research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn)

CROSSMARK_Color_square_no_text.svg

aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 September 2019; accepted 4 December 2019; online 1 January 2020)

The complexes bis­(acetyl­acetonato-κ2O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis­(acetyl­acetonato-κ2O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis­(acetyl­acetonato-κ2O,O′)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetyl­acetonates [M(acac)2(H2O)2] with N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octa­hedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 13 are different and thus the crystal structures are not isotypic.

1. Chemical context

Pentane-2,4-dionate (acac) and ethyl­enedi­amine derivatives are amongst the most widely used chelate ligands in transition metal chemistry. The crystal structures of mixed complexes [M(acac)2(TMEDA)] (TMEDA = N,N,N′,N′-tetra­methyl­ethylenedi­amine) containing both types of ligands have been reported for several divalent metals, e.g. M = V (Ma et al., 1999[Ma, Y. M., Reardon, D., Gambarotta, S., Yap, G., Zahalka, H. & Lemay, C. (1999). Organometallics, 18, 2773-2781.]), Co (Pasko et al., 2004[Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735-741.]), Ni (Trimmel et al., 2002[Trimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759-765.]; Zeller et al., 2004[Zeller, A., Herdtweck, E. & Strassner, Th. (2004). Inorg. Chem. Commun. 7, 296-301.]) and Ru (Halbach et al., 2012[Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809-8812.]). The synthesis of [Zn(acac)2(TMEDA)] was reported recently in conjunction with the Ru derivative but without crystal structure determination (Halbach et al., 2012[Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809-8812.]). Typically, [M(acac)2(TMEDA)] complexes are used as valuable starting materials for the preparation of organometallic and coordination compounds (Kaschube et al. 1988[Kaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525-532.]; Nelkenbaum et al., 2005[Nelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645-2659.]; Albrecht et al., 2019[Albrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233-240.]). Moreover, there is an increasing inter­est in [M(acac)2(TMEDA)] and related [M(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate) complexes as precursor materials for CVD deposition of Co3O4 (Pasko et al., 2004[Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735-741.]), Fe2O3 (Barreca et al., 2012[Barreca, D., Carraro, G., Devi, A., Fois, E., Gasparotto, A., Seraglia, R., Maccato, C., Sada, C., Tabacchi, G., Tondello, E., Venzo, A. & Winter, M. (2012). Dalton Trans. 41, 149-155.]) and MnF2 (Malandrino et al., 2012[Malandrino, G., Toro, R. G., Catalano, M. R., Fragalà, M. E., Rossi, P. & Paoli, P. (2012). Eur. J. Inorg. Chem. pp.1021-1024.]).

[Scheme 1]

Typically, [M(acac)2(TMEDA)] complexes are synthesized from the reaction of the metal acetyl­acetonates with TMEDA. Following this procedure, we obtained the complexes [Mn(acac)2(TMEDA)] (1), [Fe(acac)2(TMEDA)] (2) and [Zn(acac)2(TMEDA)] (3) from the corresponding dihydrates [M(acac)2(H2O)2] and TMEDA in toluene as solvent. Recrystallization from n-hexane at 248 K afforded [Mn(acac)2(TMEDA)] (1) as yellow, [Fe(acac)2(TMEDA)] (2) as red–brown and [Zn(acac)2(TMEDA)] (3) as colorless products. Determination of the magnetic moments for [Mn(acac)2(TMEDA)] (5.7 B.M.) and [Fe(acac)2(TMEDA)] (5.1 B.M.) indicates a high-spin configuration in both cases.

2. Structural commentary

Compounds 13 crystallize in the monoclinic system, space group P21/n with Z = 4. However, despite the similarity of the lattice parameters and the analogous mol­ecular structures, complexes 13 are not isotypic. The crystal structures consist of discrete complex mol­ecules [M(acac)2TMEDA] in which the central metal atoms are coordinated nearly octa­hedrally by four oxygen atoms of two acac ligands and two nitro­gen atoms of the TMEDA ligand (Figs. 1[link]–3[link][link]). Mn complex 1 exhibits Mn—O and Mn—N distances of 2.127 (1)–2.150 (1) Å and 2.356 (2)–2.364 (2) Å, respectively (Table 1[link]). Similar geometric parameters have been reported for [Mn(acac)2(H2O)2] [Mn—O: 2.123 (8)–2.142 (8) Å; Mont­gom­ery & Lingafelter, 1968[Montgomery, H. & Lingafelter, E. C. (1968). Acta Cryst. B24, 1127-1128.]], [Mn(acac)2(1,10-phenanthroline)] [Mn—O: 2.116 (5)–2.152 (5) Å, Mn—N: 2.307 (5) Å; Stephens, 1977[Stephens, F. S. (1977). Acta Cryst. B33, 3492-3495.]], [Mn(acac)2(2,2′-bi­pyridine)] [Mn—O: 2.148 (2)–2.158 (2) Å, Mn—N: 2.283 (2)–2.288 (3) Å; van Gorkum et al., 2005[Gorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255-2261.]] or [Mn(hfa)2(TMEDA)] [Mn—O: 2.139 (4)–2.178 (4) Å, Mn—N: 2.299 (5)—2.307 (5) Å; Mal­an­drino et al., 2012[Malandrino, G., Toro, R. G., Catalano, M. R., Fragalà, M. E., Rossi, P. & Paoli, P. (2012). Eur. J. Inorg. Chem. pp.1021-1024.]].

Table 1
Selected geometric parameters (Å, °) for 1[link]

Mn—O1 2.1271 (13) Mn—O4 2.1365 (12)
Mn—O2 2.1500 (12) Mn—N1 2.3643 (15)
Mn—O3 2.1375 (12) Mn—N2 2.3560 (15)
       
O1—Mn—O2 83.61 (5) O2—Mn—N2 90.36 (5)
O1—Mn—O3 107.00 (5) O3—Mn—O4 83.78 (5)
O1—Mn—O4 93.25 (5) O3—Mn—N1 165.43 (5)
O1—Mn—N1 86.01 (5) O3—Mn—N2 90.61 (5)
O1—Mn—N2 161.29 (6) O4—Mn—N1 89.07 (5)
O2—Mn—O3 89.71 (5) O4—Mn—N2 94.95 (6)
O2—Mn—O4 171.63 (5) N1—Mn—N2 77.34 (6)
O2—Mn—N1 98.41 (5)    
[Figure 1]
Figure 1
Mol­ecular structure of complex 1 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.
[Figure 2]
Figure 2
Mol­ecular structure of complex 2 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.
[Figure 3]
Figure 3
Mol­ecular structure of complex 3 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

The Fe—O and Fe—N distances in compound 2 [2.050 (1)–2.097 (1) Å and 2.302 (1)–2.318 (1) Å, respectively; Table 2[link]] are on average shorter than the corresponding Mn—O and Mn—N distances in complex 1. The Fe—O and Fe—N distances compare well with the data that have been observed in the compounds [Fe(acac)2(H2O)2] [Fe—O: 2.034–2.041 Å; Tsodikov et al., 1995[Tsodikov, M. V., Bukhtenko, O. V., Ellert, O. G., Petrunenko, I. A., Antsyshkina, A. S., Sadikov, G. G., Maksimov, Y. V., Titov, Y. V. & Novotortsev, V. M. (1995). Russ. Chem. Bull. 44, 1396-1400.]], [Fe(hfa)2(picoline)2] [Fe—O: 2.057 (1) Å, Fe—N: 2.190 (3)–2.224 (3) Å; Novitchi et al., 2017[Novitchi, G., Jiang, S., Shova, S., Rida, F., Hlavička, I., Orlita, M., Wernsdorfer, W., Hamze, R., Martins, C., Suaud, N., Guihéry, N., Barra, A.-L. & Train, C. (2017). Inorg. Chem. 56, 14809-14822.]] or [Fe(hfa)2(TMEDA)] [Fe—O: 2.064 (1)–2.094 (1), Fe—N: 2.229 (2) Å; Dickman et al., 1998[Dickman, M. H. (1998). Acta Cryst. C54 IUC9800048.]].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Fe—O1 2.0876 (10) Fe—O4 2.0520 (9)
Fe—O2 2.0497 (10) Fe—N1 2.3021 (12)
Fe—O3 2.0970 (10) Fe—N2 2.3184 (12)
       
