research communications
Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn)
aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
The complexes bis(acetylacetonato-κ2O,O′)(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis(acetylacetonato-κ2O,O′)(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis(acetylacetonato-κ2O,O′)(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetylacetonates [M(acac)2(H2O)2] with N,N,N′,N′-tetramethylethylenediamine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octahedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 1–3 are different and thus the crystal structures are not isotypic.
1. Chemical context
Pentane-2,4-dionate (acac) and ethylenediamine derivatives are amongst the most widely used chelate ligands in transition metal chemistry. The crystal structures of mixed complexes [M(acac)2(TMEDA)] (TMEDA = N,N,N′,N′-tetramethylethylenediamine) containing both types of ligands have been reported for several divalent metals, e.g. M = V (Ma et al., 1999), Co (Pasko et al., 2004), Ni (Trimmel et al., 2002; Zeller et al., 2004) and Ru (Halbach et al., 2012). The synthesis of [Zn(acac)2(TMEDA)] was reported recently in conjunction with the Ru derivative but without determination (Halbach et al., 2012). Typically, [M(acac)2(TMEDA)] complexes are used as valuable starting materials for the preparation of organometallic and coordination compounds (Kaschube et al. 1988; Nelkenbaum et al., 2005; Albrecht et al., 2019). Moreover, there is an increasing interest in [M(acac)2(TMEDA)] and related [M(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) complexes as precursor materials for CVD deposition of Co3O4 (Pasko et al., 2004), Fe2O3 (Barreca et al., 2012) and MnF2 (Malandrino et al., 2012).
Typically, [M(acac)2(TMEDA)] complexes are synthesized from the reaction of the metal acetylacetonates with TMEDA. Following this procedure, we obtained the complexes [Mn(acac)2(TMEDA)] (1), [Fe(acac)2(TMEDA)] (2) and [Zn(acac)2(TMEDA)] (3) from the corresponding dihydrates [M(acac)2(H2O)2] and TMEDA in toluene as solvent. Recrystallization from n-hexane at 248 K afforded [Mn(acac)2(TMEDA)] (1) as yellow, [Fe(acac)2(TMEDA)] (2) as red–brown and [Zn(acac)2(TMEDA)] (3) as colorless products. Determination of the magnetic moments for [Mn(acac)2(TMEDA)] (5.7 B.M.) and [Fe(acac)2(TMEDA)] (5.1 B.M.) indicates a high-spin configuration in both cases.
2. Structural commentary
Compounds 1–3 crystallize in the monoclinic system, P21/n with Z = 4. However, despite the similarity of the lattice parameters and the analogous molecular structures, complexes 1–3 are not isotypic. The crystal structures consist of discrete complex molecules [M(acac)2TMEDA] in which the central metal atoms are coordinated nearly octahedrally by four oxygen atoms of two acac ligands and two nitrogen atoms of the TMEDA ligand (Figs. 1–3). Mn complex 1 exhibits Mn—O and Mn—N distances of 2.127 (1)–2.150 (1) Å and 2.356 (2)–2.364 (2) Å, respectively (Table 1). Similar geometric parameters have been reported for [Mn(acac)2(H2O)2] [Mn—O: 2.123 (8)–2.142 (8) Å; Montgomery & Lingafelter, 1968], [Mn(acac)2(1,10-phenanthroline)] [Mn—O: 2.116 (5)–2.152 (5) Å, Mn—N: 2.307 (5) Å; Stephens, 1977], [Mn(acac)2(2,2′-bipyridine)] [Mn—O: 2.148 (2)–2.158 (2) Å, Mn—N: 2.283 (2)–2.288 (3) Å; van Gorkum et al., 2005] or [Mn(hfa)2(TMEDA)] [Mn—O: 2.139 (4)–2.178 (4) Å, Mn—N: 2.299 (5)—2.307 (5) Å; Malandrino et al., 2012].
|
The Fe—O and Fe—N distances in compound 2 [2.050 (1)–2.097 (1) Å and 2.302 (1)–2.318 (1) Å, respectively; Table 2] are on average shorter than the corresponding Mn—O and Mn—N distances in complex 1. The Fe—O and Fe—N distances compare well with the data that have been observed in the compounds [Fe(acac)2(H2O)2] [Fe—O: 2.034–2.041 Å; Tsodikov et al., 1995], [Fe(hfa)2(picoline)2] [Fe—O: 2.057 (1) Å, Fe—N: 2.190 (3)–2.224 (3) Å; Novitchi et al., 2017] or [Fe(hfa)2(TMEDA)] [Fe—O: 2.064 (1)–2.094 (1), Fe—N: 2.229 (2) Å; Dickman et al., 1998].
|
[Zn(acac)2(TMEDA)] (3) displays Zn—O and Zn—N distances of 2.061 (1)–2.077 (1) and 2.253 (1)–2.272 (1) Å, respectively (Table 3). In comparison with the iron complex 2, the average metal–oxygen distances and metal–nitrogen distances are slightly shortened. On the whole, the Zn—O and Zn—N distances in compound 3 are similar to those observed in the related compounds [Zn(acac)2(H2O)2] [Zn—O: 2.032 (1)–2.049 (1) Å; Harbach et al., 2003], [Zn(acac)2(1,10-phenanthroline)] [Zn—O: 2.044 (1)–2.085 (1) Å, Zn—N: 2.196 (1) Å; Brahma et al., 2008], [Zn(acac)2(2,2′-bipyridine)] [Zn—O: 2.051 (1)–2.089 (1) Å, Zn—N: 2.197 (2)–2.208 (2) Å; Brahma et al., 2008] or [Zn(hfa)2(TMEDA)] [Zn—O: 2.103 (1)–2.126 (1) Å, Zn—N: 2.145 (1)–2.151 (1) Å; Ni et al., 2005].
|
In general, the above-mentioned [M(hfa)2(TMEDA)] (M = Mn, Fe, Zn) complexes exhibit shorter M—N distances than the corresponding [M(acac)2(TMEDA)] complexes. This effect is probably due to the electron-withdrawing effect of the CF3 groups of the hfa ligands.
The iron complex 2 displays a subtle elongation (0.041 Å) of the Fe—O bonds trans to the N atoms with respect to the Fe—O bonds trans to oxygen. A similar effect was observed for [Co(acac)2(TMEDA)] (Pasko et al., 2004). In the case of the Mn and Zn complexes 1 and 3, the trans influence is negligible as reported for [Ni(acac)2(TMEDA)] (Trimmel et al., 2002) and [Ru(acac)2(TMEDA)] (Halbach et al., 2012). A reverse effect with a shortening of the Zn—O bonds trans to nitrogen was detected for [Zn(acac)2(2,2′-bipyridine)] and [Zn(acac)2(1,10-phenanthroline)] (Brahma et al., 2008).
Each of the complexes 1–3 exhibits nearly planar six-membered acac-M chelate rings. The maximum deviation from planarity, as indicated by the dihedral angle between the M/O1/O2 (M/O3/O4) plane of the chelate ring and the best plane through O1/C2/C3/C4/O2 (O3/C7/C8/C9/O4), is 6.2 (1)° in the case of the zinc complex 3. PLATON (Spek, 2009) was used to calculate the dihedral angles. The five-membered M-TMEDA ring adopts a twist conformation with approximate C2 symmetry. As a result of the centrosymmetric both types of the enantiomeric chelate rings with λ and δ conformations are present.
The MO4N2 coordination polyhedra in compounds 1–3 deviate moderately from a regular octahedron. The O—M—O angles are in the range 171.7 (1)° (complex 1) to 175.2 (1)° (complex 3) and the N—M–-O angles vary from 161.3 (1)° (complex 1) to 170.9 (1)° (complex 2). The smallest acac bite angle is observed in compound 1 [83.6 (1)°], the largest is found in compound 3 [88.0 (1)°]. In the case of the TMEDA ligands, the bite angles are marginally smaller with a range between 77.3 (1)° (compound 1) and 80.3 (1)° (compound 3). Overall, the distortion of the MO4N2 octahedra in compounds 1–3 is very similar to that observed in the analogous V, Ni and Co complexes [M(acac)2(TMEDA)].
3. Supramolecular features
The packing of the [M(acac)2(TMEDA)] units is dominated by van der Waals interactions. The mutual arrangement of the complex units 1–3 is similar but not identical (Figs. 4–6). In the case of the iron compound 2 there is also a contribution from weak C—H⋯O hydrogen bridges (Table 4). As a result, the complexes are associated by R22(8) type motifs, forming centrosymmetric dimers (Fig. 5).
