research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two isostructural 3-(5-ar­yl­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones: disorder and supra­molecular assembly

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824 236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 9 December 2019; accepted 9 December 2019; online 1 January 2020)

Two new chalcones containing both pyrazole and thio­phene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thio­phene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds.

1. Chemical context

Pyrazole derivatives exhibit a wide range of pharmacological activity (Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134. doi: 10.3390/molecules23010134.]), including analgesic (Vijesh et al., 2013[Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410-415.]), anti­cancer (Dawood et al., 2013[Dawood, K. M., Eldebss, T. M. A., El-Zahabi, H. S. A., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740-749.]; Koca et al., 2013[Koca, I., Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859-3865.]), anti­depressant (Mathew et al., 2014[Mathew, B., Suresh, J. & Anbazhagan, S. (2014). EXCLI J, 13, 437-445.]), anti­fungal (Zhang et al., 2017[Zhang, J., Tan, D.-J., Wang, T., Jing, S.-S., Kang, Y. & Zhang, Z.-T. (2017). J. Mol. Struct. 1149, 235-242.]), anti-inflammatory (Badawey & El-Ashmawey, 1998[Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.]) and anti­microbial (Vijesh et al., 2013[Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410-415.]) activities. In addition, a range of thio­phene-based heterocyclic compounds have been shown to exhibit anti­microbial activity (Mabkhot et al., 2016[Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036. doi: 10.3390/molecules21081036.]).

[Scheme 1]

With these observations in mind, we have now synthesized two new chalcones containing both pyrazole and thio­phene moieties, namely 3-(3-methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I)[link] (Fig. 1[link]), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II)[link] (Fig. 2[link]), and here we report their mol­ecular and supra­molecular structures.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme, and the disorder in the thio­phen-2-yl substituent, where the major disorder component has been drawn using full lines and the minor disorder component has been drawn using dashed lines.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-labelling scheme, and the disorder in the thio­phen-2-yl substituent, where the major disorder component has been drawn using full lines and the minor disorder component has been drawn using dashed lines.

2. Structural commentary

Compounds (I)[link] and (II)[link] are isomorphous with unit-cell volumes which differ by only ca 1% and, with appropriate adjustment of the substituent at atom C352 (H versus CH3), each structure can be smoothly refined using the atomic coordinates of the other as the starting point.

In each structure, the thienyl group is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I)[link], and 0.883 (2) and 0.117 (2) in (II)[link]: in each case, the two disorder components are approximately related by a rotation of ca 180° about the C1—C12 bond (Figs. 1[link] and 2[link]). It is by no means clear why the occupancies of the two disorder components in each compound are so different, particularly as the two disorder components form similar inter­molecular hydrogen bonds (Section 3).

For both compounds, the central space unit between atoms C12 and C34, the pyrazole ring and the major disorder component of the thienyl ring are almost coplanar, and the r.m.s. deviations of the atoms from the mean planes through these units are only 0.055 Å in (I)[link] and 0.102 Å in (II)[link]. By contrast, the two pendent aryl rings are markedly displaced from this plane: the dihedral angles between the pyrazole ring and the rings (C311–C316) and (C351–C356) are 29.99 (11) and 78.60 (6)°, respectively, in (I)[link], and 27.90 (11) and 81.13 (6)° in (II)[link]. On the other hand, atom C35 is, in each structure, displaced from the plane (O35/C351–C356) by only 0.097 (3) Å in (I)[link] and 0.017 (3) Å in (II)[link]. Associated with this near co-planarity, the two exocyclic C—C—O angles at atom C351 differ in each structure by ca 9°, as typically found in planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

3. Supra­molecular features

The supra­molecular assembly of compound (I)[link] depends upon just two hydrogen bonds, one each of C—H⋯N and C—H⋯O types (Table 1[link]). The C—H⋯O hydrogen bonds links mol­ecules which are related by translation to form a C(12) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [101] direction (Fig. 3[link]). The C—H⋯N hydrogen bond links mol­ecules which are related by the 21 screw axis along (0.5, y, 0.25) to form a C(10) chain running parallel to the [010] direction (Fig. 3[link]). The chain formation along [010] is independent of the disorder, since both atom C14 in the major disorder component and atom C25 in the minor component (cf. Fig. 1[link]) form similar C—H⋯N hydrogen bonds. The combination of these two chain motifs generates a sheet in the form of a (4,4) net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from R44(35) rings and lying parallel to (10[\overline{1}]). The supra­molecular assembly of compound (II)[link] is entirely similar to that in (I)[link], although the C—H⋯N hydrogen bond formed by the minor disorder component is rather long (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N32i 0.93 2.62 3.462 (9) 151
C25—H25⋯N32i 0.93 2.51 3.33 (5) 148
C314—H314⋯O1ii 0.93 2.38 3.305 (3) 175
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N32i 0.93 2.55 3.483 (4) 177
C25—H25⋯N32i 0.93 2.69 3.47 (2) 142
C314—H314⋯O1ii 0.93 2.51 3.432 (3) 171
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z-1.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (10[\overline{1}]). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms which are not involved in the motifs shown have been omitted.

In view of the similarities in the hydrogen bonds formed by (I)[link] and (II)[link], and their similar mol­ecular conformations (see Section 2), these isomorphous compounds can be described as isostructural, although it is not always the case that isomorphous pairs are strictly isostructural (Bowes et al., 2003[Bowes, K. F., Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o4-o8.]; Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]; Blanco et al., 2012[Blanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195-o198.]).