O1—Fe—O2 85.58 (4) O2—Fe—N2 84.18 (4)
O1—Fe—O3 93.98 (4) O3—Fe—O4 86.00 (4)
O1—Fe—O4 99.11 (4) O3—Fe—N1 170.93 (4)
O1—Fe—N1 92.44 (4) O3—Fe—N2 95.43 (4)
O1—Fe—N2 166.73 (4) O4—Fe—N1 86.66 (4)
O2—Fe—O3 95.84 (4) O4—Fe—N2 90.87 (4)
O2—Fe—O4 174.85 (4) N1—Fe—N2 79.35 (4)
O2—Fe—N1 91.04 (5)    

[Zn(acac)2(TMEDA)] (3) displays Zn—O and Zn—N distances of 2.061 (1)–2.077 (1) and 2.253 (1)–2.272 (1) Å, respectively (Table 3[link]). In comparison with the iron complex 2, the average metal–oxygen distances and metal–nitro­gen distances are slightly shortened. On the whole, the Zn—O and Zn—N distances in compound 3 are similar to those observed in the related compounds [Zn(acac)2(H2O)2] [Zn—O: 2.032 (1)–2.049 (1) Å; Harbach et al., 2003[Harbach, P., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m724-m725.]], [Zn(acac)2(1,10-phenanthroline)] [Zn—O: 2.044 (1)–2.085 (1) Å, Zn—N: 2.196 (1) Å; Brahma et al., 2008[Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140-m143.]], [Zn(acac)2(2,2′-bi­pyridine)] [Zn—O: 2.051 (1)–2.089 (1) Å, Zn—N: 2.197 (2)–2.208 (2) Å; Brahma et al., 2008[Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140-m143.]] or [Zn(hfa)2(TMEDA)] [Zn—O: 2.103 (1)–2.126 (1) Å, Zn—N: 2.145 (1)–2.151 (1) Å; Ni et al., 2005[Ni, J., Yan, H., Wang, A., Yang, Y., Stern, C. L., Metz, A. W., Jin, S., Wang, L., Marks, T. J., Ireland, J. R. & Kannewurf, C. R. (2005). J. Am. Chem. Soc. 127, 5613-5624.]].

Table 3
Selected geometric parameters (Å, °) for 3[link]

Zn—O1 2.0771 (12) Zn—O4 2.0607 (10)
Zn—O2 2.0611 (11) Zn—N1 2.2722 (13)
Zn—O3 2.0645 (11) Zn—N2 2.2533 (13)
       
O1—Zn—O2 87.50 (4) O2—Zn—N2 89.57 (5)
O1—Zn—O3 101.58 (5) O3—Zn—O4 87.96 (4)
O1—Zn—O4 88.49 (4) O3—Zn—N1 168.61 (5)
O1—Zn—N1 89.28 (5) O3—Zn—N2 89.09 (5)
O1—Zn—N2 168.94 (5) O4—Zn—N1 88.92 (5)
O2—Zn—O3 90.18 (5) O4—Zn—N2 94.86 (5)
O2—Zn—O4 175.16 (4) N1—Zn—N2 80.27 (5)
O2—Zn—N1 93.76 (5)    

In general, the above-mentioned [M(hfa)2(TMEDA)] (M = Mn, Fe, Zn) complexes exhibit shorter M—N distances than the corresponding [M(acac)2(TMEDA)] complexes. This effect is probably due to the electron-withdrawing effect of the CF3 groups of the hfa ligands.

The iron complex 2 displays a subtle elongation (0.041 Å) of the Fe—O bonds trans to the N atoms with respect to the Fe—O bonds trans to oxygen. A similar effect was observed for [Co(acac)2(TMEDA)] (Pasko et al., 2004[Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735-741.]). In the case of the Mn and Zn complexes 1 and 3, the trans influence is negligible as reported for [Ni(acac)2(TMEDA)] (Trimmel et al., 2002[Trimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759-765.]) and [Ru(acac)2(TMEDA)] (Halbach et al., 2012[Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809-8812.]). A reverse effect with a shortening of the Zn—O bonds trans to nitro­gen was detected for [Zn(acac)2(2,2′-bi­pyridine)] and [Zn(acac)2(1,10-phenanthroline)] (Brahma et al., 2008[Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140-m143.]).

Each of the complexes 13 exhibits nearly planar six-membered acac-M chelate rings. The maximum deviation from planarity, as indicated by the dihedral angle between the M/O1/O2 (M/O3/O4) plane of the chelate ring and the best plane through O1/C2/C3/C4/O2 (O3/C7/C8/C9/O4), is 6.2 (1)° in the case of the zinc complex 3. PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used to calculate the dihedral angles. The five-membered M-TMEDA ring adopts a twist conformation with approximate C2 symmetry. As a result of the centrosymmetric crystal structure, both types of the enanti­omeric chelate rings with λ and δ conformations are present.

The MO4N2 coordination polyhedra in compounds 13 deviate moderately from a regular octa­hedron. The O—M—O angles are in the range 171.7 (1)° (complex 1) to 175.2 (1)° (complex 3) and the N—M–-O angles vary from 161.3 (1)° (complex 1) to 170.9 (1)° (complex 2). The smallest acac bite angle is observed in compound 1 [83.6 (1)°], the largest is found in compound 3 [88.0 (1)°]. In the case of the TMEDA ligands, the bite angles are marginally smaller with a range between 77.3 (1)° (compound 1) and 80.3 (1)° (compound 3). Overall, the distortion of the MO4N2 octa­hedra in compounds 13 is very similar to that observed in the analogous V, Ni and Co complexes [M(acac)2(TMEDA)].

3. Supra­molecular features

The packing of the [M(acac)2(TMEDA)] units is dominated by van der Waals inter­actions. The mutual arrangement of the complex units 13 is similar but not identical (Figs. 4[link]–6[link][link]). In the case of the iron compound 2 there is also a contribution from weak C—H⋯O hydrogen bridges (Table 4[link]). As a result, the complexes are associated by R22(8) type motifs, forming centrosymmetric dimers (Fig. 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H2⋯O1i 0.96 2.62 3.5269 (18) 157
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Crystal structure of compound 1, viewed along the b axis.
[Figure 5]
Figure 5
Crystal structure of compound 2, viewed along the b axis. The inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.
[Figure 6]
Figure 6
Crystal structure of compound 3, viewed along the b axis.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, February 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes with a composition [M(acac)2(TMEDA)] analogous to 13 revealed the crystal structures for the M = V, Ni, Co and Ru derivatives (Ma et al., 1999[Ma, Y. M., Reardon, D., Gambarotta, S., Yap, G., Zahalka, H. & Lemay, C. (1999). Organometallics, 18, 2773-2781.]; Pasko et al., 2004[Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735-741.]; Trimmel et al., 2002[Trimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759-765.]; Zeller et al., 2004[Zeller, A., Herdtweck, E. & Strassner, Th. (2004). Inorg. Chem. Commun. 7, 296-301.]; Halbach et al., 2012[Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809-8812.]). However, none of these complexes is isotypic with the three title compounds. In the case of the related hfa derivatives, complexes of the type [M(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate) with M = Mg, Mn, Fe, Co, Cu and Zn have been reported.