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.40, February 2019 update; Groom et al., 2016) for complexes with a composition [M(acac)2(TMEDA)] analogous to 1–3 revealed the crystal structures for the M = V, Ni, Co and Ru derivatives (Ma et al., 1999; Pasko et al., 2004; Trimmel et al., 2002; Zeller et al., 2004; Halbach et al., 2012). However, none of these complexes is isotypic with the three title compounds. In the case of the related hfa derivatives, complexes of the type [M(hfa)2(TMEDA)] (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) with M = Mg, Mn, Fe, Co, Cu and Zn have been reported.
5. Synthesis and crystallization
TMEDA (7.5 ml, 5.8 g, 50 mmol) was added to a suspension of [M(acac)2(H2O)2] (25 mmol, M = Mn: 9.71 g, Fe: 9.73 g, Zn: 9.97 g) in toluene (30 ml). The suspension was stirred at 323 K for 2 h. After removal of the solvent under reduced pressure, n-hexane (25 ml) was added and insoluble parts were filtered off. The filtrates were kept at 248 K to obtain the products as yellow (1), red–brown (2) and colourless (3) crystalline solids in yields around 90%.
Characterization
[Mn(acac)2TMEDA] (1)
C16H30MnN2O4 calculated C 52.03, H 8.19, N 7.59%, found: C 51.71, H 8.13, N 7.14%; IR (ATR): ν = 3067 w, 2993 w, 2970 w, 2917 w, 2986 w, 2860 w, 2828 w, 2788 w, 2772 w, 1595 m, 1512 s, 1468 m, 1449 m, 1412 s, 1391 m, 1353 m, 1288 m, 1251 m, 1190 w, 1159 w, 1124 w, 1095 w, 1063 w, 1045 m, 1026 w, 1011 m, 950 m, 934 w, 913 m, 794 m, 771 w, 751 m, 650 w, 583 w, 526 m, 468 w, 448 w, 436 w, 400 s, 325 m, 212 s cm−1.
M.p.: 362 K.
[Fe(acac)2TMEDA] (2)
C16H30FeN2O4 calculated C 51.90, H 8.17, N 7.57%, found: C 51.75, H 8.08, N 7.23%; IR (ATR): ν = 3074 w, 3001 w, 2967 w, 2911 w, 2869 w, 2836 w, 2790 w, 1583 m, 1510 s, 1455 m, 1411 s, 1382 m, 1357 w, 1289 m, 1274 w, 1256 m, 1188 w, 1165 w, 1127 w, 1101 w, 1030 w 1012 m, 952 m, 917 m, 793 m, 762 s, 651 w, 583 w, 543 m, 475 w, 436 w, 404 w, 382 s, 296 w, 265 m, 227 s cm−1.
M.p.: 361 K.
[Zn(acac)2TMEDA] (3)
C16H30N2O4Zn calculated C 50.60, H 7.96, N 7.38%, found: C 50.33, H 8.13, N 7.23%; 1H-NMR (CDCl3, 399.962 MHz) δ = 5.15 [s, 2H, C(O)CHC(O)], 2.49 (s, 4H, Me2N-CH2), 2.31 (s, 12H, (CH3)2N), 1.85 [s, 12H, CH3C(O)]; 13C-NMR (CDCl3,100.581 MHz) δ = 190.9 [C(O)], 98.4 [C(O)CHC(O)], 56.5 (NCH2), 46.6 [(CH3)2N], 28.3 (C(O)CH3) ppm; IR (ATR): ν = 3071 w, 3001 w, 2975 w, 2881 w, 2835 w, 2792 w, 1615 m, 1593 m, 1515 s, 1469 m, 1455 m, 1411 m, 1390 s, 1354 m, 1290 m, 1252 m, 1190 w, 1166 w, 1128 w, 1101 w, 1061 w, 1032 m, 1013 s, 953 m, 936 w, 918 m, 798 m, 770 m, 754 m, 649 w, 584 w, 543 m, 474 w, 440 m, 405 s, 382 w, 208 s cm−1.
M.p.: 362 K.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2(CH and CH2) or 1.5(CH3) times Ueq(C). Reflections with error/e.s.d. > 8 were omitted. Error/e.s.d. = (wD2/<wD2>)0.5 where D = Fo2 - Fc2.
details are summarized in Table 5Supporting information
https://doi.org/10.1107/S2056989019016372/wm5524sup1.cif
contains datablocks 1, 2, 3. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989019016372/wm55241sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019016372/wm55242sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989019016372/wm55243sup4.hkl
For all structures, data collection: X-AREA (Stoe & Cie, 2016); cell
X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Mn(C5H7O2)2(C6H16N2)] | F(000) = 788 |
Mr = 369.36 | Dx = 1.241 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4234 (4) Å | Cell parameters from 13227 reflections |
b = 14.3123 (5) Å | θ = 1.4–27.2° |
c = 13.6047 (5) Å | µ = 0.69 mm−1 |
β = 103.154 (3)° | T = 213 K |
V = 1976.33 (13) Å3 | Block, clear yellow |
Z = 4 | 0.35 × 0.25 × 0.20 mm |
STOE IPDS 2 diffractometer | 4139 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs | 3475 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.030 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.8°, θmin = 2.1° |
rotation method scans | h = −13→13 |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) | k = −17→18 |
Tmin = 0.798, Tmax = 0.912 | l = −17→16 |
12607 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6571P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4139 reflections | Δρmax = 0.22 e Å−3 |
216 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn | 0.50579 (2) | 0.74721 (2) | 0.49407 (2) | 0.04120 (11) | |
O1 | 0.67069 (13) | 0.65614 (9) | 0.53426 (10) | 0.0602 (3) | |
O2 | 0.64605 (12) | 0.84003 (9) | 0.45153 (11) | 0.0554 (3) | |
O3 | 0.50538 (13) | 0.83274 (9) | 0.62280 (10) | 0.0546 (3) | |
O4 | 0.38216 (14) | 0.65820 (9) | 0.55845 (10) | 0.0565 (3) | |
N1 | 0.44810 (15) | 0.65991 (11) | 0.34289 (11) | 0.0523 (4) | |
N2 | 0.33093 (14) | 0.83481 (11) | 0.39666 (12) | 0.0533 (4) | |
C1 | 0.8801 (3) | 0.5868 (2) | 0.5617 (2) | 0.0943 (9) | |
H1 | 0.8477 | 0.5484 | 0.6086 | 0.141* | |
H3 | 0.9667 | 0.6089 | 0.5928 | 0.141* | |
H2 | 0.8838 | 0.5506 | 0.5029 | 0.141* | |