4. Database survey

It is of inter­est to briefly compare the structures of compounds (I)[link] and (II)[link] reported here with those of some related compounds. 2,5-Bis[(3,5-di­methyl­pyrazol-1-yl)carbon­yl]thio­phene (III) crystallizes with Z′ = 2 in space group P21/m (Guzei et al., 2009[Guzei, I. A., Spencer, L. C., Tshivashe, M. G. & Darkwa, J. (2009). Acta Cryst. E65, o2743.]): the two independent mol­ecules are weakly linked by a C—H⋯O hydrogen bond but the only other direction-specific inter­actions between the mol­ecules are ππ inter­actions involving inversion-related pairs of pyrazole rings. In contrast to the simplicity of the mol­ecular constitution of (III) above, in most other structures containing both pyrazole and thio­phene units, at least one of the rings is fused. In 3,6-dimethyl-1-phenyl-4-(thio­phen-2-yl)-8-(thio­phen-2-yl­methyl­ene)-5,6,7,8- tetra­hydro-1H-pyrazolo­[3,4-b][1,6]naphthyridine (IV) (Peng et al., 2009[Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109-o1110.]), the mol­ecules are linked into C(11) chains by means of C—H⋯N hydrogen bonds. The mol­ecules of 2-(3,4-dimethyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)-N′-(thio­phen-2-yl­methyl­idene)acetohydrazide (V) (Ahmad et al., 2010[Ahmad, M., Siddiqui, H. L., Khan, A. H. & Parvez, M. (2010). Acta Cryst. E66, o1265-o1266.]) are linked by a combination of N—H⋯O and C—H⋯N hydrogen bonds: although the resulting aggregation was described as consisting of dimers, the mol­ecules are, in fact, linked into chains of rings, as clearly illus­trated in the original report. A chain of rings, built from a combination of N—H⋯N and C—H⋯N hydrogen bonds is also found in the structure of (Z)-ethyl 2-cyano-2-{2-[5,6-dimethyl-4-(thio­phen-2-yl)-1H-pyrazolo­[3,4-b]pyridin-3-yl]hydrazinyl­idene}acetate (VI) (Fun et al., 2011[Fun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145-o2146.]).

In 9-(thio­phen-2-yl)-8,9-di­hydro-3H-pyrazolo­[4,3-f]quinolin-7(6H)-one ethanol monosolvate (VII) (Peng & Jia, 2012[Peng, J. & Jia, R. (2012). Acta Cryst. E68, o2608.]), the thio­phene ring is disordered over two sets of atomic sites having unequal occupancies, 0.692 (7) and 0.308 (7), much as found here for compounds (I)[link] and (II)[link]. The mol­ecular components in (VII) are linked by N—H⋯O and O—H⋯N hydrogen bonds to form a complex chain of rings. The thio­phene ring in 5,6-dimethyl-4-(thio­phen-2-yl)-1–pyrazolo­[3,4-b]pyridin-3-amine (VIII) (Abdel-Aziz et al., 2012[Abdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612-o613.]) is also disordered, with occupancies of 0.777 (4) and 0.223 (4), and the mol­ecules are again linked into a chain of rings, this time by two independent N—H⋯N hydrogen bonds. Finally, we note that in [4-(2-meth­oxy­phen­yl)-3-methyl-1-phenyl-6-tri­fluoro­methyl-1H-pyrazolo­[3,4-b]pyridin-5-yl](thio­phen-2-yl)methanone (IX) (Rajni Swamy et al., 2014[Rajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, o974-o975.]), where the thio­phene ring is fully ordered, there are no significant hydrogen bonds of any kind.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared using a three-step procedure, starting from the readily accessible 3-methyl-1-phenyl-1H-pyrazole (A) (see Fig. 4[link]), which was converted to the corresponding 5-chloro-4-carbaldehyde (B) under Vilsmeier–Haack conditions, followed by nucleophilic substitution (Asma et al., 2017[Asma, Kalluraya, B. & Manju, N. (2017). Pharma Chem. 9, 50-54.]) to provide the 5-ar­yloxy inter­mediates (C). Condensation with 2-acetyl­ethio­phene then gave the products (I)[link] and (II)[link] in yields of 86% and 84%, respectively. Thus the appropriate 3-methyl-5-ar­yloxy-1-phenyl-1H-pyrazole 4-carb­aldehydes (Asma et al., 2017[Asma, Kalluraya, B. & Manju, N. (2017). Pharma Chem. 9, 50-54.]) [1.7 mmol; 445 mg for (I)[link], or 469 mg for (II)] and 2-acetyl thio­phene (1.7 mmol, 214 mg) were dissolved in ethanol (20 ml) at 273 K; a solution of potassium hydroxide (2.1 mmol, 112 mg) in ethanol (5 ml) was then added dropwise, and the resulting mixtures were then stirred for 4 h. When the reactions were complete, as judged by thin-layer chromatography, the resulting solid products were collected by filtration, washed with water, dried in air and then recrystallized from ethanol–di­methyl­formamide (9:1, v/v), to give crystals suitable for single-crystal X-ray diffraction. Compound (I)[link]. Yield 86%, m.p. 425–427 K. IR (cm−1) 1667 (C=O), 1591 (C=N). Analysis: found C 71.5, H 4.7, N 7.2%: C23H18N2O2S requires C 71.5, H 4.7, N 7.3%. Compound (II)[link]. Yield 84%, m.p. 401–405 K. IR (cm−1) 1671 (C=O), 1564 (C=N). Analysis: found C 72.0, H 5.1, N 7.1%: C24H20N2O2S requires C 72.0, H 5.0, N 7.0%.