5. Synthesis and crystallization

TMEDA (7.5 ml, 5.8 g, 50 mmol) was added to a suspension of [M(acac)2(H2O)2] (25 mmol, M = Mn: 9.71 g, Fe: 9.73 g, Zn: 9.97 g) in toluene (30 ml). The suspension was stirred at 323 K for 2 h. After removal of the solvent under reduced pressure, n-hexane (25 ml) was added and insoluble parts were filtered off. The filtrates were kept at 248 K to obtain the products as yellow (1), red–brown (2) and colourless (3) crystalline solids in yields around 90%.

Characterization

[Mn(acac)2TMEDA] (1)

C16H30MnN2O4 calculated C 52.03, H 8.19, N 7.59%, found: C 51.71, H 8.13, N 7.14%; IR (ATR): ν = 3067 w, 2993 w, 2970 w, 2917 w, 2986 w, 2860 w, 2828 w, 2788 w, 2772 w, 1595 m, 1512 s, 1468 m, 1449 m, 1412 s, 1391 m, 1353 m, 1288 m, 1251 m, 1190 w, 1159 w, 1124 w, 1095 w, 1063 w, 1045 m, 1026 w, 1011 m, 950 m, 934 w, 913 m, 794 m, 771 w, 751 m, 650 w, 583 w, 526 m, 468 w, 448 w, 436 w, 400 s, 325 m, 212 s cm−1.

M.p.: 362 K.

[Fe(acac)2TMEDA] (2)

C16H30FeN2O4 calculated C 51.90, H 8.17, N 7.57%, found: C 51.75, H 8.08, N 7.23%; IR (ATR): ν = 3074 w, 3001 w, 2967 w, 2911 w, 2869 w, 2836 w, 2790 w, 1583 m, 1510 s, 1455 m, 1411 s, 1382 m, 1357 w, 1289 m, 1274 w, 1256 m, 1188 w, 1165 w, 1127 w, 1101 w, 1030 w 1012 m, 952 m, 917 m, 793 m, 762 s, 651 w, 583 w, 543 m, 475 w, 436 w, 404 w, 382 s, 296 w, 265 m, 227 s cm−1.

M.p.: 361 K.

[Zn(acac)2TMEDA] (3)

C16H30N2O4Zn calculated C 50.60, H 7.96, N 7.38%, found: C 50.33, H 8.13, N 7.23%; 1H-NMR (CDCl3, 399.962 MHz) δ = 5.15 [s, 2H, C(O)CHC(O)], 2.49 (s, 4H, Me2N-CH2), 2.31 (s, 12H, (CH3)2N), 1.85 [s, 12H, CH3C(O)]; 13C-NMR (CDCl3,100.581 MHz) δ = 190.9 [C(O)], 98.4 [C(O)CHC(O)], 56.5 (NCH2), 46.6 [(CH3)2N], 28.3 (C(O)CH3) ppm; IR (ATR): ν = 3071 w, 3001 w, 2975 w, 2881 w, 2835 w, 2792 w, 1615 m, 1593 m, 1515 s, 1469 m, 1455 m, 1411 m, 1390 s, 1354 m, 1290 m, 1252 m, 1190 w, 1166 w, 1128 w, 1101 w, 1061 w, 1032 m, 1013 s, 953 m, 936 w, 918 m, 798 m, 770 m, 754 m, 649 w, 584 w, 543 m, 474 w, 440 m, 405 s, 382 w, 208 s cm−1.

M.p.: 362 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2(CH and CH2) or 1.5(CH3) times Ueq(C). Reflections with error/e.s.d. > 8 were omitted. Error/e.s.d. = (wD2/<wD2>)0.5 where D = Fo2 - Fc2.

Table 5
Experimental details

  1 2 3
Crystal data
Chemical formula [Mn(C5H7O2)2(C6H16N2)] [Fe(C5H7O2)2(C6H16N2)] [Zn(C5H7O2)2(C6H16N2)]
Mr 369.36 370.27 379.79
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 213 213 200
a, b, c (Å) 10.4234 (4), 14.3123 (5), 13.6047 (5) 10.2021 (3), 15.4708 (4), 12.4881 (4) 10.2335 (3), 14.2134 (6), 13.6738 (5)
β (°) 103.154 (3) 95.382 (3) 101.208 (3)
V3) 1976.33 (13) 1962.37 (10) 1950.96 (12)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.69 0.79 1.28
Crystal size (mm) 0.35 × 0.25 × 0.20 0.26 × 0.25 × 0.23 0.45 × 0.39 × 0.33
 