C2 | 0.7888 (2) | 0.66910 (16) | 0.53114 (14) | 0.0593 (5) | |
C3 | 0.8405 (2) | 0.75159 (16) | 0.50286 (17) | 0.0664 (6) | |
H4 | 0.9308 | 0.7532 | 0.5070 | 0.080* | |
C4 | 0.76938 (18) | 0.83223 (14) | 0.46880 (15) | 0.0568 (5) | |
C5 | 0.8448 (2) | 0.91826 (18) | 0.4505 (2) | 0.0885 (8) | |
H5 | 0.9136 | 0.9006 | 0.4178 | 0.133* | |
H6 | 0.8827 | 0.9477 | 0.5138 | 0.133* | |
H7 | 0.7860 | 0.9611 | 0.4082 | 0.133* | |
C6 | 0.4607 (2) | 0.89848 (16) | 0.77048 (18) | 0.0714 (6) | |
H8 | 0.5521 | 0.9144 | 0.7936 | 0.107* | |
H10 | 0.4263 | 0.8782 | 0.8267 | 0.107* | |
H9 | 0.4125 | 0.9522 | 0.7400 | 0.107* | |
C7 | 0.44674 (17) | 0.82045 (13) | 0.69347 (13) | 0.0498 (4) | |
C8 | 0.3712 (2) | 0.74328 (13) | 0.70557 (16) | 0.0568 (5) | |
H11 | 0.3367 | 0.7416 | 0.7629 | 0.068* | |
C9 | 0.34284 (19) | 0.66822 (13) | 0.63927 (15) | 0.0558 (4) | |
C10 | 0.2576 (3) | 0.59062 (18) | 0.6645 (2) | 0.0920 (9) | |
H12 | 0.2171 | 0.6107 | 0.7176 | 0.138* | |
H13 | 0.3109 | 0.5365 | 0.6861 | 0.138* | |
H14 | 0.1904 | 0.5754 | 0.6057 | 0.138* | |
C11 | 0.3189 (2) | 0.69516 (18) | 0.28808 (16) | 0.0693 (6) | |
H16 | 0.2506 | 0.6684 | 0.3173 | 0.083* | |
H15 | 0.3030 | 0.6753 | 0.2182 | 0.083* | |
C12 | 0.3114 (2) | 0.79961 (18) | 0.29216 (16) | 0.0703 (6) | |
H17 | 0.3781 | 0.8263 | 0.2612 | 0.084* | |
H18 | 0.2260 | 0.8199 | 0.2535 | 0.084* | |
C13 | 0.4397 (3) | 0.55956 (14) | 0.36410 (18) | 0.0728 (6) | |
H20 | 0.3743 | 0.5496 | 0.4026 | 0.109* | |
H21 | 0.5236 | 0.5378 | 0.4018 | 0.109* | |
H19 | 0.4156 | 0.5258 | 0.3016 | 0.109* | |
C14 | 0.5481 (2) | 0.67378 (17) | 0.28339 (15) | 0.0647 (5) | |
H24 | 0.5227 | 0.6403 | 0.2208 | 0.097* | |
H22 | 0.6316 | 0.6509 | 0.3207 | 0.097* | |
H23 | 0.5553 | 0.7392 | 0.2698 | 0.097* | |
C15 | 0.21051 (19) | 0.82208 (18) | 0.43395 (18) | 0.0711 (6) | |
H25 | 0.1889 | 0.7568 | 0.4331 | 0.107* | |
H27 | 0.1393 | 0.8557 | 0.3914 | 0.107* | |
H26 | 0.2246 | 0.8454 | 0.5017 | 0.107* | |
C16 | 0.3638 (2) | 0.93462 (15) | 0.4003 (2) | 0.0784 (7) | |
H29 | 0.2945 | 0.9685 | 0.3560 | 0.118* | |
H28 | 0.4448 | 0.9435 | 0.3793 | 0.118* | |
H30 | 0.3736 | 0.9572 | 0.4680 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.03895 (15) | 0.04541 (18) | 0.03899 (15) | −0.00103 (10) | 0.00838 (10) | 0.00066 (10) |
O1 | 0.0612 (8) | 0.0613 (8) | 0.0561 (8) | 0.0159 (6) | 0.0090 (6) | 0.0076 (6) |
O2 | 0.0433 (6) | 0.0523 (7) | 0.0725 (9) | −0.0029 (5) | 0.0168 (6) | 0.0043 (6) |
O3 | 0.0591 (7) | 0.0537 (7) | 0.0526 (7) | −0.0101 (6) | 0.0160 (6) | −0.0103 (6) |
O4 | 0.0700 (8) | 0.0495 (7) | 0.0567 (8) | −0.0136 (6) | 0.0282 (6) | −0.0085 (6) |
N1 | 0.0538 (8) | 0.0612 (9) | 0.0426 (8) | −0.0076 (7) | 0.0124 (6) | −0.0048 (7) |
N2 | 0.0431 (7) | 0.0595 (9) | 0.0546 (9) | 0.0040 (7) | 0.0054 (6) | 0.0063 (7) |
C1 | 0.0924 (18) | 0.108 (2) | 0.0744 (15) | 0.0575 (16) | 0.0027 (13) | −0.0049 (14) |
C2 | 0.0561 (11) | 0.0758 (14) | 0.0411 (9) | 0.0216 (10) | 0.0009 (8) | −0.0109 (9) |
C3 | 0.0392 (9) | 0.0933 (17) | 0.0658 (13) | 0.0089 (10) | 0.0100 (9) | −0.0196 (11) |
C4 | 0.0454 (9) | 0.0699 (12) | 0.0589 (11) | −0.0094 (9) | 0.0197 (8) | −0.0190 (9) |
C5 | 0.0657 (14) | 0.0870 (17) | 0.124 (2) | −0.0267 (13) | 0.0450 (15) | −0.0239 (16) |
C6 | 0.0770 (14) | 0.0710 (14) | 0.0676 (13) | 0.0026 (11) | 0.0191 (11) | −0.0237 (11) |
C7 | 0.0473 (9) | 0.0556 (10) | 0.0450 (9) | 0.0070 (8) | 0.0076 (7) | −0.0062 (8) |
C8 | 0.0628 (12) | 0.0614 (12) | 0.0525 (10) | −0.0014 (9) | 0.0262 (9) | −0.0058 (8) |
C9 | 0.0581 (10) | 0.0560 (11) | 0.0590 (11) | −0.0039 (9) | 0.0253 (9) | −0.0014 (9) |
C10 | 0.110 (2) | 0.0822 (17) | 0.104 (2) | −0.0364 (15) | 0.0658 (17) | −0.0179 (15) |
C11 | 0.0544 (11) | 0.0974 (17) | 0.0505 (11) | −0.0062 (11) | 0.0004 (9) | −0.0157 (11) |
C12 | 0.0594 (12) | 0.0975 (17) | 0.0483 (11) | 0.0137 (11) | 0.0000 (9) | 0.0114 (11) |
C13 | 0.1012 (17) | 0.0554 (12) | 0.0660 (13) | −0.0177 (11) | 0.0276 (12) | −0.0174 (10) |
C14 | 0.0666 (12) | 0.0849 (15) | 0.0466 (10) | −0.0047 (11) | 0.0210 (9) | −0.0051 (10) |
C15 | 0.0432 (10) | 0.0931 (16) | 0.0760 (14) | 0.0085 (10) | 0.0118 (9) | 0.0033 (12) |
C16 | 0.0653 (13) | 0.0614 (13) | 0.1024 (19) | 0.0125 (10) | 0.0063 (12) | 0.0203 (12) |
Mn—O1 | 2.1271 (13) | C6—H10 | 0.9600 |
Mn—O2 | 2.1500 (12) | C6—H9 | 0.9600 |
Mn—O3 | 2.1375 (12) | C6—C7 | 1.515 (3) |
Mn—O4 | 2.1365 (12) | C7—C8 | 1.388 (3) |
Mn—N1 | 2.3643 (15) | C8—H11 | 0.9300 |
Mn—N2 | 2.3560 (15) | C8—C9 | 1.391 (3) |
O1—C2 | 1.255 (2) | C9—C10 | 1.510 (3) |
O2—C4 | 1.258 (2) | C10—H12 | 0.9600 |
O3—C7 | 1.263 (2) | C10—H13 | 0.9600 |
O4—C9 | 1.266 (2) | C10—H14 | 0.9600 |
N1—C11 | 1.472 (3) | C11—H16 | 0.9700 |
N1—C13 | 1.472 (3) | C11—H15 | 0.9700 |
N1—C14 | 1.472 (2) | C11—C12 | 1.499 (4) |
N2—C12 | 1.478 (3) | C12—H17 | 0.9700 |
N2—C15 | 1.468 (2) | C12—H18 | 0.9700 |
N2—C16 | 1.467 (3) | C13—H20 | 0.9600 |
C1—H1 | 0.9600 | C13—H21 | 0.9600 |
C1—H3 | 0.9600 | C13—H19 | 0.9600 |
C1—H2 | 0.9600 | C14—H24 | 0.9600 |