[Figure 4]
Figure 4
The synthetic route to compounds (I)[link] and (II)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized In Table 3[link]. In both compounds, the thienyl unit was disordered over two sets of atomic sites having unequal occupancies. In each case, the bonded distances and the 1,3 non-bonded distances in the minor disorder component were restrained to be the similar to the equivalent distances in the major disorder component, subject to s.u. values of 0.01 Å and 0.02° for bonds and angles, respectively, and the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal. All H atoms, apart from those in the minor disorder components were located in difference maps, and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 Å (alkenyl, aromatic and thien­yl) or 0.96 Å (meth­yl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The H atoms in the minor disorder components were included on the same basis. Subject to these conditions, the occupancies of the disorder components refined to 0.844 (3) and 0.156 (3) in (I)[link], and 0.883 (2) and to 0.117 (2) in (II)[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C23H18N2O2S C24H20N2O2S
Mr 386.45 400.48
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 9.6158 (5), 19.8846 (11), 10.3773 (6) 9.4336 (4), 20.6071 (9), 10.5866 (4)
β (°) 93.712 (2) 93.106 (2)
V3) 1980.04 (19) 2055.00 (15)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.18 0.18
Crystal size (mm) 0.20 × 0.20 × 0.15 0.30 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.941, 0.973 0.926, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 31970, 3725, 2446 35938, 4735, 2877
Rint 0.043 0.040
(sin θ/λ)max−1) 0.608 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.06 0.045, 0.142, 1.02
No. of reflections 3725 4735
No. of parameters 268 277
No. of restraints 10 10
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.14 0.19, −0.23
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I) top
Crystal data top
C23H18N2O2SF(000) = 808
Mr = 386.45Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6158 (5) ÅCell parameters from 3725 reflections
b = 19.8846 (11) Åθ = 2.1–25.6°
c = 10.3773 (6) ŵ = 0.18 mm1
β = 93.712 (2)°T = 296 K
V = 1980.04 (19) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3725 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 7.3910 pixels mm-1θmax = 25.6°, θmin = 2.1°
φ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 2424
Tmin = 0.941, Tmax = 0.973l = 1212
31970 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.573P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.20 e Å3
3725 reflectionsΔρmin = 0.14 e Å3
268 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraintsExtinction coefficient: 0.0059 (9)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6952 (2)0.38677 (11)0.5021 (2)0.0485 (5)
O10.76942 (19)0.43097 (8)0.55125 (17)0.0798 (6)
C20.5895 (2)0.40140 (11)0.3982 (2)0.0480 (5)
H20.53760.36630.36040.058*
C30.5660 (2)0.46399 (10)0.35662 (19)0.0451 (5)
H30.61750.49760.40000.054*
S110.82626 (11)0.29817 (5)0.67269 (8)0.0664 (3)0.844 (3)
C120.7111 (2)0.31696 (10)0.5460 (2)0.0484 (5)0.844 (3)
C130.6491 (14)0.2615 (5)0.5017 (13)0.0930 (17)0.844 (3)
H130.58370.26120.43160.112*0.844 (3)
C140.6904 (13)0.2030 (2)0.5695 (15)0.106 (3)0.844 (3)
H140.65470.16050.55060.128*0.844 (3)
C150.7865 (9)0.2158 (3)0.6639 (9)0.080 (2)0.844 (3)
H150.82700.18310.71850.096*0.844 (3)
S210.614 (2)0.2534 (7)0.484 (2)0.0930 (17)0.156 (3)
C220.7111 (2)0.31696 (10)0.5460 (2)0.0484 (5)0.156 (3)
C230.813 (2)0.2935 (10)0.626 (2)0.0664 (3)0.156 (3)
H230.88370.32050.66350.080*0.156 (3)
C240.805 (6)0.2239 (12)0.647 (6)0.080 (2)0.156 (3)
H240.85810.20090.71110.096*0.156 (3)
C250.713 (8)0.1950 (8)0.564 (9)0.106 (3)0.156 (3)
H250.70420.14880.55110.128*0.156 (3)
N310.31385 (16)0.49026 (8)0.08717 (15)0.0417 (4)
N320.36763 (17)0.55440 (8)0.09923 (17)0.0474 (4)
C330.4603 (2)0.55130 (10)0.1990 (2)0.0444 (5)
C340.4706 (2)0.48590 (10)0.25279 (19)0.0412 (5)
C350.3759 (2)0.44920 (9)0.17696 (18)0.0397 (5)
C3110.2118 (2)0.47606 (10)0.01477 (19)0.0400 (5)
C3120.1122 (2)0.42704 (10)0.0019 (2)0.0480 (5)
H3120.11130.40200.07370.058*
C3130.0143 (2)0.41552 (11)0.1021 (2)0.0555 (6)
H3130.05320.38260.09370.067*
C3140.0151 (2)0.45223 (12)0.2146 (2)0.0609 (7)
H3140.05080.44390.28220.073*
C3150.1141 (3)0.50138 (13)0.2260 (2)0.0596 (6)