Data collection
Diffractometer STOE IPDS 2 STOE IPDS 2 STOE IPDS 2T
Absorption correction Numerical (X-AREA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-AREA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-AREA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.798, 0.912 0.814, 0.894 0.627, 0.779
No. of measured, independent and observed [I > 2σ(I)] reflections 12607, 4139, 3475 18586, 5276, 4425 22385, 4124, 3456
Rint 0.030 0.037 0.047
(sin θ/λ)max−1) 0.634 0.688 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.06 0.031, 0.086, 1.04 0.027, 0.076, 1.07
No. of reflections 4139 5276 4124
No. of parameters 216 216 216
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.24 0.32, −0.22 0.37, −0.26
Computer programs: X-AREA (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: X-AREA (Stoe & Cie, 2016); cell refinement: X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II) (1) top
Crystal data top
[Mn(C5H7O2)2(C6H16N2)]F(000) = 788
Mr = 369.36Dx = 1.241 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4234 (4) ÅCell parameters from 13227 reflections
b = 14.3123 (5) Åθ = 1.4–27.2°
c = 13.6047 (5) ŵ = 0.69 mm1
β = 103.154 (3)°T = 213 K
V = 1976.33 (13) Å3Block, clear yellow
Z = 40.35 × 0.25 × 0.20 mm
Data collection top
STOE IPDS 2
diffractometer
4139 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs3475 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.030
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.1°
rotation method scansh = 1313
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2016)
k = 1718
Tmin = 0.798, Tmax = 0.912l = 1716
12607 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6571P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4139 reflectionsΔρmax = 0.22 e Å3
216 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.50579 (2)0.74721 (2)0.49407 (2)0.04120 (11)
O10.67069 (13)0.65614 (9)0.53426 (10)0.0602 (3)
O20.64605 (12)0.84003 (9)0.45153 (11)0.0554 (3)
O30.50538 (13)0.83274 (9)0.62280 (10)0.0546 (3)
O40.38216 (14)0.65820 (9)0.55845 (10)0.0565 (3)
N10.44810 (15)0.65991 (11)0.34289 (11)0.0523 (4)
N20.33093 (14)0.83481 (11)0.39666 (12)0.0533 (4)
C10.8801 (3)0.5868 (2)0.5617 (2)0.0943 (9)
H10.84770.54840.60860.141*
H30.96670.60890.59280.141*
H20.88380.55060.50290.141*
C20.7888 (2)0.66910 (16)0.53114 (14)0.0593 (5)
C30.8405 (2)0.75159 (16)0.50286 (17)0.0664 (6)
H40.93080.75320.50700.080*
C40.76938 (18)0.83223 (14)0.46880 (15)0.0568 (5)
C50.8448 (2)0.91826 (18)0.4505 (2)0.0885 (8)
H50.91360.90060.41780.133*
H60.88270.94770.51380.133*
H70.78600.96110.40820.133*
C60.4607 (2)0.89848 (16)0.77048 (18)0.0714 (6)
H80.55210.91440.79360.107*
H100.42630.87820.82670.107*
H90.41250.95220.74000.107*
C70.44674 (17)0.82045 (13)0.69347 (13)0.0498 (4)
C80.3712 (2)0.74328 (13)0.70557 (16)0.0568 (5)
H110.33670.74160.76290.068*
C90.34284 (19)0.66822 (13)0.63927 (15)0.0558 (4)
C100.2576 (3)0.59062 (18)0.6645 (2)0.0920 (9)
H120.21710.61070.71760.138*
H130.31090.53650.68610.138*
H140.19040.57540.60570.138*
C110.3189 (2)0.69516 (18)0.28808 (16)0.0693 (6)
H160.25060.66840.31730.083*
H150.30300.67530.21820.083*
C120.3114 (2)0.79961 (18)0.29216 (16)0.0703 (6)
H170.37810.82630.26120.084*
H180.22600.81990.25350.084*
C130.4397 (3)0.55956 (14)0.36410 (18)0.0728 (6)
H200.37430.54960.40260.109*
H210.52360.53780.40180.109*
H190.41560.52580.30160.109*
C140.5481 (2)0.67378 (17)0.28339 (15)0.0647 (5)
H240.52270.64030.22080.097*
H220.63160.65090.32070.097*
H230.55530.73920.26980.097*
C150.21051 (19)0.82208 (18)0.43395 (18)0.0711 (6)
H250.18890.75680.43310.107*
H270.13930.85570.39140.107*
H260.22460.84540.50170.107*
C160.3638 (2)0.93462 (15)0.4003 (2)0.0784 (7)
H290.29450.96850.35600.118*
H280.44480.94350.37930.118*
H300.37360.95720.46800.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.03895 (15)0.04541 (18)0.03899 (15)0.00103 (10)0.00838 (10)0.00066 (10)
O10.0612 (8)0.0613 (8)0.0561 (8)0.0159 (6)0.0090 (6)0.0076 (6)
O20.0433 (6)0.0523 (7)0.0725 (9)0.0029 (5)0.0168 (6)0.0043 (6)
O30.0591 (7)0.0537 (7)0.0526 (7)0.0101 (6)0.0160 (6)0.0103 (6)
O40.0700 (8)0.0495 (7)0.0567 (8)0.0136 (6)0.0282 (6)0.0085 (6)
N10.0538 (8)0.0612 (9)0.0426 (8)0.0076 (7)0.0124 (6)0.0048 (7)
N20.0431 (7)0.0595 (9)0.0546 (9)0.0040 (7)0.0054 (6)0.0063 (7)
C10.0924 (18)0.108 (2)0.0744 (15)0.0575 (16)0.0027 (13)0.0049 (14)
C20.0561 (11)0.0758 (14)0.0411 (9)0.0216 (10)0.0009 (8)0.0109 (9)
C30.0392 (9)0.0933 (17)0.0658 (13)0.0089 (10)0.0100 (9)0.0196 (11)
C40.0454 (9)0.0699 (12)0.0589 (11)0.0094 (9)0.0197 (8)0.0190 (9)
C50.0657 (14)0.0870 (17)0.124 (2)0.0267 (13)0.0450 (15)0.0239 (16)
C60.0770 (14)0.0710 (14)0.0676 (13)0.0026 (11)0.0191 (11)0.0237 (11)
C70.0473 (9)0.0556 (10)0.0450 (9)0.0070 (8)0.0076 (7)0.0062 (8)
C80.0628 (12)0.0614 (12)0.0525 (10)0.0014 (9)0.0262 (9)0.0058 (8)
C90.0581 (10)0.0560 (11)0.0590 (11)0.0039 (9)0.0253 (9)0.0014 (9)
C100.110 (2)0.0822 (17)0.104 (2)0.0364 (15)0.0658 (17)0.0179 (15)
C110.0544 (11)0.0974 (17)0.0505 (11)0.0062 (11)0.0004 (9)0.0157 (11)
C120.0594 (12)0.0975 (17)0.0483 (11)0.0137 (11)0.0000 (9)0.0114 (11)
C130.1012 (17)0.0554 (12)0.0660 (13)0.0177 (11)0.0276 (12)0.0174 (10)
C140.0666 (12)0.0849 (15)0.0466 (10)0.0047 (11)0.0210 (9)0.0051 (10)
C150.0432 (10)0.0931 (16)0.0760 (14)0.0085 (10)0.0118 (9)0.0033 (12)
C160.0653 (13)0.0614 (13)0.1024 (19)0.0125 (10)0.0063 (12)0.0203 (12)
Geometric parameters (Å, º) top
Mn—O12.1271 (13)C6—H100.9600
Mn—O22.1500 (12)C6—H90.9600
Mn—O32.1375 (12)C6—C71.515 (3)
Mn—O42.1365 (12)C7—C81.388 (3)
Mn—N12.3643 (15)C8—H110.9300
Mn—N22.3560 (15)C8—C91.391 (3)
O1—C21.255 (2)C9—C101.510 (3)
O2—C41.258 (2)C10—H120.9600
O3—C71.263 (2)C10—H130.9600
O4—C91.266 (2)C10—H140.9600
N1—C111.472 (3)C11—H160.9700