C1—C2 | 1.512 (3) | C14—H22 | 0.9600 |
C2—C3 | 1.388 (3) | C14—H23 | 0.9600 |
C3—H4 | 0.9300 | C15—H25 | 0.9600 |
C3—C4 | 1.393 (3) | C15—H27 | 0.9600 |
C4—C5 | 1.512 (3) | C15—H26 | 0.9600 |
C5—H5 | 0.9600 | C16—H29 | 0.9600 |
C5—H6 | 0.9600 | C16—H28 | 0.9600 |
C5—H7 | 0.9600 | C16—H30 | 0.9600 |
C6—H8 | 0.9600 | ||
O1—Mn—O2 | 83.61 (5) | C7—C6—H8 | 109.5 |
O1—Mn—O3 | 107.00 (5) | C7—C6—H10 | 109.5 |
O1—Mn—O4 | 93.25 (5) | C7—C6—H9 | 109.5 |
O1—Mn—N1 | 86.01 (5) | O3—C7—C6 | 115.89 (17) |
O1—Mn—N2 | 161.29 (6) | O3—C7—C8 | 125.92 (17) |
O2—Mn—O3 | 89.71 (5) | C8—C7—C6 | 118.18 (17) |
O2—Mn—O4 | 171.63 (5) | C7—C8—H11 | 117.2 |
O2—Mn—N1 | 98.41 (5) | C7—C8—C9 | 125.50 (18) |
O2—Mn—N2 | 90.36 (5) | C9—C8—H11 | 117.2 |
O3—Mn—O4 | 83.78 (5) | O4—C9—C8 | 125.99 (17) |
O3—Mn—N1 | 165.43 (5) | O4—C9—C10 | 115.94 (18) |
O3—Mn—N2 | 90.61 (5) | C8—C9—C10 | 118.07 (18) |
O4—Mn—N1 | 89.07 (5) | C9—C10—H12 | 109.5 |
O4—Mn—N2 | 94.95 (6) | C9—C10—H13 | 109.5 |
N1—Mn—N2 | 77.34 (6) | C9—C10—H14 | 109.5 |
C2—O1—Mn | 129.95 (14) | H12—C10—H13 | 109.5 |
C4—O2—Mn | 128.56 (13) | H12—C10—H14 | 109.5 |
C7—O3—Mn | 129.44 (12) | H13—C10—H14 | 109.5 |
C9—O4—Mn | 129.29 (12) | N1—C11—H16 | 109.2 |
C11—N1—Mn | 106.37 (12) | N1—C11—H15 | 109.2 |
C13—N1—Mn | 111.10 (12) | N1—C11—C12 | 111.88 (17) |
C13—N1—C11 | 110.20 (18) | H16—C11—H15 | 107.9 |
C13—N1—C14 | 108.71 (17) | C12—C11—H16 | 109.2 |
C14—N1—Mn | 109.60 (12) | C12—C11—H15 | 109.2 |
C14—N1—C11 | 110.86 (16) | N2—C12—C11 | 112.25 (17) |
C12—N2—Mn | 106.22 (12) | N2—C12—H17 | 109.2 |
C15—N2—Mn | 110.63 (12) | N2—C12—H18 | 109.2 |
C15—N2—C12 | 110.40 (17) | C11—C12—H17 | 109.2 |
C16—N2—Mn | 110.75 (12) | C11—C12—H18 | 109.2 |
C16—N2—C12 | 110.14 (18) | H17—C12—H18 | 107.9 |
C16—N2—C15 | 108.69 (17) | N1—C13—H20 | 109.5 |
H1—C1—H3 | 109.5 | N1—C13—H21 | 109.5 |
H1—C1—H2 | 109.5 | N1—C13—H19 | 109.5 |
H3—C1—H2 | 109.5 | H20—C13—H21 | 109.5 |
C2—C1—H1 | 109.5 | H20—C13—H19 | 109.5 |
C2—C1—H3 | 109.5 | H21—C13—H19 | 109.5 |
C2—C1—H2 | 109.5 | N1—C14—H24 | 109.5 |
O1—C2—C1 | 115.9 (2) | N1—C14—H22 | 109.5 |
O1—C2—C3 | 125.51 (18) | N1—C14—H23 | 109.5 |
C3—C2—C1 | 118.6 (2) | H24—C14—H22 | 109.5 |
C2—C3—H4 | 117.1 | H24—C14—H23 | 109.5 |
C2—C3—C4 | 125.86 (18) | H22—C14—H23 | 109.5 |
C4—C3—H4 | 117.1 | N2—C15—H25 | 109.5 |
O2—C4—C3 | 125.44 (19) | N2—C15—H27 | 109.5 |
O2—C4—C5 | 116.4 (2) | N2—C15—H26 | 109.5 |
C3—C4—C5 | 118.17 (19) | H25—C15—H27 | 109.5 |
C4—C5—H5 | 109.5 | H25—C15—H26 | 109.5 |
C4—C5—H6 | 109.5 | H27—C15—H26 | 109.5 |
C4—C5—H7 | 109.5 | N2—C16—H29 | 109.5 |
H5—C5—H6 | 109.5 | N2—C16—H28 | 109.5 |
H5—C5—H7 | 109.5 | N2—C16—H30 | 109.5 |
H6—C5—H7 | 109.5 | H29—C16—H28 | 109.5 |
H8—C6—H10 | 109.5 | H29—C16—H30 | 109.5 |
H8—C6—H9 | 109.5 | H28—C16—H30 | 109.5 |
H10—C6—H9 | 109.5 | ||
Mn—O1—C2—C1 | −177.50 (14) | N1—C11—C12—N2 | −60.6 (2) |
Mn—O1—C2—C3 | 2.8 (3) | C1—C2—C3—C4 | 177.1 (2) |
Mn—O2—C4—C3 | 13.4 (3) | C2—C3—C4—O2 | −5.6 (3) |
Mn—O2—C4—C5 | −166.67 (16) | C2—C3—C4—C5 | 174.5 (2) |
Mn—O3—C7—C6 | −176.26 (13) | C6—C7—C8—C9 | 176.5 (2) |
Mn—O3—C7—C8 | 3.2 (3) | C7—C8—C9—O4 | 0.7 (4) |
Mn—O4—C9—C8 | 1.1 (3) | C7—C8—C9—C10 | −179.4 (2) |
Mn—O4—C9—C10 | −178.82 (17) | C13—N1—C11—C12 | 162.74 (17) |
Mn—N1—C11—C12 | 42.22 (19) | C14—N1—C11—C12 | −76.9 (2) |
Mn—N2—C12—C11 | 42.41 (19) | C15—N2—C12—C11 | −77.6 (2) |
O1—C2—C3—C4 | −3.2 (3) | C16—N2—C12—C11 | 162.39 (17) |
O3—C7—C8—C9 | −3.0 (3) |
[Fe(C5H7O2)2(C6H16N2)] | F(000) = 792 |
Mr = 370.27 | Dx = 1.253 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2021 (3) Å | Cell parameters from 16780 reflections |
b = 15.4708 (4) Å | θ = 1.6–29.6° |
c = 12.4881 (4) Å | µ = 0.79 mm−1 |
β = 95.382 (3)° | T = 213 K |
V = 1962.37 (10) Å3 | Block, clear reddish brown |
Z = 4 | 0.26 × 0.25 × 0.23 mm |
STOE IPDS 2 diffractometer | 5276 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs | 4425 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.037 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.3°, θmin = 2.1° |
rotation method scans | h = −13→13 |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) | k = −21→20 |
Tmin = 0.814, Tmax = 0.894 | l = −17→17 |
18586 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3681P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
5276 reflections | Δρmax = 0.32 e Å−3 |
216 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.63613 (15) | 0.53037 (11) | 0.42322 (12) | 0.0444 (3) | |
H2 | 0.5847 | 0.4797 | 0.4338 | 0.067* | |
H3 | 0.7061 | 0.5160 | 0.3800 | 0.067* | |
H1 | 0.5810 | 0.5739 | 0.3874 | 0.067* | |
C2 | 0.69359 (13) | 0.56425 (9) | 0.53071 (11) | 0.0352 (3) | |
C3 | 0.81769 (14) | 0.53357 (9) | 0.57243 (12) | 0.0396 (3) | |
H4 | 0.8603 | 0.4948 | 0.5305 | 0.047* | |
C4 | 0.88149 (13) | 0.55660 (9) | 0.67116 (12) | 0.0388 (3) | |
C5 | 1.01582 (16) | 0.51923 (13) | 0.70525 (16) | 0.0584 (4) | |
H7 | 1.0343 | 0.4733 | 0.6572 | 0.088* | |
H5 | 1.0172 | 0.4970 | 0.7771 | 0.088* | |