H3150.11460.52660.30150.071*
C3160.2127 (2)0.51353 (11)0.1264 (2)0.0499 (5)
H3160.27940.54680.13450.060*
C3310.5426 (2)0.61231 (11)0.2386 (2)0.0609 (6)
H31A0.63530.60820.21020.091*
H31B0.54680.61650.33090.091*
H31C0.49870.65140.20010.091*
O350.35064 (14)0.38210 (6)0.17345 (13)0.0458 (4)
C3510.2722 (2)0.35338 (10)0.2680 (2)0.0445 (5)
C3520.2634 (3)0.28476 (12)0.2623 (3)0.0687 (7)
H3520.30950.26090.20090.082*
C3530.1856 (3)0.25194 (15)0.3483 (4)0.0947 (10)
H3530.17860.20530.34530.114*
C3540.1183 (3)0.28709 (17)0.4383 (4)0.0972 (11)
H3540.06560.26440.49650.117*
C3550.1281 (3)0.35565 (16)0.4432 (3)0.0854 (9)
H3550.08200.37930.50490.102*
C3560.2065 (2)0.39028 (12)0.3568 (2)0.0603 (6)
H3560.21380.43690.35940.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0522 (13)0.0469 (13)0.0450 (12)0.0042 (10)0.0060 (10)0.0003 (10)
O10.0919 (13)0.0535 (10)0.0872 (13)0.0176 (9)0.0475 (10)0.0094 (9)
C20.0493 (12)0.0441 (12)0.0491 (12)0.0035 (10)0.0085 (10)0.0002 (10)
C30.0465 (12)0.0443 (12)0.0437 (12)0.0051 (9)0.0022 (10)0.0015 (9)
S110.0811 (6)0.0537 (5)0.0608 (6)0.0027 (4)0.0243 (5)0.0092 (4)
C120.0550 (13)0.0451 (13)0.0442 (12)0.0012 (10)0.0038 (10)0.0002 (10)
C130.138 (7)0.048 (2)0.086 (4)0.017 (2)0.050 (3)0.004 (2)
C140.167 (6)0.0398 (17)0.104 (3)0.009 (3)0.050 (5)0.002 (3)
C150.113 (4)0.055 (2)0.070 (4)0.007 (2)0.016 (3)0.0186 (17)
S210.138 (7)0.048 (2)0.086 (4)0.017 (2)0.050 (3)0.004 (2)
C220.0550 (13)0.0451 (13)0.0442 (12)0.0012 (10)0.0038 (10)0.0002 (10)
C230.0811 (6)0.0537 (5)0.0608 (6)0.0027 (4)0.0243 (5)0.0092 (4)
C240.113 (4)0.055 (2)0.070 (4)0.007 (2)0.016 (3)0.0186 (17)
C250.167 (6)0.0398 (17)0.104 (3)0.009 (3)0.050 (5)0.002 (3)
N310.0402 (9)0.0369 (9)0.0473 (10)0.0007 (7)0.0034 (8)0.0033 (8)
N320.0489 (10)0.0350 (10)0.0571 (11)0.0031 (8)0.0054 (9)0.0051 (8)
C330.0428 (11)0.0390 (12)0.0509 (13)0.0024 (9)0.0002 (10)0.0011 (10)
C340.0393 (11)0.0401 (11)0.0437 (11)0.0002 (9)0.0002 (9)0.0016 (9)
C350.0393 (11)0.0345 (11)0.0450 (11)0.0012 (9)0.0016 (9)0.0022 (9)
C3110.0372 (11)0.0397 (11)0.0425 (11)0.0050 (9)0.0028 (9)0.0025 (9)
C3120.0471 (12)0.0425 (12)0.0534 (13)0.0040 (10)0.0045 (10)0.0020 (10)
C3130.0485 (13)0.0508 (14)0.0655 (15)0.0010 (11)0.0082 (11)0.0108 (12)
C3140.0554 (14)0.0677 (16)0.0570 (15)0.0127 (13)0.0149 (11)0.0184 (13)
C3150.0631 (15)0.0706 (16)0.0441 (13)0.0090 (13)0.0037 (12)0.0026 (11)
C3160.0473 (12)0.0552 (14)0.0470 (13)0.0025 (10)0.0016 (10)0.0025 (10)
C3310.0622 (15)0.0451 (13)0.0738 (16)0.0077 (11)0.0082 (12)0.0016 (12)
O350.0525 (9)0.0332 (8)0.0515 (9)0.0010 (6)0.0036 (7)0.0004 (6)
C3510.0411 (11)0.0398 (12)0.0515 (13)0.0025 (9)0.0047 (10)0.0105 (10)
C3520.0714 (16)0.0420 (14)0.093 (2)0.0053 (12)0.0095 (15)0.0076 (13)
C3530.094 (2)0.0543 (17)0.138 (3)0.0114 (16)0.023 (2)0.0266 (19)
C3540.093 (2)0.087 (2)0.115 (3)0.0112 (18)0.027 (2)0.046 (2)
C3550.086 (2)0.095 (2)0.0777 (19)0.0017 (17)0.0287 (16)0.0142 (17)
C3560.0628 (15)0.0546 (14)0.0640 (15)0.0025 (12)0.0093 (12)0.0034 (12)
Geometric parameters (Å, º) top
C1—O11.223 (2)C35—O351.356 (2)
C1—C21.462 (3)C311—C3161.378 (3)
C1—C121.466 (3)C311—C3121.379 (3)
C2—C31.332 (3)C312—C3131.376 (3)
C2—H20.9300C312—H3120.9300
C3—C341.437 (3)C313—C3141.377 (3)
C3—H30.9300C313—H3130.9300
S11—C151.684 (5)C314—C3151.375 (3)
S11—C121.705 (2)C314—H3140.9300
C12—C131.322 (7)C315—C3161.378 (3)
C13—C141.402 (10)C315—H3150.9300
C13—H130.9300C316—H3160.9300
C14—C151.327 (5)C331—H31A0.9600
C14—H140.9300C331—H31B0.9600
C15—H150.9300C331—H31C0.9600
S21—C251.685 (12)O35—C3511.398 (2)
C23—C241.404 (14)C351—C3561.365 (3)
C23—H230.9300C351—C3521.368 (3)
C24—C251.329 (9)C352—C3531.366 (4)
C24—H240.9300C352—H3520.9300
C25—H250.9300C353—C3541.364 (4)
N31—C351.349 (2)C353—H3530.9300
N31—N321.379 (2)C354—C3551.367 (4)
N31—C3111.424 (2)C354—H3540.9300
N32—C331.323 (3)C355—C3561.391 (3)
C33—C341.416 (3)C355—H3550.9300
C33—C3311.492 (3)C356—H3560.9300
C34—C351.374 (3)
O1—C1—C2121.57 (19)C316—C311—N31118.45 (18)
O1—C1—C12120.34 (19)C312—C311—N31121.18 (18)
C2—C1—C12118.09 (18)C313—C312—C311119.4 (2)
C3—C2—C1121.35 (19)C313—C312—H312120.3
C3—C2—H2119.3C311—C312—H312120.3
C1—C2—H2119.3C312—C313—C314120.7 (2)
C2—C3—C34127.83 (19)C312—C313—H313119.6
C2—C3—H3116.1C314—C313—H313119.6
C34—C3—H3116.1C315—C314—C313119.5 (2)
C15—S11—C1292.15 (19)C315—C314—H314120.3
C13—C12—C1130.3 (5)C313—C314—H314120.3
C13—C12—S11110.0 (5)C314—C315—C316120.4 (2)