N1—C131.472 (3)C11—H150.9700
N1—C141.472 (2)C11—C121.499 (4)
N2—C121.478 (3)C12—H170.9700
N2—C151.468 (2)C12—H180.9700
N2—C161.467 (3)C13—H200.9600
C1—H10.9600C13—H210.9600
C1—H30.9600C13—H190.9600
C1—H20.9600C14—H240.9600
C1—C21.512 (3)C14—H220.9600
C2—C31.388 (3)C14—H230.9600
C3—H40.9300C15—H250.9600
C3—C41.393 (3)C15—H270.9600
C4—C51.512 (3)C15—H260.9600
C5—H50.9600C16—H290.9600
C5—H60.9600C16—H280.9600
C5—H70.9600C16—H300.9600
C6—H80.9600
O1—Mn—O283.61 (5)C7—C6—H8109.5
O1—Mn—O3107.00 (5)C7—C6—H10109.5
O1—Mn—O493.25 (5)C7—C6—H9109.5
O1—Mn—N186.01 (5)O3—C7—C6115.89 (17)
O1—Mn—N2161.29 (6)O3—C7—C8125.92 (17)
O2—Mn—O389.71 (5)C8—C7—C6118.18 (17)
O2—Mn—O4171.63 (5)C7—C8—H11117.2
O2—Mn—N198.41 (5)C7—C8—C9125.50 (18)
O2—Mn—N290.36 (5)C9—C8—H11117.2
O3—Mn—O483.78 (5)O4—C9—C8125.99 (17)
O3—Mn—N1165.43 (5)O4—C9—C10115.94 (18)
O3—Mn—N290.61 (5)C8—C9—C10118.07 (18)
O4—Mn—N189.07 (5)C9—C10—H12109.5
O4—Mn—N294.95 (6)C9—C10—H13109.5
N1—Mn—N277.34 (6)C9—C10—H14109.5
C2—O1—Mn129.95 (14)H12—C10—H13109.5
C4—O2—Mn128.56 (13)H12—C10—H14109.5
C7—O3—Mn129.44 (12)H13—C10—H14109.5
C9—O4—Mn129.29 (12)N1—C11—H16109.2
C11—N1—Mn106.37 (12)N1—C11—H15109.2
C13—N1—Mn111.10 (12)N1—C11—C12111.88 (17)
C13—N1—C11110.20 (18)H16—C11—H15107.9
C13—N1—C14108.71 (17)C12—C11—H16109.2
C14—N1—Mn109.60 (12)C12—C11—H15109.2
C14—N1—C11110.86 (16)N2—C12—C11112.25 (17)
C12—N2—Mn106.22 (12)N2—C12—H17109.2
C15—N2—Mn110.63 (12)N2—C12—H18109.2
C15—N2—C12110.40 (17)C11—C12—H17109.2
C16—N2—Mn110.75 (12)C11—C12—H18109.2
C16—N2—C12110.14 (18)H17—C12—H18107.9
C16—N2—C15108.69 (17)N1—C13—H20109.5
H1—C1—H3109.5N1—C13—H21109.5
H1—C1—H2109.5N1—C13—H19109.5
H3—C1—H2109.5H20—C13—H21109.5
C2—C1—H1109.5H20—C13—H19109.5
C2—C1—H3109.5H21—C13—H19109.5
C2—C1—H2109.5N1—C14—H24109.5
O1—C2—C1115.9 (2)N1—C14—H22109.5
O1—C2—C3125.51 (18)N1—C14—H23109.5
C3—C2—C1118.6 (2)H24—C14—H22109.5
C2—C3—H4117.1H24—C14—H23109.5
C2—C3—C4125.86 (18)H22—C14—H23109.5
C4—C3—H4117.1N2—C15—H25109.5
O2—C4—C3125.44 (19)N2—C15—H27109.5
O2—C4—C5116.4 (2)N2—C15—H26109.5
C3—C4—C5118.17 (19)H25—C15—H27109.5
C4—C5—H5109.5H25—C15—H26109.5
C4—C5—H6109.5H27—C15—H26109.5
C4—C5—H7109.5N2—C16—H29109.5
H5—C5—H6109.5N2—C16—H28109.5
H5—C5—H7109.5N2—C16—H30109.5
H6—C5—H7109.5H29—C16—H28109.5
H8—C6—H10109.5H29—C16—H30109.5
H8—C6—H9109.5H28—C16—H30109.5
H10—C6—H9109.5
Mn—O1—C2—C1177.50 (14)N1—C11—C12—N260.6 (2)
Mn—O1—C2—C32.8 (3)C1—C2—C3—C4177.1 (2)
Mn—O2—C4—C313.4 (3)C2—C3—C4—O25.6 (3)
Mn—O2—C4—C5166.67 (16)C2—C3—C4—C5174.5 (2)
Mn—O3—C7—C6176.26 (13)C6—C7—C8—C9176.5 (2)
Mn—O3—C7—C83.2 (3)C7—C8—C9—O40.7 (4)
Mn—O4—C9—C81.1 (3)C7—C8—C9—C10179.4 (2)
Mn—O4—C9—C10178.82 (17)C13—N1—C11—C12162.74 (17)
Mn—N1—C11—C1242.22 (19)C14—N1—C11—C1276.9 (2)
Mn—N2—C12—C1142.41 (19)C15—N2—C12—C1177.6 (2)
O1—C2—C3—C43.2 (3)C16—N2—C12—C11162.39 (17)
O3—C7—C8—C93.0 (3)
Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II) (2) top
Crystal data top
[Fe(C5H7O2)2(C6H16N2)]F(000) = 792
Mr = 370.27Dx = 1.253 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2021 (3) ÅCell parameters from 16780 reflections
b = 15.4708 (4) Åθ = 1.6–29.6°
c = 12.4881 (4) ŵ = 0.79 mm1
β = 95.382 (3)°T = 213 K
V = 1962.37 (10) Å3Block, clear reddish brown
Z = 40.26 × 0.25 × 0.23 mm
Data collection top
STOE IPDS 2
diffractometer
5276 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs4425 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.037
Detector resolution: 6.67 pixels mm-1θmax = 29.3°, θmin = 2.1°
rotation method scansh = 1313
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2016)
k = 2120
Tmin = 0.814, Tmax = 0.894l = 1717
18586 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3681P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
5276 reflectionsΔρmax = 0.32 e Å3
216 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63613 (15)0.53037 (11)0.42322 (12)0.0444 (3)
H20.58470.47970.43380.067*
H30.70610.51600.38000.067*
H10.58100.57390.38740.067*
C20.69359 (13)0.56425 (9)0.53071 (11)0.0352 (3)
C30.81769 (14)0.53357 (9)0.57243 (12)0.0396 (3)
H40.86030.49480.53050.047*
C40.88149 (13)0.55660 (9)0.67116 (12)0.0388 (3)
C51.01582 (16)0.51923 (13)0.70525 (16)0.0584 (4)
H71.03430.47330.65720.088*
H51.01720.49700.77710.088*
H61.08130.56360.70310.088*
C60.39240 (17)0.48770 (10)0.87153 (14)0.0496 (4)
H100.30000.48170.84990.074*
H90.40640.48880.94860.074*
H80.43910.43970.84460.074*
C70.44227 (13)0.57093 (9)0.82668 (11)0.0359 (3)
C80.35444 (13)0.64029 (10)0.81410 (12)0.0379 (3)
H110.27070.63210.83590.046*
C90.38200 (13)0.72026 (9)0.77178 (11)0.0350 (3)
C100.27918 (16)0.79023 (12)0.77050 (16)0.0542 (4)
H140.26940.81710.70090.081*
H130.30590.83280.82410.081*
H120.19670.76540.78570.081*
C110.78186 (19)0.85071 (11)0.76164 (14)0.0537 (4)
H160.70200.87930.77920.064*
H150.84400.89490.74460.064*
C120.83901 (17)0.80004 (13)0.85721 (14)0.0545 (4)
H170.91920.77180.83980.065*
H180.86170.83930.91670.065*
C130.6596 (2)0.83936 (13)0.58754 (16)0.0593 (4)
H190.63810.80220.52690.089*
H210.70000.89120.56410.089*
H200.58070.85390.61980.089*
C140.87086 (16)0.77473 (12)0.61406 (14)0.0519 (4)
H240.90420.82680.58470.078*
H220.84990.73380.55720.078*
H230.93630.75060.66580.078*
C150.64471 (18)0.77489 (13)0.94987 (14)0.0549 (4)
H260.58250.73190.96770.082*
H250.60010.81880.90600.082*
H270.68530.80051.01470.082*
C160.8174 (2)0.67090 (14)0.96194 (14)0.0619 (5)
H290.88340.64280.92440.093*
H280.75660.62860.98400.093*
H300.85870.70001.02420.093*
Fe0.65967 (2)0.67126 (2)0.73081 (2)0.03242 (7)
N10.75139 (12)0.79468 (8)0.66685 (10)0.0407 (3)
N20.74634 (12)0.73421 (9)0.89046 (10)0.0418 (3)
O10.62568 (9)0.61851 (7)0.57684 (8)0.0395 (2)
O20.83743 (9)0.60880 (7)0.73746 (9)0.0426 (2)
O30.55981 (10)0.57212 (6)0.80388 (9)0.0414 (2)