H6 | 1.0813 | 0.5636 | 0.7031 | 0.088* | |
C6 | 0.39240 (17) | 0.48770 (10) | 0.87153 (14) | 0.0496 (4) | |
H10 | 0.3000 | 0.4817 | 0.8499 | 0.074* | |
H9 | 0.4064 | 0.4888 | 0.9486 | 0.074* | |
H8 | 0.4391 | 0.4397 | 0.8446 | 0.074* | |
C7 | 0.44227 (13) | 0.57093 (9) | 0.82668 (11) | 0.0359 (3) | |
C8 | 0.35444 (13) | 0.64029 (10) | 0.81410 (12) | 0.0379 (3) | |
H11 | 0.2707 | 0.6321 | 0.8359 | 0.046* | |
C9 | 0.38200 (13) | 0.72026 (9) | 0.77178 (11) | 0.0350 (3) | |
C10 | 0.27918 (16) | 0.79023 (12) | 0.77050 (16) | 0.0542 (4) | |
H14 | 0.2694 | 0.8171 | 0.7009 | 0.081* | |
H13 | 0.3059 | 0.8328 | 0.8241 | 0.081* | |
H12 | 0.1967 | 0.7654 | 0.7857 | 0.081* | |
C11 | 0.78186 (19) | 0.85071 (11) | 0.76164 (14) | 0.0537 (4) | |
H16 | 0.7020 | 0.8793 | 0.7792 | 0.064* | |
H15 | 0.8440 | 0.8949 | 0.7446 | 0.064* | |
C12 | 0.83901 (17) | 0.80004 (13) | 0.85721 (14) | 0.0545 (4) | |
H17 | 0.9192 | 0.7718 | 0.8398 | 0.065* | |
H18 | 0.8617 | 0.8393 | 0.9167 | 0.065* | |
C13 | 0.6596 (2) | 0.83936 (13) | 0.58754 (16) | 0.0593 (4) | |
H19 | 0.6381 | 0.8022 | 0.5269 | 0.089* | |
H21 | 0.7000 | 0.8912 | 0.5641 | 0.089* | |
H20 | 0.5807 | 0.8539 | 0.6198 | 0.089* | |
C14 | 0.87086 (16) | 0.77473 (12) | 0.61406 (14) | 0.0519 (4) | |
H24 | 0.9042 | 0.8268 | 0.5847 | 0.078* | |
H22 | 0.8499 | 0.7338 | 0.5572 | 0.078* | |
H23 | 0.9363 | 0.7506 | 0.6658 | 0.078* | |
C15 | 0.64471 (18) | 0.77489 (13) | 0.94987 (14) | 0.0549 (4) | |
H26 | 0.5825 | 0.7319 | 0.9677 | 0.082* | |
H25 | 0.6001 | 0.8188 | 0.9060 | 0.082* | |
H27 | 0.6853 | 0.8005 | 1.0147 | 0.082* | |
C16 | 0.8174 (2) | 0.67090 (14) | 0.96194 (14) | 0.0619 (5) | |
H29 | 0.8834 | 0.6428 | 0.9244 | 0.093* | |
H28 | 0.7566 | 0.6286 | 0.9840 | 0.093* | |
H30 | 0.8587 | 0.7000 | 1.0242 | 0.093* | |
Fe | 0.65967 (2) | 0.67126 (2) | 0.73081 (2) | 0.03242 (7) | |
N1 | 0.75139 (12) | 0.79468 (8) | 0.66685 (10) | 0.0407 (3) | |
N2 | 0.74634 (12) | 0.73421 (9) | 0.89046 (10) | 0.0418 (3) | |
O1 | 0.62568 (9) | 0.61851 (7) | 0.57684 (8) | 0.0395 (2) | |
O2 | 0.83743 (9) | 0.60880 (7) | 0.73746 (9) | 0.0426 (2) | |
O3 | 0.55981 (10) | 0.57212 (6) | 0.80388 (9) | 0.0414 (2) | |
O4 | 0.48936 (9) | 0.74134 (6) | 0.73429 (8) | 0.0384 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0435 (7) | 0.0512 (8) | 0.0393 (7) | −0.0086 (6) | 0.0082 (6) | −0.0108 (6) |
C2 | 0.0360 (6) | 0.0341 (6) | 0.0368 (7) | −0.0081 (5) | 0.0096 (5) | −0.0039 (5) |
C3 | 0.0380 (7) | 0.0368 (7) | 0.0453 (8) | 0.0022 (5) | 0.0111 (6) | −0.0064 (6) |
C4 | 0.0301 (6) | 0.0407 (7) | 0.0465 (8) | 0.0000 (5) | 0.0089 (5) | 0.0000 (6) |
C5 | 0.0374 (8) | 0.0703 (12) | 0.0670 (11) | 0.0127 (8) | 0.0019 (7) | −0.0056 (9) |
C6 | 0.0539 (9) | 0.0434 (8) | 0.0515 (9) | −0.0121 (7) | 0.0050 (7) | 0.0076 (7) |
C7 | 0.0380 (6) | 0.0369 (7) | 0.0328 (6) | −0.0079 (5) | 0.0028 (5) | −0.0029 (5) |
C8 | 0.0303 (6) | 0.0435 (7) | 0.0413 (7) | −0.0049 (5) | 0.0102 (5) | −0.0045 (6) |
C9 | 0.0315 (6) | 0.0393 (7) | 0.0349 (6) | 0.0017 (5) | 0.0056 (5) | −0.0047 (5) |
C10 | 0.0439 (8) | 0.0539 (9) | 0.0670 (11) | 0.0149 (7) | 0.0163 (7) | 0.0022 (8) |
C11 | 0.0674 (11) | 0.0428 (8) | 0.0540 (10) | −0.0207 (8) | 0.0222 (8) | −0.0125 (7) |
C12 | 0.0508 (9) | 0.0685 (11) | 0.0451 (9) | −0.0275 (8) | 0.0092 (7) | −0.0158 (8) |
C13 | 0.0626 (11) | 0.0614 (11) | 0.0559 (10) | −0.0011 (8) | 0.0154 (8) | 0.0167 (8) |
C14 | 0.0496 (8) | 0.0561 (9) | 0.0537 (9) | −0.0149 (7) | 0.0247 (7) | −0.0073 (7) |
C15 | 0.0550 (9) | 0.0690 (11) | 0.0429 (8) | −0.0094 (8) | 0.0167 (7) | −0.0164 (8) |
C16 | 0.0650 (11) | 0.0792 (13) | 0.0401 (9) | 0.0011 (9) | −0.0027 (8) | −0.0002 (8) |
Fe | 0.02688 (10) | 0.03490 (11) | 0.03626 (11) | −0.00268 (7) | 0.00714 (7) | −0.00567 (7) |
N1 | 0.0432 (6) | 0.0415 (6) | 0.0395 (6) | −0.0086 (5) | 0.0147 (5) | −0.0039 (5) |
N2 | 0.0395 (6) | 0.0513 (7) | 0.0354 (6) | −0.0101 (5) | 0.0077 (5) | −0.0055 (5) |
O1 | 0.0329 (5) | 0.0440 (5) | 0.0416 (5) | 0.0005 (4) | 0.0028 (4) | −0.0112 (4) |
O2 | 0.0313 (5) | 0.0535 (6) | 0.0429 (5) | 0.0021 (4) | 0.0031 (4) | −0.0100 (5) |
O3 | 0.0352 (5) | 0.0352 (5) | 0.0543 (6) | −0.0009 (4) | 0.0075 (4) | 0.0014 (4) |
O4 | 0.0349 (5) | 0.0348 (5) | 0.0471 (5) | 0.0018 (4) | 0.0124 (4) | 0.0023 (4) |
C1—H2 | 0.9600 | C11—C12 | 1.499 (3) |
C1—H3 | 0.9600 | C11—N1 | 1.477 (2) |
C1—H1 | 0.9600 | C12—H17 | 0.9700 |
C1—C2 | 1.5076 (19) | C12—H18 | 0.9700 |
C2—C3 | 1.406 (2) | C12—N2 | 1.475 (2) |
C2—O1 | 1.2615 (16) | C13—H19 | 0.9600 |
C3—H4 | 0.9300 | C13—H21 | 0.9600 |
C3—C4 | 1.386 (2) | C13—H20 | 0.9600 |
C4—C5 | 1.511 (2) | C13—N1 | 1.471 (2) |
C4—O2 | 1.2687 (17) | C14—H24 | 0.9600 |
C5—H7 | 0.9600 | C14—H22 | 0.9600 |
C5—H5 | 0.9600 | C14—H23 | 0.9600 |
C5—H6 | 0.9600 | C14—N1 | 1.4718 (19) |
C6—H10 | 0.9600 | C15—H26 | 0.9600 |
C6—H9 | 0.9600 | C15—H25 | 0.9600 |
C6—H8 | 0.9600 | C15—H27 | 0.9600 |
C6—C7 | 1.511 (2) | C15—N2 | 1.472 (2) |
C7—C8 | 1.397 (2) | C16—H29 | 0.9600 |