C1—C12—S11119.77 (15)C314—C315—H315119.8
C12—C13—C14114.2 (6)C316—C315—H315119.8
C12—C13—H13122.9C315—C316—C311119.7 (2)
C14—C13—H13122.9C315—C316—H316120.2
C15—C14—C13111.9 (4)C311—C316—H316120.2
C15—C14—H14124.0C33—C331—H31A109.5
C13—C14—H14124.0C33—C331—H31B109.5
C14—C15—S11111.7 (4)H31A—C331—H31B109.5
C14—C15—H15124.1C33—C331—H31C109.5
S11—C15—H15124.1H31A—C331—H31C109.5
C24—C23—H23123.3H31B—C331—H31C109.5
C25—C24—C23111.4 (14)C35—O35—C351119.13 (15)
C25—C24—H24124.3C356—C351—C352122.3 (2)
C23—C24—H24124.3C356—C351—O35123.30 (19)
C24—C25—S21110.8 (12)C352—C351—O35114.3 (2)
C24—C25—H25124.6C353—C352—C351118.9 (3)
S21—C25—H25124.6C353—C352—H352120.5
C35—N31—N32110.54 (15)C351—C352—H352120.5
C35—N31—C311130.24 (16)C354—C353—C352120.4 (3)
N32—N31—C311119.16 (15)C354—C353—H353119.8
C33—N32—N31104.92 (15)C352—C353—H353119.8
N32—C33—C34112.18 (17)C353—C354—C355120.1 (3)
N32—C33—C331119.74 (18)C353—C354—H354119.9
C34—C33—C331128.03 (19)C355—C354—H354119.9
C35—C34—C33103.60 (17)C354—C355—C356120.6 (3)
C35—C34—C3129.46 (18)C354—C355—H355119.7
C33—C34—C3126.81 (18)C356—C355—H355119.7
N31—C35—O35120.45 (17)C351—C356—C355117.6 (2)
N31—C35—C34108.73 (17)C351—C356—H356121.2
O35—C35—C34130.44 (17)C355—C356—H356121.2
C316—C311—C312120.35 (19)
O1—C1—C2—C32.8 (3)C33—C34—C35—N310.8 (2)
C12—C1—C2—C3177.6 (2)C3—C34—C35—N31176.83 (19)
C1—C2—C3—C34177.2 (2)C33—C34—C35—O35172.0 (2)
O1—C1—C12—C13175.3 (10)C3—C34—C35—O354.1 (4)
C2—C1—C12—C134.3 (11)C35—N31—C311—C316148.8 (2)
O1—C1—C12—S114.0 (3)N32—N31—C311—C31627.9 (3)
C2—C1—C12—S11176.40 (16)C35—N31—C311—C31232.6 (3)
C15—S11—C12—C130.6 (9)N32—N31—C311—C312150.69 (18)
C15—S11—C12—C1180.0 (4)C316—C311—C312—C3130.5 (3)
C1—C12—C13—C14179.5 (10)N31—C311—C312—C313179.09 (18)
S11—C12—C13—C141.1 (17)C311—C312—C313—C3140.2 (3)
C12—C13—C14—C151 (2)C312—C313—C314—C3150.7 (3)
C13—C14—C15—S110.7 (17)C313—C314—C315—C3160.6 (3)
C12—S11—C15—C140.1 (11)C314—C315—C316—C3110.1 (3)
C23—C24—C25—S2112 (9)C312—C311—C316—C3150.6 (3)
C35—N31—N32—C331.3 (2)N31—C311—C316—C315179.25 (18)
C311—N31—N32—C33178.64 (17)N31—C35—O35—C351109.5 (2)
N31—N32—C33—C340.8 (2)C34—C35—O35—C35178.5 (3)
N31—N32—C33—C331178.55 (18)C35—O35—C351—C3567.1 (3)
N32—C33—C34—C350.0 (2)C35—O35—C351—C352174.51 (18)
C331—C33—C34—C35177.6 (2)C356—C351—C352—C3530.2 (4)
N32—C33—C34—C3176.16 (19)O35—C351—C352—C353178.2 (2)
C331—C33—C34—C31.4 (4)C351—C352—C353—C3540.1 (5)
C2—C3—C34—C354.2 (4)C352—C353—C354—C3550.0 (5)
C2—C3—C34—C33171.0 (2)C353—C354—C355—C3560.0 (5)
N32—N31—C35—O35172.30 (16)C352—C351—C356—C3550.2 (4)
C311—N31—C35—O354.7 (3)O35—C351—C356—C355178.1 (2)
N32—N31—C35—C341.3 (2)C354—C355—C356—C3510.0 (4)
C311—N31—C35—C34178.29 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N32i0.932.623.462 (9)151
C25—H25···N32i0.932.513.33 (5)148
C314—H314···O1ii0.932.383.305 (3)175
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z1.
3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II) top
Crystal data top
C24H20N2O2SF(000) = 840
Mr = 400.48Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4336 (4) ÅCell parameters from 5216 reflections
b = 20.6071 (9) Åθ = 2.0–28.6°
c = 10.5866 (4) ŵ = 0.18 mm1
β = 93.106 (2)°T = 296 K
V = 2055.00 (15) Å3Block, colourless
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4735 independent reflections
Radiation source: fine-focus sealed tube2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.3910 pixels mm-1θmax = 27.6°, θmin = 2.0°
φ and ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 2626
Tmin = 0.926, Tmax = 0.973l = 1311
35938 measured reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.5761P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4735 reflectionsΔρmax = 0.19 e Å3
277 parametersΔρmin = 0.23 e Å3
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6834 (2)0.38495 (10)0.49061 (18)0.0484 (5)
O10.75006 (19)0.42752 (8)0.54834 (16)0.0747 (5)
C20.5798 (2)0.39981 (10)0.38620 (18)0.0484 (5)
H20.53020.36610.34550.058*
C30.5555 (2)0.46061 (10)0.34871 (18)0.0464 (5)
H30.60470.49260.39490.056*
S110.81442 (11)0.29803 (4)0.65506 (8)0.0669 (3)0.883 (2)
C120.7062 (2)0.31666 (10)0.52477 (17)0.0456 (5)0.883 (2)
C130.6609 (8)0.2617 (3)0.4682 (5)0.0603 (9)0.883 (2)
H130.60010.26160.39610.072*0.883 (2)
C140.7118 (5)0.20428 (17)0.5259 (4)0.0643 (12)0.883 (2)
H140.69120.16270.49610.077*0.883 (2)
C150.7941 (9)0.21758 (17)0.6295 (6)0.0671 (16)0.883 (2)