O40.48936 (9)0.74134 (6)0.73429 (8)0.0384 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (7)0.0512 (8)0.0393 (7)0.0086 (6)0.0082 (6)0.0108 (6)
C20.0360 (6)0.0341 (6)0.0368 (7)0.0081 (5)0.0096 (5)0.0039 (5)
C30.0380 (7)0.0368 (7)0.0453 (8)0.0022 (5)0.0111 (6)0.0064 (6)
C40.0301 (6)0.0407 (7)0.0465 (8)0.0000 (5)0.0089 (5)0.0000 (6)
C50.0374 (8)0.0703 (12)0.0670 (11)0.0127 (8)0.0019 (7)0.0056 (9)
C60.0539 (9)0.0434 (8)0.0515 (9)0.0121 (7)0.0050 (7)0.0076 (7)
C70.0380 (6)0.0369 (7)0.0328 (6)0.0079 (5)0.0028 (5)0.0029 (5)
C80.0303 (6)0.0435 (7)0.0413 (7)0.0049 (5)0.0102 (5)0.0045 (6)
C90.0315 (6)0.0393 (7)0.0349 (6)0.0017 (5)0.0056 (5)0.0047 (5)
C100.0439 (8)0.0539 (9)0.0670 (11)0.0149 (7)0.0163 (7)0.0022 (8)
C110.0674 (11)0.0428 (8)0.0540 (10)0.0207 (8)0.0222 (8)0.0125 (7)
C120.0508 (9)0.0685 (11)0.0451 (9)0.0275 (8)0.0092 (7)0.0158 (8)
C130.0626 (11)0.0614 (11)0.0559 (10)0.0011 (8)0.0154 (8)0.0167 (8)
C140.0496 (8)0.0561 (9)0.0537 (9)0.0149 (7)0.0247 (7)0.0073 (7)
C150.0550 (9)0.0690 (11)0.0429 (8)0.0094 (8)0.0167 (7)0.0164 (8)
C160.0650 (11)0.0792 (13)0.0401 (9)0.0011 (9)0.0027 (8)0.0002 (8)
Fe0.02688 (10)0.03490 (11)0.03626 (11)0.00268 (7)0.00714 (7)0.00567 (7)
N10.0432 (6)0.0415 (6)0.0395 (6)0.0086 (5)0.0147 (5)0.0039 (5)
N20.0395 (6)0.0513 (7)0.0354 (6)0.0101 (5)0.0077 (5)0.0055 (5)
O10.0329 (5)0.0440 (5)0.0416 (5)0.0005 (4)0.0028 (4)0.0112 (4)
O20.0313 (5)0.0535 (6)0.0429 (5)0.0021 (4)0.0031 (4)0.0100 (5)
O30.0352 (5)0.0352 (5)0.0543 (6)0.0009 (4)0.0075 (4)0.0014 (4)
O40.0349 (5)0.0348 (5)0.0471 (5)0.0018 (4)0.0124 (4)0.0023 (4)
Geometric parameters (Å, º) top
C1—H20.9600C11—C121.499 (3)
C1—H30.9600C11—N11.477 (2)
C1—H10.9600C12—H170.9700
C1—C21.5076 (19)C12—H180.9700
C2—C31.406 (2)C12—N21.475 (2)
C2—O11.2615 (16)C13—H190.9600
C3—H40.9300C13—H210.9600
C3—C41.386 (2)C13—H200.9600
C4—C51.511 (2)C13—N11.471 (2)
C4—O21.2687 (17)C14—H240.9600
C5—H70.9600C14—H220.9600
C5—H50.9600C14—H230.9600
C5—H60.9600C14—N11.4718 (19)
C6—H100.9600C15—H260.9600
C6—H90.9600C15—H250.9600
C6—H80.9600C15—H270.9600
C6—C71.511 (2)C15—N21.472 (2)
C7—C81.397 (2)C16—H290.9600
C7—O31.2583 (17)C16—H280.9600
C8—H110.9300C16—H300.9600
C8—C91.385 (2)C16—N21.470 (2)
C9—C101.506 (2)Fe—O12.0876 (10)
C9—O41.2734 (16)Fe—O22.0497 (10)
C10—H140.9600Fe—O32.0970 (10)
C10—H130.9600Fe—O42.0520 (9)
C10—H120.9600Fe—N12.3021 (12)
C11—H160.9700Fe—N22.3184 (12)
C11—H150.9700
H2—C1—H3109.5H19—C13—H20109.5
H2—C1—H1109.5H21—C13—H20109.5
H3—C1—H1109.5N1—C13—H19109.5
C2—C1—H2109.5N1—C13—H21109.5
C2—C1—H3109.5N1—C13—H20109.5
C2—C1—H1109.5H24—C14—H22109.5
C3—C2—C1118.30 (12)H24—C14—H23109.5
O1—C2—C1116.98 (13)H22—C14—H23109.5
O1—C2—C3124.72 (13)N1—C14—H24109.5
C2—C3—H4117.5N1—C14—H22109.5
C4—C3—C2125.07 (13)N1—C14—H23109.5
C4—C3—H4117.5H26—C15—H25109.5
C3—C4—C5119.35 (14)H26—C15—H27109.5
O2—C4—C3125.36 (13)H25—C15—H27109.5
O2—C4—C5115.28 (14)N2—C15—H26109.5
C4—C5—H7109.5N2—C15—H25109.5
C4—C5—H5109.5N2—C15—H27109.5
C4—C5—H6109.5H29—C16—H28109.5
H7—C5—H5109.5H29—C16—H30109.5
H7—C5—H6109.5H28—C16—H30109.5
H5—C5—H6109.5N2—C16—H29109.5
H10—C6—H9109.5N2—C16—H28109.5
H10—C6—H8109.5N2—C16—H30109.5
H9—C6—H8109.5O1—Fe—O285.58 (4)
C7—C6—H10109.5O1—Fe—O393.98 (4)
C7—C6—H9109.5O1—Fe—O499.11 (4)
C7—C6—H8109.5O1—Fe—N192.44 (4)
C8—C7—C6117.47 (13)O1—Fe—N2166.73 (4)
O3—C7—C6117.22 (13)O2—Fe—O395.84 (4)
O3—C7—C8125.31 (13)O2—Fe—O4174.85 (4)
C7—C8—H11117.3O2—Fe—N191.04 (5)
C9—C8—C7125.32 (12)O2—Fe—N284.18 (4)
C9—C8—H11117.3O3—Fe—O486.00 (4)
C8—C9—C10118.69 (13)O3—Fe—N1170.93 (4)
O4—C9—C8125.57 (12)O3—Fe—N295.43 (4)
O4—C9—C10115.74 (13)O4—Fe—N186.66 (4)
C9—C10—H14109.5O4—Fe—N290.87 (4)
C9—C10—H13109.5N1—Fe—N279.35 (4)
C9—C10—H12109.5C11—N1—Fe105.70 (9)
H14—C10—H13109.5C13—N1—C11109.69 (14)
H14—C10—H12109.5C13—N1—C14107.39 (13)
H13—C10—H12109.5C13—N1—Fe111.69 (10)
H16—C11—H15108.0C14—N1—C11111.18 (13)
C12—C11—H16109.3C14—N1—Fe111.24 (10)
C12—C11—H15109.3C12—N2—Fe104.52 (9)
N1—C11—H16109.3C15—N2—C12110.31 (14)
N1—C11—H15109.3C15—N2—Fe112.54 (10)
N1—C11—C12111.60 (14)C16—N2—C12109.77 (14)
C11—C12—H17109.2C16—N2—C15108.03 (14)
C11—C12—H18109.2C16—N2—Fe111.65 (10)
H17—C12—H18107.9C2—O1—Fe129.04 (9)
N2—C12—C11111.91 (13)C4—O2—Fe129.79 (9)
N2—C12—H17109.2C7—O3—Fe128.42 (10)
N2—C12—H18109.2C9—O4—Fe129.18 (9)
H19—C13—H21109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H2···O1i0.962.623.5269 (18)157
Symmetry code: (i) x+1, y+1, z+1.
Bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II) (3) top
Crystal data top
[Zn(C5H7O2)2(C6H16N2)]F(000) = 808
Mr = 379.79Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2335 (3) ÅCell parameters from 19126 reflections
b = 14.2134 (6) Åθ = 2.1–27.2°
c = 13.6738 (5) ŵ = 1.28 mm1
β = 101.208 (3)°T = 200 K
V = 1950.96 (12) Å3Block, clear colourless
Z = 40.45 × 0.39 × 0.33 mm
Data collection top
STOE IPDS 2T
diffractometer
3456 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.047
rotation method, ω scansθmax = 26.7°, θmin = 2.1°
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2016)
h = 1212
Tmin = 0.627, Tmax = 0.779k = 1716
22385 measured reflectionsl = 1717
4124 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4124 reflectionsΔρmax = 0.37 e Å3
216 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.74026 (2)0.26429 (2)0.54676 (2)0.03991 (8)
O10.73445 (12)0.33774 (8)0.41466 (9)0.0534 (3)
O20.85986 (11)0.16705 (8)0.49492 (8)0.0507 (3)
O30.57869 (11)0.17554 (8)0.50853 (9)0.0529 (3)
O40.61242 (9)0.36299 (8)0.58630 (8)0.0441 (2)
N10.91461 (12)0.35505 (11)0.62041 (10)0.0499 (3)
N20.78674 (12)0.19573 (11)0.69813 (10)0.0459 (3)
C10.76595 (19)0.38103 (13)0.25509 (13)0.0575 (4)
H10.67250.40060.23730.086*
H20.79220.35040.19770.086*
H30.82220.43630.27430.086*
C20.78276 (15)0.31277 (12)0.34146 (11)0.0450 (4)