C7—O3 | 1.2583 (17) | C16—H28 | 0.9600 |
C8—H11 | 0.9300 | C16—H30 | 0.9600 |
C8—C9 | 1.385 (2) | C16—N2 | 1.470 (2) |
C9—C10 | 1.506 (2) | Fe—O1 | 2.0876 (10) |
C9—O4 | 1.2734 (16) | Fe—O2 | 2.0497 (10) |
C10—H14 | 0.9600 | Fe—O3 | 2.0970 (10) |
C10—H13 | 0.9600 | Fe—O4 | 2.0520 (9) |
C10—H12 | 0.9600 | Fe—N1 | 2.3021 (12) |
C11—H16 | 0.9700 | Fe—N2 | 2.3184 (12) |
C11—H15 | 0.9700 | ||
H2—C1—H3 | 109.5 | H19—C13—H20 | 109.5 |
H2—C1—H1 | 109.5 | H21—C13—H20 | 109.5 |
H3—C1—H1 | 109.5 | N1—C13—H19 | 109.5 |
C2—C1—H2 | 109.5 | N1—C13—H21 | 109.5 |
C2—C1—H3 | 109.5 | N1—C13—H20 | 109.5 |
C2—C1—H1 | 109.5 | H24—C14—H22 | 109.5 |
C3—C2—C1 | 118.30 (12) | H24—C14—H23 | 109.5 |
O1—C2—C1 | 116.98 (13) | H22—C14—H23 | 109.5 |
O1—C2—C3 | 124.72 (13) | N1—C14—H24 | 109.5 |
C2—C3—H4 | 117.5 | N1—C14—H22 | 109.5 |
C4—C3—C2 | 125.07 (13) | N1—C14—H23 | 109.5 |
C4—C3—H4 | 117.5 | H26—C15—H25 | 109.5 |
C3—C4—C5 | 119.35 (14) | H26—C15—H27 | 109.5 |
O2—C4—C3 | 125.36 (13) | H25—C15—H27 | 109.5 |
O2—C4—C5 | 115.28 (14) | N2—C15—H26 | 109.5 |
C4—C5—H7 | 109.5 | N2—C15—H25 | 109.5 |
C4—C5—H5 | 109.5 | N2—C15—H27 | 109.5 |
C4—C5—H6 | 109.5 | H29—C16—H28 | 109.5 |
H7—C5—H5 | 109.5 | H29—C16—H30 | 109.5 |
H7—C5—H6 | 109.5 | H28—C16—H30 | 109.5 |
H5—C5—H6 | 109.5 | N2—C16—H29 | 109.5 |
H10—C6—H9 | 109.5 | N2—C16—H28 | 109.5 |
H10—C6—H8 | 109.5 | N2—C16—H30 | 109.5 |
H9—C6—H8 | 109.5 | O1—Fe—O2 | 85.58 (4) |
C7—C6—H10 | 109.5 | O1—Fe—O3 | 93.98 (4) |
C7—C6—H9 | 109.5 | O1—Fe—O4 | 99.11 (4) |
C7—C6—H8 | 109.5 | O1—Fe—N1 | 92.44 (4) |
C8—C7—C6 | 117.47 (13) | O1—Fe—N2 | 166.73 (4) |
O3—C7—C6 | 117.22 (13) | O2—Fe—O3 | 95.84 (4) |
O3—C7—C8 | 125.31 (13) | O2—Fe—O4 | 174.85 (4) |
C7—C8—H11 | 117.3 | O2—Fe—N1 | 91.04 (5) |
C9—C8—C7 | 125.32 (12) | O2—Fe—N2 | 84.18 (4) |
C9—C8—H11 | 117.3 | O3—Fe—O4 | 86.00 (4) |
C8—C9—C10 | 118.69 (13) | O3—Fe—N1 | 170.93 (4) |
O4—C9—C8 | 125.57 (12) | O3—Fe—N2 | 95.43 (4) |
O4—C9—C10 | 115.74 (13) | O4—Fe—N1 | 86.66 (4) |
C9—C10—H14 | 109.5 | O4—Fe—N2 | 90.87 (4) |
C9—C10—H13 | 109.5 | N1—Fe—N2 | 79.35 (4) |
C9—C10—H12 | 109.5 | C11—N1—Fe | 105.70 (9) |
H14—C10—H13 | 109.5 | C13—N1—C11 | 109.69 (14) |
H14—C10—H12 | 109.5 | C13—N1—C14 | 107.39 (13) |
H13—C10—H12 | 109.5 | C13—N1—Fe | 111.69 (10) |
H16—C11—H15 | 108.0 | C14—N1—C11 | 111.18 (13) |
C12—C11—H16 | 109.3 | C14—N1—Fe | 111.24 (10) |
C12—C11—H15 | 109.3 | C12—N2—Fe | 104.52 (9) |
N1—C11—H16 | 109.3 | C15—N2—C12 | 110.31 (14) |
N1—C11—H15 | 109.3 | C15—N2—Fe | 112.54 (10) |
N1—C11—C12 | 111.60 (14) | C16—N2—C12 | 109.77 (14) |
C11—C12—H17 | 109.2 | C16—N2—C15 | 108.03 (14) |
C11—C12—H18 | 109.2 | C16—N2—Fe | 111.65 (10) |
H17—C12—H18 | 107.9 | C2—O1—Fe | 129.04 (9) |
N2—C12—C11 | 111.91 (13) | C4—O2—Fe | 129.79 (9) |
N2—C12—H17 | 109.2 | C7—O3—Fe | 128.42 (10) |
N2—C12—H18 | 109.2 | C9—O4—Fe | 129.18 (9) |
H19—C13—H21 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H2···O1i | 0.96 | 2.62 | 3.5269 (18) | 157 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
[Zn(C5H7O2)2(C6H16N2)] | F(000) = 808 |
Mr = 379.79 | Dx = 1.293 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2335 (3) Å | Cell parameters from 19126 reflections |
b = 14.2134 (6) Å | θ = 2.1–27.2° |
c = 13.6738 (5) Å | µ = 1.28 mm−1 |
β = 101.208 (3)° | T = 200 K |
V = 1950.96 (12) Å3 | Block, clear colourless |
Z = 4 | 0.45 × 0.39 × 0.33 mm |
STOE IPDS 2T diffractometer | 3456 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.047 |
rotation method, ω scans | θmax = 26.7°, θmin = 2.1° |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) | h = −12→12 |
Tmin = 0.627, Tmax = 0.779 | k = −17→16 |
22385 measured reflections | l = −17→17 |
4124 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4124 reflections | Δρmax = 0.37 e Å−3 |
216 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.74026 (2) | 0.26429 (2) | 0.54676 (2) | 0.03991 (8) | |
O1 | 0.73445 (12) | 0.33774 (8) | 0.41466 (9) | 0.0534 (3) | |
O2 | 0.85986 (11) | 0.16705 (8) | 0.49492 (8) | 0.0507 (3) | |
O3 | 0.57869 (11) | 0.17554 (8) | 0.50853 (9) | 0.0529 (3) | |
O4 | 0.61242 (9) | 0.36299 (8) | 0.58630 (8) | 0.0441 (2) | |
N1 | 0.91461 (12) | 0.35505 (11) | 0.62041 (10) | 0.0499 (3) | |
N2 | 0.78674 (12) | 0.19573 (11) | 0.69813 (10) | 0.0459 (3) | |
C1 | 0.76595 (19) | 0.38103 (13) | 0.25509 (13) | 0.0575 (4) | |
H1 | 0.6725 | 0.4006 | 0.2373 | 0.086* | |
H2 | 0.7922 | 0.3504 | 0.1977 | 0.086* | |
H3 | 0.8222 | 0.4363 | 0.2743 | 0.086* | |
C2 | 0.78276 (15) | 0.31277 (12) | 0.34146 (11) | 0.0450 (4) | |
C3 | 0.85137 (17) | 0.22957 (12) | 0.33344 (13) | 0.0492 (4) | |
H4 | 0.8764 | 0.2169 | 0.2714 | 0.059* | |
C4 | 0.88628 (15) | 0.16331 (12) | 0.40893 (12) | 0.0462 (4) | |
C5 | 0.9672 (2) | 0.07864 (15) | 0.38836 (14) | 0.0672 (5) | |
H5 | 1.0493 | 0.0752 | 0.4389 | 0.101* | |
H6 | 0.9896 | 0.0849 | 0.3222 | 0.101* | |
H7 | 0.9149 | 0.0212 | 0.3907 | 0.101* | |
C6 | 0.3632 (2) | 0.11210 (15) | 0.48710 (15) | 0.0691 (5) | |