H150.83570.18590.68190.080*0.883 (2)
S210.6339 (18)0.2553 (6)0.4380 (13)0.0603 (9)0.117 (2)
C220.7062 (2)0.31666 (10)0.52477 (17)0.0456 (5)0.117 (2)
C230.784 (3)0.2933 (10)0.623 (2)0.0669 (3)0.117 (2)
H230.83960.31950.67770.080*0.117 (2)
C240.775 (8)0.2255 (11)0.638 (5)0.0671 (16)0.117 (2)
H240.82520.20180.70110.080*0.117 (2)
C250.685 (5)0.2001 (8)0.550 (3)0.0643 (12)0.117 (2)
H250.65440.15730.54940.077*0.117 (2)
N310.30777 (16)0.48865 (7)0.08120 (15)0.0431 (4)
N320.36119 (18)0.55036 (8)0.09699 (16)0.0492 (4)
C330.4529 (2)0.54660 (9)0.19571 (19)0.0469 (5)
C340.4627 (2)0.48304 (9)0.24567 (18)0.0430 (4)
C350.36867 (19)0.44824 (9)0.16871 (17)0.0405 (4)
C3110.20793 (19)0.47603 (9)0.02174 (18)0.0419 (4)
C3120.1090 (2)0.42664 (10)0.0158 (2)0.0495 (5)
H3120.10620.40090.05620.059*
C3130.0145 (2)0.41597 (11)0.1180 (2)0.0580 (6)
H3130.05150.38260.11470.070*
C3140.0169 (2)0.45393 (12)0.2241 (2)0.0624 (6)
H3140.04690.44620.29260.075*
C3150.1140 (2)0.50340 (13)0.2289 (2)0.0621 (6)
H3150.11540.52940.30060.075*
C3160.2098 (2)0.51483 (11)0.12766 (19)0.0506 (5)
H3160.27510.54850.13110.061*
C3310.5357 (3)0.60493 (10)0.2386 (2)0.0625 (6)
H31A0.63180.60080.21420.094*
H31B0.53490.60850.32900.094*
H31C0.49360.64300.20030.094*
O350.34553 (14)0.38351 (6)0.16246 (12)0.0470 (3)
C3510.2552 (2)0.35450 (10)0.24627 (19)0.0488 (5)
C3520.2429 (2)0.28766 (11)0.2301 (2)0.0614 (6)
C3530.1516 (3)0.25613 (15)0.3056 (3)0.0874 (10)
H3530.14040.21140.29770.105*
C3540.0766 (3)0.28876 (19)0.3921 (3)0.0949 (11)
H3540.01430.26610.44100.114*
C3550.0918 (3)0.35466 (17)0.4081 (3)0.0862 (9)
H3550.04110.37630.46810.103*
C3560.1842 (2)0.38895 (13)0.3332 (2)0.0656 (6)
H3560.19680.43350.34240.079*
C3570.3278 (3)0.25326 (12)0.1355 (3)0.0832 (9)
H35A0.42650.25460.16250.125*
H35B0.31410.27420.05470.125*
H35C0.29710.20890.12850.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0519 (12)0.0483 (12)0.0442 (11)0.0032 (10)0.0045 (9)0.0023 (9)
O10.0920 (12)0.0541 (9)0.0734 (10)0.0092 (9)0.0381 (9)0.0023 (8)
C20.0481 (11)0.0482 (12)0.0476 (11)0.0023 (9)0.0087 (9)0.0021 (9)
C30.0468 (11)0.0481 (12)0.0437 (11)0.0023 (9)0.0039 (9)0.0007 (9)
S110.0885 (6)0.0555 (4)0.0533 (5)0.0004 (4)0.0283 (3)0.0057 (3)
C120.0471 (11)0.0492 (11)0.0399 (10)0.0002 (9)0.0036 (8)0.0023 (9)
C130.071 (3)0.0556 (17)0.051 (3)0.0026 (16)0.0199 (18)0.0051 (17)
C140.079 (3)0.0449 (13)0.068 (2)0.0014 (13)0.004 (2)0.0002 (12)
C150.081 (3)0.0560 (16)0.0624 (19)0.0084 (19)0.008 (2)0.0112 (16)
S210.071 (3)0.0556 (17)0.051 (3)0.0026 (16)0.0199 (18)0.0051 (17)
C220.0471 (11)0.0492 (11)0.0399 (10)0.0002 (9)0.0036 (8)0.0023 (9)
C230.0885 (6)0.0555 (4)0.0533 (5)0.0004 (4)0.0283 (3)0.0057 (3)
C240.081 (3)0.0560 (16)0.0624 (19)0.0084 (19)0.008 (2)0.0112 (16)
C250.079 (3)0.0449 (13)0.068 (2)0.0014 (13)0.004 (2)0.0002 (12)
N310.0448 (9)0.0350 (8)0.0485 (9)0.0001 (7)0.0054 (7)0.0033 (7)
N320.0528 (10)0.0345 (9)0.0591 (10)0.0033 (7)0.0083 (8)0.0040 (8)
C330.0475 (11)0.0377 (10)0.0548 (12)0.0009 (9)0.0022 (9)0.0005 (9)
C340.0422 (10)0.0387 (10)0.0477 (11)0.0013 (8)0.0024 (8)0.0012 (8)
C350.0413 (10)0.0335 (10)0.0467 (11)0.0003 (8)0.0008 (8)0.0030 (8)
C3110.0391 (10)0.0402 (10)0.0458 (11)0.0067 (8)0.0027 (8)0.0022 (8)
C3120.0479 (11)0.0452 (11)0.0546 (12)0.0027 (9)0.0042 (9)0.0008 (9)
C3130.0506 (12)0.0577 (13)0.0643 (14)0.0000 (11)0.0091 (10)0.0109 (11)
C3140.0555 (13)0.0760 (16)0.0541 (14)0.0087 (12)0.0130 (10)0.0127 (12)
C3150.0601 (14)0.0776 (16)0.0479 (12)0.0094 (12)0.0039 (10)0.0072 (11)
C3160.0470 (11)0.0542 (13)0.0505 (12)0.0032 (10)0.0008 (9)0.0051 (10)
C3310.0679 (15)0.0413 (12)0.0766 (15)0.0052 (10)0.0124 (12)0.0050 (11)
O350.0492 (8)0.0340 (7)0.0575 (8)0.0018 (6)0.0006 (6)0.0031 (6)
C3510.0394 (10)0.0485 (12)0.0570 (12)0.0034 (9)0.0099 (9)0.0174 (10)
C3520.0555 (13)0.0484 (13)0.0770 (15)0.0111 (11)0.0283 (12)0.0223 (12)
C3530.0746 (18)0.0729 (19)0.111 (2)0.0286 (15)0.0290 (18)0.0405 (18)
C3540.0654 (18)0.108 (3)0.111 (3)0.0234 (18)0.0064 (17)0.059 (2)
C3550.0606 (16)0.116 (3)0.0831 (19)0.0065 (16)0.0130 (14)0.0311 (18)
C3560.0562 (14)0.0687 (16)0.0725 (15)0.0046 (12)0.0073 (12)0.0193 (13)
C3570.108 (2)0.0412 (13)0.097 (2)0.0010 (14)0.0277 (18)0.0037 (13)
Geometric parameters (Å, º) top
C1—O11.223 (2)C311—C3161.378 (3)
C1—C121.466 (3)C311—C3121.385 (3)
C1—C21.468 (3)C312—C3131.382 (3)
C2—C31.330 (3)C312—H3120.9300
C2—H20.9300C313—C3141.371 (3)