C30.85137 (17)0.22957 (12)0.33344 (13)0.0492 (4)
H40.87640.21690.27140.059*
C40.88628 (15)0.16331 (12)0.40893 (12)0.0462 (4)
C50.9672 (2)0.07864 (15)0.38836 (14)0.0672 (5)
H51.04930.07520.43890.101*
H60.98960.08490.32220.101*
H70.91490.02120.39070.101*
C60.3632 (2)0.11210 (15)0.48710 (15)0.0691 (5)
H80.37970.06460.54010.104*
H90.37580.08380.42420.104*
H100.27170.13540.47960.104*
C70.45930 (16)0.19273 (13)0.51387 (11)0.0476 (4)
C80.41127 (15)0.27812 (12)0.54200 (12)0.0475 (4)
H110.31800.28260.53910.057*
C90.48712 (14)0.35764 (11)0.57395 (11)0.0412 (3)
C100.41684 (16)0.44556 (13)0.59729 (13)0.0554 (4)
H120.33930.42830.62570.083*
H130.38750.48170.53590.083*
H140.47800.48380.64540.083*
C110.93211 (19)0.33443 (17)0.72727 (14)0.0676 (5)
H150.86440.36920.75560.081*
H161.02120.35630.76150.081*
C120.91917 (19)0.23151 (16)0.74583 (15)0.0651 (5)
H170.98870.19690.71940.078*
H180.93350.22000.81850.078*
C130.88618 (18)0.45547 (14)0.60157 (16)0.0671 (5)
H190.96290.49290.63410.101*
H200.80760.47320.62850.101*
H210.86910.46730.52960.101*
C141.03600 (16)0.33196 (16)0.58256 (16)0.0651 (5)
H221.02120.34490.51080.098*
H231.05730.26520.59440.098*
H241.11020.37040.61720.098*
C150.68709 (18)0.21961 (14)0.75840 (13)0.0560 (4)
H250.68350.28810.76600.084*
H260.71180.19020.82430.084*
H270.59950.19640.72510.084*
C160.7902 (2)0.09286 (14)0.68935 (15)0.0680 (5)
H280.70240.07000.65620.102*
H290.81370.06490.75600.102*
H300.85680.07500.65000.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03590 (11)0.04475 (13)0.04087 (12)0.00666 (7)0.01186 (8)0.00208 (7)
O10.0628 (7)0.0534 (7)0.0470 (6)0.0178 (6)0.0187 (5)0.0051 (5)
O20.0555 (6)0.0545 (7)0.0465 (6)0.0158 (5)0.0204 (5)0.0024 (5)
O30.0488 (6)0.0496 (7)0.0592 (7)0.0007 (5)0.0078 (5)0.0096 (5)
O40.0335 (5)0.0470 (6)0.0538 (6)0.0028 (4)0.0136 (4)0.0040 (5)
N10.0353 (6)0.0602 (9)0.0557 (8)0.0041 (6)0.0125 (6)0.0053 (7)
N20.0431 (7)0.0537 (8)0.0422 (7)0.0079 (6)0.0114 (5)0.0024 (6)
C10.0653 (11)0.0582 (11)0.0492 (10)0.0021 (9)0.0114 (8)0.0046 (8)
C20.0406 (8)0.0525 (10)0.0417 (8)0.0032 (7)0.0077 (6)0.0012 (7)
C30.0529 (9)0.0559 (10)0.0417 (9)0.0035 (7)0.0163 (7)0.0050 (7)
C40.0444 (8)0.0481 (9)0.0485 (9)0.0042 (7)0.0149 (7)0.0079 (7)
C50.0817 (13)0.0620 (12)0.0632 (11)0.0230 (10)0.0271 (10)0.0048 (9)
C60.0680 (12)0.0741 (14)0.0632 (12)0.0250 (10)0.0074 (9)0.0086 (10)
C70.0474 (8)0.0576 (10)0.0356 (8)0.0083 (8)0.0028 (6)0.0009 (7)
C80.0323 (7)0.0653 (11)0.0451 (9)0.0004 (7)0.0081 (6)0.0028 (7)
C90.0368 (7)0.0515 (9)0.0370 (8)0.0066 (6)0.0113 (6)0.0068 (6)
C100.0443 (8)0.0596 (11)0.0674 (11)0.0127 (7)0.0233 (8)0.0043 (8)
C110.0517 (10)0.0963 (16)0.0527 (11)0.0182 (10)0.0053 (8)0.0141 (10)
C120.0449 (9)0.0990 (16)0.0484 (10)0.0056 (9)0.0017 (8)0.0119 (10)
C130.0529 (10)0.0562 (11)0.0935 (14)0.0131 (9)0.0175 (10)0.0120 (10)
C140.0375 (8)0.0825 (14)0.0785 (13)0.0044 (8)0.0194 (8)0.0032 (11)
C150.0540 (10)0.0724 (12)0.0452 (9)0.0086 (8)0.0183 (8)0.0043 (8)
C160.0905 (14)0.0552 (11)0.0627 (11)0.0198 (10)0.0256 (10)0.0137 (9)
Geometric parameters (Å, º) top
Zn—O12.0771 (12)C6—H90.9800
Zn—O22.0611 (11)C6—H100.9800
Zn—O32.0645 (11)C6—C71.508 (2)
Zn—O42.0607 (10)C7—C81.391 (3)
Zn—N12.2722 (13)C8—H110.9500
Zn—N22.2533 (13)C8—C91.393 (2)
O1—C21.2509 (19)C9—C101.507 (2)
O2—C41.2578 (19)C10—H120.9800
O3—C71.2619 (19)C10—H130.9800
O4—C91.2626 (17)C10—H140.9800
N1—C111.467 (2)C11—H150.9900
N1—C131.469 (2)C11—H160.9900
N1—C141.473 (2)C11—C121.495 (3)
N2—C121.476 (2)C12—H170.9900
N2—C151.470 (2)C12—H180.9900
N2—C161.468 (2)C13—H190.9800
C1—H10.9800C13—H200.9800
C1—H20.9800C13—H210.9800
C1—H30.9800C14—H220.9800
C1—C21.512 (2)C14—H230.9800
C2—C31.390 (2)C14—H240.9800
C3—H40.9500C15—H250.9800
C3—C41.392 (2)C15—H260.9800
C4—C51.518 (2)C15—H270.9800
C5—H50.9800C16—H280.9800
C5—H60.9800C16—H290.9800
C5—H70.9800C16—H300.9800
C6—H80.9800
O1—Zn—O287.50 (4)C7—C6—H8109.5
O1—Zn—O3101.58 (5)C7—C6—H9109.5
O1—Zn—O488.49 (4)C7—C6—H10109.5
O1—Zn—N189.28 (5)O3—C7—C6115.59 (16)
O1—Zn—N2168.94 (5)O3—C7—C8125.65 (15)
O2—Zn—O390.18 (5)C8—C7—C6118.76 (16)
O2—Zn—O4175.16 (4)C7—C8—H11116.9
O2—Zn—N193.76 (5)C7—C8—C9126.12 (15)
O2—Zn—N289.57 (5)C9—C8—H11116.9
O3—Zn—O487.96 (4)O4—C9—C8125.48 (15)
O3—Zn—N1168.61 (5)O4—C9—C10115.84 (15)
O3—Zn—N289.09 (5)C8—C9—C10118.67 (13)
O4—Zn—N188.92 (5)C9—C10—H12109.5
O4—Zn—N294.86 (5)C9—C10—H13109.5
N1—Zn—N280.27 (5)C9—C10—H14109.5
C2—O1—Zn127.18 (11)H12—C10—H13109.5
C4—O2—Zn126.86 (11)H12—C10—H14109.5
C7—O3—Zn127.15 (11)H13—C10—H14109.5
C9—O4—Zn127.15 (10)N1—C11—H15109.3
C11—N1—Zn105.16 (10)N1—C11—H16109.3
C11—N1—C13110.51 (16)N1—C11—C12111.53 (16)
C11—N1—C14110.95 (15)H15—C11—H16108.0
C13—N1—Zn111.23 (10)C12—C11—H15109.3
C13—N1—C14107.86 (15)C12—C11—H16109.3
C14—N1—Zn111.17 (11)N2—C12—C11111.49 (15)
C12—N2—Zn105.59 (11)N2—C12—H17109.3
C15—N2—Zn111.69 (10)N2—C12—H18109.3
C15—N2—C12110.50 (15)C11—C12—H17109.3
C16—N2—Zn111.08 (11)C11—C12—H18109.3
C16—N2—C12110.16 (14)H17—C12—H18108.0
C16—N2—C15107.84 (15)N1—C13—H19109.5
H1—C1—H2109.5N1—C13—H20109.5
H1—C1—H3109.5N1—C13—H21109.5
H2—C1—H3109.5H19—C13—H20109.5
C2—C1—H1109.5H19—C13—H21109.5
C2—C1—H2109.5H20—C13—H21109.5
C2—C1—H3109.5N1—C14—H22109.5
O1—C2—C1116.12 (15)N1—C14—H23109.5
O1—C2—C3126.06 (16)N1—C14—H24109.5
C3—C2—C1117.82 (15)H22—C14—H23109.5
C2—C3—H4117.4H22—C14—H24109.5
C2—C3—C4125.30 (15)H23—C14—H24109.5
C4—C3—H4117.4N2—C15—H25109.5
O2—C4—C3126.43 (15)N2—C15—H26109.5
O2—C4—C5115.53 (15)N2—C15—H27109.5
C3—C4—C5118.02 (15)H25—C15—H26109.5
C4—C5—H5109.5H25—C15—H27109.5
C4—C5—H6109.5H26—C15—H27109.5
C4—C5—H7109.5N2—C16—H28109.5
H5—C5—H6109.5N2—C16—H29109.5
H5—C5—H7109.5N2—C16—H30109.5
H6—C5—H7109.5H28—C16—H29109.5
H8—C6—H9109.5H28—C16—H30109.5
H8—C6—H10109.5H29—C16—H30109.5
H9—C6—H10109.5
 