H8 | 0.3797 | 0.0646 | 0.5401 | 0.104* | |
H9 | 0.3758 | 0.0838 | 0.4242 | 0.104* | |
H10 | 0.2717 | 0.1354 | 0.4796 | 0.104* | |
C7 | 0.45930 (16) | 0.19273 (13) | 0.51387 (11) | 0.0476 (4) | |
C8 | 0.41127 (15) | 0.27812 (12) | 0.54200 (12) | 0.0475 (4) | |
H11 | 0.3180 | 0.2826 | 0.5391 | 0.057* | |
C9 | 0.48712 (14) | 0.35764 (11) | 0.57395 (11) | 0.0412 (3) | |
C10 | 0.41684 (16) | 0.44556 (13) | 0.59729 (13) | 0.0554 (4) | |
H12 | 0.3393 | 0.4283 | 0.6257 | 0.083* | |
H13 | 0.3875 | 0.4817 | 0.5359 | 0.083* | |
H14 | 0.4780 | 0.4838 | 0.6454 | 0.083* | |
C11 | 0.93211 (19) | 0.33443 (17) | 0.72727 (14) | 0.0676 (5) | |
H15 | 0.8644 | 0.3692 | 0.7556 | 0.081* | |
H16 | 1.0212 | 0.3563 | 0.7615 | 0.081* | |
C12 | 0.91917 (19) | 0.23151 (16) | 0.74583 (15) | 0.0651 (5) | |
H17 | 0.9887 | 0.1969 | 0.7194 | 0.078* | |
H18 | 0.9335 | 0.2200 | 0.8185 | 0.078* | |
C13 | 0.88618 (18) | 0.45547 (14) | 0.60157 (16) | 0.0671 (5) | |
H19 | 0.9629 | 0.4929 | 0.6341 | 0.101* | |
H20 | 0.8076 | 0.4732 | 0.6285 | 0.101* | |
H21 | 0.8691 | 0.4673 | 0.5296 | 0.101* | |
C14 | 1.03600 (16) | 0.33196 (16) | 0.58256 (16) | 0.0651 (5) | |
H22 | 1.0212 | 0.3449 | 0.5108 | 0.098* | |
H23 | 1.0573 | 0.2652 | 0.5944 | 0.098* | |
H24 | 1.1102 | 0.3704 | 0.6172 | 0.098* | |
C15 | 0.68709 (18) | 0.21961 (14) | 0.75840 (13) | 0.0560 (4) | |
H25 | 0.6835 | 0.2881 | 0.7660 | 0.084* | |
H26 | 0.7118 | 0.1902 | 0.8243 | 0.084* | |
H27 | 0.5995 | 0.1964 | 0.7251 | 0.084* | |
C16 | 0.7902 (2) | 0.09286 (14) | 0.68935 (15) | 0.0680 (5) | |
H28 | 0.7024 | 0.0700 | 0.6562 | 0.102* | |
H29 | 0.8137 | 0.0649 | 0.7560 | 0.102* | |
H30 | 0.8568 | 0.0750 | 0.6500 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.03590 (11) | 0.04475 (13) | 0.04087 (12) | 0.00666 (7) | 0.01186 (8) | −0.00208 (7) |
O1 | 0.0628 (7) | 0.0534 (7) | 0.0470 (6) | 0.0178 (6) | 0.0187 (5) | 0.0051 (5) |
O2 | 0.0555 (6) | 0.0545 (7) | 0.0465 (6) | 0.0158 (5) | 0.0204 (5) | 0.0024 (5) |
O3 | 0.0488 (6) | 0.0496 (7) | 0.0592 (7) | −0.0007 (5) | 0.0078 (5) | −0.0096 (5) |
O4 | 0.0335 (5) | 0.0470 (6) | 0.0538 (6) | 0.0028 (4) | 0.0136 (4) | −0.0040 (5) |
N1 | 0.0353 (6) | 0.0602 (9) | 0.0557 (8) | −0.0041 (6) | 0.0125 (6) | −0.0053 (7) |
N2 | 0.0431 (7) | 0.0537 (8) | 0.0422 (7) | 0.0079 (6) | 0.0114 (5) | 0.0024 (6) |
C1 | 0.0653 (11) | 0.0582 (11) | 0.0492 (10) | −0.0021 (9) | 0.0114 (8) | 0.0046 (8) |
C2 | 0.0406 (8) | 0.0525 (10) | 0.0417 (8) | −0.0032 (7) | 0.0077 (6) | −0.0012 (7) |
C3 | 0.0529 (9) | 0.0559 (10) | 0.0417 (9) | 0.0035 (7) | 0.0163 (7) | −0.0050 (7) |
C4 | 0.0444 (8) | 0.0481 (9) | 0.0485 (9) | 0.0042 (7) | 0.0149 (7) | −0.0079 (7) |
C5 | 0.0817 (13) | 0.0620 (12) | 0.0632 (11) | 0.0230 (10) | 0.0271 (10) | −0.0048 (9) |
C6 | 0.0680 (12) | 0.0741 (14) | 0.0632 (12) | −0.0250 (10) | 0.0074 (9) | −0.0086 (10) |
C7 | 0.0474 (8) | 0.0576 (10) | 0.0356 (8) | −0.0083 (8) | 0.0028 (6) | 0.0009 (7) |
C8 | 0.0323 (7) | 0.0653 (11) | 0.0451 (9) | −0.0004 (7) | 0.0081 (6) | 0.0028 (7) |
C9 | 0.0368 (7) | 0.0515 (9) | 0.0370 (8) | 0.0066 (6) | 0.0113 (6) | 0.0068 (6) |
C10 | 0.0443 (8) | 0.0596 (11) | 0.0674 (11) | 0.0127 (7) | 0.0233 (8) | 0.0043 (8) |
C11 | 0.0517 (10) | 0.0963 (16) | 0.0527 (11) | −0.0182 (10) | 0.0053 (8) | −0.0141 (10) |
C12 | 0.0449 (9) | 0.0990 (16) | 0.0484 (10) | 0.0056 (9) | 0.0017 (8) | 0.0119 (10) |
C13 | 0.0529 (10) | 0.0562 (11) | 0.0935 (14) | −0.0131 (9) | 0.0175 (10) | −0.0120 (10) |
C14 | 0.0375 (8) | 0.0825 (14) | 0.0785 (13) | −0.0044 (8) | 0.0194 (8) | −0.0032 (11) |
C15 | 0.0540 (10) | 0.0724 (12) | 0.0452 (9) | 0.0086 (8) | 0.0183 (8) | 0.0043 (8) |
C16 | 0.0905 (14) | 0.0552 (11) | 0.0627 (11) | 0.0198 (10) | 0.0256 (10) | 0.0137 (9) |
Zn—O1 | 2.0771 (12) | C6—H9 | 0.9800 |
Zn—O2 | 2.0611 (11) | C6—H10 | 0.9800 |
Zn—O3 | 2.0645 (11) | C6—C7 | 1.508 (2) |
Zn—O4 | 2.0607 (10) | C7—C8 | 1.391 (3) |
Zn—N1 | 2.2722 (13) | C8—H11 | 0.9500 |
Zn—N2 | 2.2533 (13) | C8—C9 | 1.393 (2) |
O1—C2 | 1.2509 (19) | C9—C10 | 1.507 (2) |
O2—C4 | 1.2578 (19) | C10—H12 | 0.9800 |
O3—C7 | 1.2619 (19) | C10—H13 | 0.9800 |
O4—C9 | 1.2626 (17) | C10—H14 | 0.9800 |
N1—C11 | 1.467 (2) | C11—H15 | 0.9900 |
N1—C13 | 1.469 (2) | C11—H16 | 0.9900 |
N1—C14 | 1.473 (2) | C11—C12 | 1.495 (3) |
N2—C12 | 1.476 (2) | C12—H17 | 0.9900 |
N2—C15 | 1.470 (2) | C12—H18 | 0.9900 |
N2—C16 | 1.468 (2) | C13—H19 | 0.9800 |
C1—H1 | 0.9800 | C13—H20 | 0.9800 |
C1—H2 | 0.9800 | C13—H21 | 0.9800 |
C1—H3 | 0.9800 | C14—H22 | 0.9800 |
C1—C2 | 1.512 (2) | C14—H23 | 0.9800 |
C2—C3 | 1.390 (2) | C14—H24 | 0.9800 |
C3—H4 | 0.9500 | C15—H25 | 0.9800 |
C3—C4 | 1.392 (2) | C15—H26 | 0.9800 |
C4—C5 | 1.518 (2) | C15—H27 | 0.9800 |
C5—H5 | 0.9800 | C16—H28 | 0.9800 |
C5—H6 | 0.9800 | C16—H29 | 0.9800 |
C5—H7 | 0.9800 | C16—H30 | 0.9800 |
C6—H8 | 0.9800 | ||
O1—Zn—O2 | 87.50 (4) | C7—C6—H8 | 109.5 |
O1—Zn—O3 | 101.58 (5) | C7—C6—H9 | 109.5 |
O1—Zn—O4 | 88.49 (4) | C7—C6—H10 | 109.5 |
O1—Zn—N1 | 89.28 (5) | O3—C7—C6 | 115.59 (16) |
O1—Zn—N2 | 168.94 (5) | O3—C7—C8 | 125.65 (15) |
O2—Zn—O3 | 90.18 (5) | C8—C7—C6 | 118.76 (16) |
O2—Zn—O4 | 175.16 (4) | C7—C8—H11 | 116.9 |
O2—Zn—N1 | 93.76 (5) | C7—C8—C9 | 126.12 (15) |
O2—Zn—N2 | 89.57 (5) | C9—C8—H11 | 116.9 |
O3—Zn—O4 | 87.96 (4) | O4—C9—C8 | 125.48 (15) |
O3—Zn—N1 | 168.61 (5) | O4—C9—C10 | 115.84 (15) |
O3—Zn—N2 | 89.09 (5) | C8—C9—C10 | 118.67 (13) |
O4—Zn—N1 | 88.92 (5) | C9—C10—H12 | 109.5 |
O4—Zn—N2 | 94.86 (5) | C9—C10—H13 | 109.5 |
N1—Zn—N2 | 80.27 (5) | C9—C10—H14 | 109.5 |
C2—O1—Zn | 127.18 (11) | H12—C10—H13 | 109.5 |
C4—O2—Zn | 126.86 (11) | H12—C10—H14 | 109.5 |
C7—O3—Zn | 127.15 (11) | H13—C10—H14 | 109.5 |
C9—O4—Zn | 127.15 (10) | N1—C11—H15 | 109.3 |
C11—N1—Zn | 105.16 (10) | N1—C11—H16 | 109.3 |
C11—N1—C13 | 110.51 (16) | N1—C11—C12 | 111.53 (16) |
C11—N1—C14 | 110.95 (15) | H15—C11—H16 | 108.0 |
C13—N1—Zn | 111.23 (10) | C12—C11—H15 | 109.3 |
C13—N1—C14 | 107.86 (15) | C12—C11—H16 | 109.3 |
C14—N1—Zn | 111.17 (11) | N2—C12—C11 | 111.49 (15) |
C12—N2—Zn | 105.59 (11) | N2—C12—H17 | 109.3 |
C15—N2—Zn | 111.69 (10) | N2—C12—H18 | 109.3 |
C15—N2—C12 | 110.50 (15) | C11—C12—H17 | 109.3 |
C16—N2—Zn | 111.08 (11) | C11—C12—H18 | 109.3 |
C16—N2—C12 | 110.16 (14) | H17—C12—H18 | 108.0 |
C16—N2—C15 | 107.84 (15) | N1—C13—H19 | 109.5 |
H1—C1—H2 | 109.5 | N1—C13—H20 | 109.5 |
H1—C1—H3 | 109.5 | N1—C13—H21 | 109.5 |
H2—C1—H3 | 109.5 | H19—C13—H20 | 109.5 |
C2—C1—H1 | 109.5 | H19—C13—H21 | 109.5 |
C2—C1—H2 | 109.5 | H20—C13—H21 | 109.5 |
C2—C1—H3 | 109.5 | N1—C14—H22 | 109.5 |
O1—C2—C1 | 116.12 (15) | N1—C14—H23 | 109.5 |
O1—C2—C3 | 126.06 (16) | N1—C14—H24 | 109.5 |
C3—C2—C1 | 117.82 (15) | H22—C14—H23 | 109.5 |
C2—C3—H4 | 117.4 | H22—C14—H24 | 109.5 |
C2—C3—C4 | 125.30 (15) | H23—C14—H24 | 109.5 |
C4—C3—H4 | 117.4 | N2—C15—H25 | 109.5 |
O2—C4—C3 | 126.43 (15) | N2—C15—H26 | 109.5 |
O2—C4—C5 | 115.53 (15) | N2—C15—H27 | 109.5 |
C3—C4—C5 | 118.02 (15) | H25—C15—H26 | 109.5 |
C4—C5—H5 | 109.5 | H25—C15—H27 | 109.5 |
C4—C5—H6 | 109.5 | H26—C15—H27 | 109.5 |
C4—C5—H7 | 109.5 | N2—C16—H28 | 109.5 |
H5—C5—H6 | 109.5 | N2—C16—H29 | 109.5 |
H5—C5—H7 | 109.5 | N2—C16—H30 | 109.5 |
H6—C5—H7 | 109.5 | H28—C16—H29 | 109.5 |
H8—C6—H9 | 109.5 | H28—C16—H30 | 109.5 |
H8—C6—H10 | 109.5 | H29—C16—H30 | 109.5 |
H9—C6—H10 | 109.5 |
Acknowledgements
We thank A. Kiowski for technical support.
Funding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Albrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233–240. CrossRef CAS Google Scholar
Barreca, D., Carraro, G., Devi, A., Fois, E., Gasparotto, A., Seraglia, R., Maccato, C., Sada, C., Tabacchi, G., Tondello, E., Venzo, A. & Winter, M. (2012). Dalton Trans. 41, 149–155. CSD CrossRef CAS PubMed Google Scholar
Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dickman, M. H. (1998). Acta Cryst. C54 IUC9800048. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). Eur. J. Inorg. Chem. pp. 2255–2261. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). Dalton Trans. 41, 8809–8812. CSD CrossRef CAS PubMed Google Scholar
Harbach, P., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m724–m725. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525–532. CrossRef CAS Google Scholar
Ma, Y. M., Reardon, D., Gambarotta, S., Yap, G., Zahalka, H. & Lemay, C. (1999). Organometallics, 18, 2773–2781. CSD CrossRef CAS Google Scholar
Malandrino, G., Toro, R. G., Catalano, M. R., Fragalà, M. E., Rossi, P. & Paoli, P. (2012). Eur. J. Inorg. Chem. pp.1021–1024. CSD CrossRef Google Scholar
Montgomery, H. & Lingafelter, E. C. (1968). Acta Cryst. B24, 1127–1128. CSD CrossRef IUCr Journals Web of Science Google Scholar
Nelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645–2659. CSD CrossRef CAS Google Scholar
Ni, J., Yan, H., Wang, A., Yang, Y., Stern, C. L., Metz, A. W., Jin, S., Wang, L., Marks, T. J., Ireland, J. R. & Kannewurf, C. R. (2005). J. Am. Chem. Soc. 127, 5613–5624. CSD CrossRef PubMed CAS Google Scholar
Novitchi, G., Jiang, S., Shova, S., Rida, F., Hlavička, I., Orlita, M., Wernsdorfer, W., Hamze, R., Martins, C., Suaud, N., Guihéry, N., Barra, A.-L. & Train, C. (2017). Inorg. Chem. 56, 14809–14822. CSD CrossRef CAS PubMed Google Scholar
Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). Polyhedron, 23, 735–741. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephens, F. S. (1977). Acta Cryst. B33, 3492–3495. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Trimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759–765. CSD CrossRef CAS Google Scholar
Tsodikov, M. V., Bukhtenko, O. V., Ellert, O. G., Petrunenko, I. A., Antsyshkina, A. S., Sadikov, G. G., Maksimov, Y. V., Titov, Y. V. & Novotortsev, V. M. (1995). Russ. Chem. Bull. 44, 1396–1400. CrossRef Google Scholar
Zeller, A., Herdtweck, E. & Strassner, Th. (2004). Inorg. Chem. Commun. 7, 296–301. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.