C3—C341.437 (3)C313—H3130.9300
C3—H30.9300C314—C3151.373 (3)
S11—C151.689 (4)C314—H3140.9300
S11—C121.7146 (19)C315—C3161.384 (3)
C12—C131.340 (5)C315—H3150.9300
C13—C141.404 (6)C316—H3160.9300
C13—H130.9300C331—H31A0.9600
C14—C151.337 (3)C331—H31B0.9600
C14—H140.9300C331—H31C0.9600
C15—H150.9300O35—C3511.397 (2)
S21—C251.692 (11)C351—C3561.367 (3)
C23—C241.408 (11)C351—C3521.392 (3)
C23—H230.9300C352—C3531.370 (4)
C24—C251.340 (9)C352—C3571.495 (4)
C24—H240.9300C353—C3541.364 (5)
C25—H250.9300C353—H3530.9300
N31—C351.351 (2)C354—C3551.375 (4)
N31—N321.375 (2)C354—H3540.9300
N31—C3111.425 (2)C355—C3561.400 (3)
N32—C331.322 (2)C355—H3550.9300
C33—C341.414 (3)C356—H3560.9300
C33—C3311.491 (3)C357—H35A0.9600
C34—C351.373 (3)C357—H35B0.9600
C35—O351.353 (2)C357—H35C0.9600
O1—C1—C12120.05 (18)C313—C312—H312120.4
O1—C1—C2121.99 (19)C311—C312—H312120.4
C12—C1—C2117.96 (17)C314—C313—C312120.9 (2)
C3—C2—C1121.21 (18)C314—C313—H313119.6
C3—C2—H2119.4C312—C313—H313119.6
C1—C2—H2119.4C313—C314—C315119.6 (2)
C2—C3—C34128.12 (19)C313—C314—H314120.2
C2—C3—H3115.9C315—C314—H314120.2
C34—C3—H3115.9C314—C315—C316120.4 (2)
C15—S11—C1291.91 (14)C314—C315—H315119.8
C13—C12—C1131.5 (3)C316—C315—H315119.8
C13—C12—S11109.4 (3)C311—C316—C315119.7 (2)
C1—C12—S11119.10 (15)C311—C316—H316120.2
C12—C13—C14115.1 (3)C315—C316—H316120.2
C12—C13—H13122.4C33—C331—H31A109.5
C14—C13—H13122.4C33—C331—H31B109.5
C15—C14—C13110.7 (3)H31A—C331—H31B109.5
C15—C14—H14124.6C33—C331—H31C109.5
C13—C14—H14124.6H31A—C331—H31C109.5
C14—C15—S11112.9 (3)H31B—C331—H31C109.5
C14—C15—H15123.6C35—O35—C351119.55 (16)
S11—C15—H15123.6C356—C351—C352123.8 (2)
C24—C23—H23122.8C356—C351—O35122.94 (19)
C25—C24—C23110.3 (12)C352—C351—O35113.3 (2)
C25—C24—H24124.9C353—C352—C351116.7 (3)
C23—C24—H24124.9C353—C352—C357122.8 (3)
C24—C25—S21112.0 (11)C351—C352—C357120.5 (2)
C24—C25—H25124.0C354—C353—C352121.5 (3)
S21—C25—H25124.0C354—C353—H353119.2
C35—N31—N32110.33 (15)C352—C353—H353119.2
C35—N31—C311130.62 (16)C353—C354—C355121.0 (3)
N32—N31—C311118.98 (15)C353—C354—H354119.5
C33—N32—N31105.17 (15)C355—C354—H354119.5
N32—C33—C34112.14 (17)C354—C355—C356119.5 (3)
N32—C33—C331120.20 (18)C354—C355—H355120.2
C34—C33—C331127.61 (18)C356—C355—H355120.2
C35—C34—C33103.57 (16)C351—C356—C355117.5 (3)
C35—C34—C3129.00 (18)C351—C356—H356121.2
C33—C34—C3127.36 (18)C355—C356—H356121.2
N31—C35—O35120.86 (16)C352—C357—H35A109.5
N31—C35—C34108.79 (16)C352—C357—H35B109.5
O35—C35—C34129.88 (17)H35A—C357—H35B109.5
C316—C311—C312120.13 (18)C352—C357—H35C109.5
C316—C311—N31118.65 (18)H35A—C357—H35C109.5
C312—C311—N31121.21 (17)H35B—C357—H35C109.5
C313—C312—C311119.3 (2)
O1—C1—C2—C31.0 (3)C3—C34—C35—N31177.55 (18)
C12—C1—C2—C3178.86 (19)C33—C34—C35—O35171.48 (19)
C1—C2—C3—C34177.23 (19)C3—C34—C35—O355.6 (3)
O1—C1—C12—C13170.9 (5)C35—N31—C311—C316150.6 (2)
C2—C1—C12—C139.0 (6)N32—N31—C311—C31625.9 (3)
O1—C1—C12—S116.0 (3)C35—N31—C311—C31230.5 (3)
C2—C1—C12—S11174.22 (15)N32—N31—C311—C312153.05 (18)
C15—S11—C12—C130.3 (5)C316—C311—C312—C3131.3 (3)
C15—S11—C12—C1177.8 (4)N31—C311—C312—C313179.78 (18)
C1—C12—C13—C14176.4 (4)C311—C312—C313—C3140.6 (3)
S11—C12—C13—C140.6 (7)C312—C313—C314—C3150.3 (3)
C12—C13—C14—C151.6 (9)C313—C314—C315—C3160.4 (3)
C13—C14—C15—S111.8 (9)C312—C311—C316—C3151.2 (3)
C12—S11—C15—C141.3 (7)N31—C311—C316—C315179.88 (18)
C23—C24—C25—S219 (8)C314—C315—C316—C3110.3 (3)
C35—N31—N32—C330.9 (2)N31—C35—O35—C351105.1 (2)
C311—N31—N32—C33178.00 (16)C34—C35—O35—C35183.7 (2)
N31—N32—C33—C340.6 (2)C35—O35—C351—C3562.2 (3)
N31—N32—C33—C331178.19 (19)C35—O35—C351—C352179.18 (16)
N32—C33—C34—C350.0 (2)C356—C351—C352—C3531.2 (3)
C331—C33—C34—C35177.5 (2)O35—C351—C352—C353177.45 (18)
N32—C33—C34—C3177.07 (18)C356—C351—C352—C357178.1 (2)
C331—C33—C34—C30.4 (4)O35—C351—C352—C3573.3 (3)
C2—C3—C34—C356.2 (4)C351—C352—C353—C3540.0 (4)
C2—C3—C34—C33170.2 (2)C357—C352—C353—C354179.3 (2)
N32—N31—C35—O35171.96 (16)C352—C353—C354—C3551.0 (4)
C311—N31—C35—O354.7 (3)C353—C354—C355—C3560.9 (4)
N32—N31—C35—C340.9 (2)C352—C351—C356—C3551.3 (3)
C311—N31—C35—C34177.56 (18)O35—C351—C356—C355177.17 (19)
C33—C34—C35—N310.5 (2)C354—C355—C356—C3510.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N32i0.932.553.483 (4)177
C25—H25···N32i0.932.693.47 (2)142
C314—H314···O1ii0.932.513.432 (3)171
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z1.
 