Acknowledgements

We thank A. Kiowski for technical support.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationAlbrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233–240.  CrossRef CAS Google Scholar
First citationBarreca, D., Carraro, G., Devi, A., Fois, E., Gasparotto, A., Seraglia, R., Maccato, C., Sada, C., Tabacchi, G., Tondello, E., Venzo, A. & Winter, M. (2012). Dalton Trans. 41, 149–155.  CSD CrossRef CAS PubMed Google Scholar
First citationBrahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDickman, M. H. (1998). Acta Cryst. C54 IUC9800048.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255–2261.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809–8812.  CSD CrossRef CAS PubMed Google Scholar
First citationHarbach, P., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m724–m725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525–532.  CrossRef CAS Google Scholar
First citationMa, Y. M., Reardon, D., Gambarotta, S., Yap, G., Zahalka, H. & Lemay, C. (1999). Organometallics, 18, 2773–2781.  CSD CrossRef CAS Google Scholar
First citationMalandrino, G., Toro, R. G., Catalano, M. R., Fragalà, M. E., Rossi, P. & Paoli, P. (2012). Eur. J. Inorg. Chem. pp.1021–1024.  CSD CrossRef Google Scholar
First citationMontgomery, H. & Lingafelter, E. C. (1968). Acta Cryst. B24, 1127–1128.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationNelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645–2659.  CSD CrossRef CAS Google Scholar
First citationNi, J., Yan, H., Wang, A., Yang, Y., Stern, C. L., Metz, A. W., Jin, S., Wang, L., Marks, T. J., Ireland, J. R. & Kannewurf, C. R. (2005). J. Am. Chem. Soc. 127, 5613–5624.  CSD CrossRef PubMed CAS Google Scholar
First citationNovitchi, G., Jiang, S., Shova, S., Rida, F., Hlavička, I., Orlita, M., Wernsdorfer, W., Hamze, R., Martins, C., Suaud, N., Guihéry, N., Barra, A.-L. & Train, C. (2017). Inorg. Chem. 56, 14809–14822.  CSD CrossRef CAS PubMed Google Scholar
First citationPasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735–741.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, F. S. (1977). Acta Cryst. B33, 3492–3495.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759–765.  CSD CrossRef CAS Google Scholar
First citationTsodikov, M. V., Bukhtenko, O. V., Ellert, O. G., Petrunenko, I. A., Antsyshkina, A. S., Sadikov, G. G., Maksimov, Y. V., Titov, Y. V. & Novotortsev, V. M. (1995). Russ. Chem. Bull. 44, 1396–1400.  CrossRef Google Scholar
First citationZeller, A., Herdtweck, E. & Strassner, Th. (2004). Inorg. Chem. Commun. 7, 296–301.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds