 | 0.552328 | 0.096* | |
C15 | 0.6597 (3) | 0.4429 (4) | 0.57096 (13) | 0.1016 (13) | |
H15A | 0.714439 | 0.480074 | 0.551891 | 0.152* | |
H15B | 0.687317 | 0.431690 | 0.601003 | 0.152* | |
H15C | 0.599454 | 0.502798 | 0.571657 | 0.152* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0472 (4) | 0.0396 (4) | 0.0518 (4) | 0.0034 (3) | −0.0079 (3) | 0.0008 (3) |
O1 | 0.0566 (11) | 0.0612 (11) | 0.0553 (12) | 0.0133 (9) | 0.0089 (9) | 0.0161 (9) |
O2 | 0.0825 (14) | 0.0438 (10) | 0.0674 (13) | −0.0180 (10) | −0.0177 (11) | 0.0143 (9) |
O3 | 0.0531 (11) | 0.0764 (13) | 0.0881 (16) | 0.0224 (10) | −0.0045 (11) | −0.0190 (12) |
O4 | 0.0760 (13) | 0.0518 (11) | 0.0725 (15) | 0.0144 (10) | 0.0007 (11) | −0.0081 (10) |
O5 | 0.0439 (10) | 0.0727 (13) | 0.0796 (15) | 0.0152 (9) | 0.0022 (9) | −0.0008 (10) |
N1 | 0.0432 (11) | 0.0428 (11) | 0.0555 (14) | 0.0035 (9) | 0.0051 (10) | 0.0075 (10) |
N2 | 0.0458 (11) | 0.0587 (13) | 0.0497 (14) | 0.0063 (10) | 0.0053 (10) | 0.0090 (10) |
N3 | 0.0394 (10) | 0.0387 (11) | 0.0463 (12) | −0.0029 (9) | −0.0046 (9) | 0.0043 (9) |
N4 | 0.0549 (12) | 0.0466 (12) | 0.0470 (13) | 0.0060 (10) | −0.0082 (10) | −0.0014 (9) |
C1 | 0.0476 (14) | 0.0438 (14) | 0.0474 (16) | 0.0064 (11) | 0.0042 (11) | 0.0003 (11) |
C2 | 0.0353 (12) | 0.0417 (12) | 0.0435 (14) | −0.0036 (10) | −0.0049 (10) | −0.0006 (10) |
C3 | 0.0374 (12) | 0.0491 (14) | 0.0536 (16) | −0.0082 (11) | −0.0061 (11) | 0.0061 (12) |
C4 | 0.0438 (13) | 0.0377 (12) | 0.0466 (15) | −0.0035 (11) | 0.0052 (11) | 0.0043 (10) |
C5 | 0.0372 (12) | 0.0410 (13) | 0.0453 (15) | 0.0003 (10) | 0.0036 (10) | 0.0056 (10) |
C6 | 0.0454 (13) | 0.0421 (13) | 0.0496 (16) | −0.0006 (11) | −0.0025 (11) | 0.0073 (11) |
C7 | 0.0763 (19) | 0.0634 (17) | 0.0583 (19) | 0.0160 (15) | −0.0215 (15) | −0.0017 (14) |
C8 | 0.0493 (15) | 0.0527 (15) | 0.0471 (16) | 0.0037 (13) | 0.0046 (12) | 0.0088 (12) |
C9 | 0.061 (2) | 0.103 (3) | 0.100 (3) | 0.0384 (19) | 0.0100 (18) | 0.008 (2) |
C10 | 0.0468 (19) | 0.139 (4) | 0.196 (6) | 0.024 (2) | 0.007 (2) | 0.025 (4) |
C11 | 0.0652 (17) | 0.0544 (16) | 0.0607 (19) | 0.0094 (13) | 0.0206 (14) | 0.0102 (13) |
C12 | 0.074 (2) | 0.0620 (19) | 0.091 (3) | −0.0053 (16) | 0.0256 (19) | 0.0133 (17) |
C13 | 0.083 (2) | 0.088 (2) | 0.110 (3) | −0.023 (2) | 0.007 (2) | −0.003 (2) |
C14 | 0.102 (2) | 0.081 (2) | 0.056 (2) | 0.008 (2) | 0.0207 (18) | 0.0155 (17) |
C15 | 0.135 (4) | 0.099 (3) | 0.071 (3) | 0.005 (2) | 0.001 (2) | −0.009 (2) |
S1—O2 | 1.4183 (19) | C12—C13 | 1.504 (5) |
S1—O3 | 1.4097 (19) | C14—C15 | 1.503 (5) |
S1—N3 | 1.678 (2) | C3—H3A | 0.9700 |
S1—N4 | 1.589 (2) | C3—H3B | 0.9700 |
O1—N2 | 1.413 (3) | C4—H4 | 0.9300 |
O1—C1 | 1.343 (3) | C7—H7A | 0.9600 |
O4—C8 | 1.205 (3) | C7—H7B | 0.9600 |
O5—C8 | 1.327 (3) | C7—H7C | 0.9600 |
O5—C9 | 1.458 (3) | C9—H9A | 0.9700 |
N1—C1 | 1.283 (3) | C9—H9B | 0.9700 |
N1—C2 | 1.373 (3) | C10—H10A | 0.9600 |
N2—C2 | 1.291 (3) | C10—H10B | 0.9600 |
N3—C3 | 1.476 (3) | C10—H10C | 0.9600 |
N3—C4 | 1.344 (3) | C11—H11 | 0.9800 |
N4—C6 | 1.313 (3) | C12—H12A | 0.9700 |
C1—C11 | 1.492 (4) | C12—H12B | 0.9700 |
C2—C3 | 1.494 (3) | C13—H13A | 0.9600 |
C4—C5 | 1.361 (3) | C13—H13B | 0.9600 |
C5—C6 | 1.425 (3) | C13—H13C | 0.9600 |
C5—C8 | 1.487 (3) | C14—H14A | 0.9700 |
C6—C7 | 1.497 (3) | C14—H14B | 0.9700 |
C9—C10 | 1.439 (5) | C15—H15A | 0.9600 |
C11—C12 | 1.539 (4) | C15—H15B | 0.9600 |
C11—C14 | 1.518 (4) | C15—H15C | 0.9600 |
O2—S1—N3 | 107.26 (11) | N2—C2—C3 | 120.9 (2) |
O2—S1—N4 | 110.56 (11) | N3—C3—C2 | 110.41 (18) |
O3—S1—O2 | 116.64 (13) | N3—C4—C5 | 124.0 (2) |
O3—S1—N3 | 106.67 (11) | C4—C5—C6 | 119.7 (2) |
O3—S1—N4 | 111.17 (13) | C4—C5—C8 | 114.5 (2) |
N4—S1—N3 | 103.55 (10) | C6—C5—C8 | 125.5 (2) |
C1—O1—N2 | 106.41 (17) | N4—C6—C5 | 122.6 (2) |
C8—O5—C9 | 116.2 (2) | N4—C6—C7 | 114.7 (2) |
C1—N1—C2 | 102.8 (2) | C5—C6—C7 | 122.6 (2) |
C2—N2—O1 | 102.71 (18) | O4—C8—O5 | 124.6 (2) |
C3—N3—S1 | 118.03 (15) | O4—C8—C5 | 123.6 (2) |
C4—N3—S1 | 118.60 (16) | O5—C8—C5 | 111.6 (2) |
C4—N3—C3 | 121.5 (2) | C10—C9—O5 | 108.1 (3) |
C6—N4—S1 | 122.23 (18) | C1—C11—C12 | 109.3 (2) |
O1—C1—C11 | 116.3 (2) | C1—C11—C14 | 111.5 (2) |
N1—C1—O1 | 112.9 (2) | C14—C11—C12 | 112.0 (3) |
N1—C1—C11 | 130.7 (2) | C13—C12—C11 | 114.8 (3) |
N1—C2—C3 | 123.9 (2) | C15—C14—C11 | 114.4 (3) |
N2—C2—N1 | 115.1 (2) | ||
S1—N3—C3—C2 | −71.7 (2) | N4—S1—N3—C4 | 31.0 (2) |
S1—N3—C4—C5 | −14.3 (3) | C1—O1—N2—C2 | 0.6 (3) |
S1—N4—C6—C5 | 13.9 (3) | C1—N1—C2—N2 | −0.9 (3) |
S1—N4—C6—C7 | −171.32 (19) | C1—N1—C2—C3 | 176.3 (2) |
O1—N2—C2—N1 | 0.2 (3) | C1—C11—C12—C13 | −62.4 (3) |
O1—N2—C2—C3 | −177.1 (2) | C1—C11—C14—C15 | 61.6 (4) |
O1—C1—C11—C12 | −66.6 (3) | C2—N1—C1—O1 | 1.4 (3) |
O1—C1—C11—C14 | 57.8 (3) | C2—N1—C1—C11 | −175.8 (3) |
O2—S1—N3—C3 | 78.61 (19) | C3—N3—C4—C5 | −178.3 (2) |
O2—S1—N3—C4 | −85.95 (19) | C4—N3—C3—C2 | 92.4 (3) |
O2—S1—N4—C6 | 83.5 (2) | C4—C5—C6—N4 | 9.6 (4) |
O3—S1—N3—C3 | −47.1 (2) | C4—C5—C6—C7 | −164.7 (2) |
O3—S1—N3—C4 | 148.37 (19) | C4—C5—C8—O4 | 23.7 (4) |
O3—S1—N4—C6 | −145.3 (2) | C4—C5—C8—O5 | −152.6 (2) |
N1—C1—C11—C12 | 110.4 (3) | C6—C5—C8—O4 | −149.2 (3) |
N1—C1—C11—C14 | −125.2 (3) | C6—C5—C8—O5 | 34.4 (3) |
N1—C2—C3—N3 | −50.0 (3) | C8—O5—C9—C10 | −166.0 (3) |
N2—O1—C1—N1 | −1.3 (3) | C8—C5—C6—N4 | −177.8 (2) |
N2—O1—C1—C11 | 176.3 (2) | C8—C5—C6—C7 | 7.9 (4) |
N2—C2—C3—N3 | 127.1 (2) | C9—O5—C8—O4 | 2.1 (4) |
N3—S1—N4—C6 | −31.1 (2) | C9—O5—C8—C5 | 178.4 (2) |
N3—C4—C5—C6 | −8.5 (4) | C12—C11—C14—C15 | −175.5 (3) |
N3—C4—C5—C8 | 178.1 (2) | C14—C11—C12—C13 | 173.4 (3) |
N4—S1—N3—C3 | −164.45 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N2i | 0.93 | 2.54 | 3.431 (3) | 161 |
Symmetry code: (i) −x+3/2, y+1/2, z. |
Atom1···Atom2 | Length | Length - vdW |
S1..H7Bi | 3.090 | 0.090 |
O2···H7Bi | 2.813 | 0.093 |
H7A···O4i | 2.687 | -0.033 |
H12B···N2ii | 2.772 | 0.022 |
O4···H14Aiii | 2.700 | -0.020 |
C8···H14Aiii | 2.913 | 0.013 |
C6···H10Biv | 2.978 | 0.078 |
O2···C3v | 3.275 | 0.055 |
O2···H3Av | 2.634 | -0.086 |
O3···C4v | 3.077 | -0.143 |
N2···H3Av | 2.816 | 0.066 |
N2···HAv | 2.538 | -0.212 |
H3B···O4v | 2.799 | 0.079 |
Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 1/2, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1/2, y - 1/2, z; (v) -x + 3/2, y - 1/2, z. |
PDB refcode | Est. binding energy (kcal mol-1) | Binding affinity score |
5E0I | -14.54 | -25.2 |
5GMZ | -14.30 | -14.99 |
5WRE | -16.03 | -8.28 |
5T2P | -17.05 | -22.34 |
Torsion angle | X-ray | M062x/cc-pVDZ | 5E0I | 5GMZ | 5WRE | 5T2P |
O2—S1—N4—C6 | 83.5 (2) | 78.7 | 93.13 | 93.2 | 93.1 | 137.4 |
C5—C8—O5—C9 | 178.4 (2) | 178.9 | -112.9 | -79.3 | -110.4 | -163.1 |
S1—N3—C3—C2 | -71.7 (2) | -71.5 | -148.5 | -126.7 | -172.5 | -80 |
O1—C1—C11—C14 | 57.8 (3) | 49.9 | 50.1 | -112.9 | 9.8 | 52.8 |
Acknowledgements
We are grateful to the Ministry of Science and Higher Education of the Russian Federation in the framework of an agreement on reimbursement of costs associated with the development of a platform for biologically active compound libraries design for actual biotargets, including the platform testing on the example of invention and preparation of candidate libraries for HBV treatment designed as inhibitors of viral penetration and assembly of viral core particles.
Funding information
Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (grant No. RFMEFI57917X0154).
References
Alberola, A., Andrés, J. M., González, A., Pedrosa, R. & Vicente, M. (1991). Synthesis, 1991, 355–356. CrossRef Google Scholar
Álvarez, G., Aguirre-López, B., Varela, J., Cabrera, M., Merlino, A., López, G. V., Lavaggi, M. L., Porcal, W., Di Maio, R., González, M., Cerecetto, H., Cabrera, N., Pérez-Montfort, R., de Gómez-Puyou, M. T. & Gómez-Puyou, A. (2010). Eur. J. Med. Chem. 45, 5767–5772. Web of Science PubMed Google Scholar
Arán, V. J., Bielsa, A. G., Goya, P., Ochoa, C., Paez, J. A., Stud, M., Contreras, M., Escario, J. A., Jimenez Duran, M. I. & Farmaco, E. A. (1986). Edizione Scientifica, 41, 862–872. Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Breining, T., Cimpoia, A. R., Mansour, T. S., Cammack, N., Hopewell, P. & Ashman, C. (1995). Heterocycles, 41, 87–94. CAS Google Scholar
Cano, C., Goya, P., Paez, J. A., Girón, R., Sánchez, E. & Martín, M. I. (2007). Bioorg. Med. Chem. 15, 7480–7493. Web of Science CrossRef PubMed CAS Google Scholar
Cheone, S. H. (2001). EROS Encyclopedia of Reagents for Organic Synthesis, Sulfamide, 1–4. Chichester: Wiley. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Donkers, J. M., Zehnder, B., van Westen, G. J. P., Kwakkenbos, M. J., IJzerman, A. P., Oude Elferink, R. P. J., Beuers, U., Urban, S. & van de Graaf, F. J. (2017). Sci. Rep. 7, 15307. Web of Science CrossRef PubMed Google Scholar
Esteban, A. I., De Clercq, E. & Martínez, A. (1997). Nucleosides Nucleotides, 16, 265–276. CrossRef CAS Web of Science Google Scholar
Esteban, A. I., Juanes, O., Conde, S., Goya, P., De Clercq, E. & Martínez, A. (1995). Bioorg. Med. Chem. 3, 1527–1535. CrossRef CAS PubMed Web of Science Google Scholar
Giraldez, A., Nieves, R., Ochoa, C., Vara de Rey, C., Cenarruzabeitia, E. & Lasheras, B. (1989). Eur. J. Med. Chem. 24, 497–502. CrossRef CAS Web of Science Google Scholar
Goya, P., Paez, J. A., Alkorta, I., Carrasco, E., Grau, M., Anton, F., Julia, S. & Martínez-Ripoll, M. (1992). J. Med. Chem. 35, 3977–3983. CSD CrossRef PubMed CAS Web of Science Google Scholar
Goyal, R. N. & Bhargava, S. (1989). Curr. Sci. 58, 287–290. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ivachtchenko, A. V., Mitkin, O. D., Kravchenko, D. V., Kovalenko, S. M., Shishkina, S. V., Bunyatyan, N. D., Konovalova, I. S., Dmitrieva, I. G., Ivanov, V. V. T. & Langer (2019). Heliyon, 5, e02738. Google Scholar
Ivashchenko, A. V., Mitkin, O. D., Kravchenko, D. V., Kuznetsova, I. V., Kovalenko, S. M., Bunyatyan, N. D. & Langer, T. (2019). Crystals, 9, 379–385. Web of Science CSD CrossRef CAS Google Scholar
Jain, R. & Malik, W. (1983). Indian J. Chem. Sec. A, 22, 331–332. Google Scholar
Kovalenko, S. M., Drushlyak, O. G., Konovalova, I. S., Mariutsa, I. O., Kravchenko, D. V., Ivachtchenko, A. V. & Mitkin, O. D. (2019). Molbank, M1085. doi: 10.3390/M1085. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martínez, A., Esteban, A. I., Herrero, A., Ochoa, C., Andrei, G., Snoeck, R., Balzarini, J. & Clercq, E. D. (1999). Bioorg. Med. Chem. 7, 1617–1623. Web of Science PubMed Google Scholar
Martínez, A., Gil, C., Castro, A., Bruno, A. M., Pérez, C., Prieto, C. & Otero, J. (2003). Antivir. Chem. Chemother. 14, 107–114. PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Onys'ko, P. P., Zamulko, K. A., Kyselyova, O. I., Shalimov, O. O. & Rusanov, E. B. (2017). Tetrahedron, 73, 3513–3520. CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y., Qi, Y., Peng, B. & Li, W. (2016). NTCP-Reconstituted In Vitro HBV Infection System. Hepatitis B Virus, 1–14. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolber, G. & Langer, T. (2005). J. Chem. Inf. Model. 45, 160–169. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.