Acknowledgements

MAES thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAbdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612–o613.  CSD CrossRef IUCr Journals Google Scholar
First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Khan, A. H. & Parvez, M. (2010). Acta Cryst. E66, o1265–o1266.  CSD CrossRef IUCr Journals Google Scholar
First citationAsma, Kalluraya, B. & Manju, N. (2017). Pharma Chem. 9, 50–54.  CAS Google Scholar
First citationBadawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o4–o8.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2012). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawood, K. M., Eldebss, T. M. A., El-Zahabi, H. S. A., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740–749.  CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145–o2146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A., Spencer, L. C., Tshivashe, M. G. & Darkwa, J. (2009). Acta Cryst. E65, o2743.  CSD CrossRef IUCr Journals Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134. doi: 10.3390/molecules23010134.  CrossRef Google Scholar
First citationKoca, I., Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859–3865.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036. doi: 10.3390/molecules21081036.  Google Scholar
First citationMathew, B., Suresh, J. & Anbazhagan, S. (2014). EXCLI J, 13, 437–445.  PubMed Google Scholar
First citationPeng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109–o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, J. & Jia, R. (2012). Acta Cryst. E68, o2608.  CSD CrossRef IUCr Journals Google Scholar
First citationRajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, o974–o975.  CSD CrossRef IUCr Journals Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, J., Tan, D.-J., Wang, T., Jing, S.-S., Kang, Y. & Zhang, Z.-T. (2017). J. Mol. Struct. 1149, 235–242.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds