research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N′-bis­­(pyridin-4-ylmeth­yl)ethane­di­amide and 4-chloro­benzoic acid

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 January 2020; accepted 15 January 2020; online 21 January 2020)

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.

1. Chemical context

This paper describes the X-ray crystal structure determination of, and an analysis of the supra­molecular association in the 1:2 co-crystal formed between bis­(pyridin-4-ylmeth­yl)ethanedi­amide and 4-chloro­benzoic acid, (I)[link]. The isomeric bis­(pyridin-n-ylmeth­yl)ethanedi­amide mol­ecules, i.e. mol­ecules of the general formula n-NC5H4CH2N(H)C(=O)C(=O)CH2C5H4N-n, for n = 2, 3 and 4, hereafter abbreviated as nLH2, are of inter­est as co-crystal co-formers owing to the presence of amide and pyridyl hydrogen bonding possibilities in their mol­ecular structures (Tiekink, 2017[Tiekink, E. R. T. (2017). Multi-Component Crystals: Synthesis, Concepts, Function, edited by E. R. T. Tiekink & J. Schpector- Zukerman, pp. 289-319. Singapore: De Gruyter.]). In a recent survey of co-crystals formed between 4LH2 and carb­oxy­lic acids (Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102-110.]), the formation of carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonds in their co-crystals was reported to be universal with only one exception. The odd co-crystal was the 1:1 co-crystal formed between 4LH2 and 2-[(4-hy­droxy­phen­yl)diazen­yl]benzoic acid (Arman et al., 2009[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3178-o3179.]). Within the acid, an intra­molecular carb­oxy­lic acid-O—H⋯N(azo) hydrogen bond is instituted instead, leading to the formation of a S(6) loop, an observation entirely in accord with expectation (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). The remaining co-crystal structures of 4LH2 with different carb­oxy­lic acids were stabilized by the expected carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonds, at both ends of the 4LH2 mol­ecule. The formation of such O—H⋯N hydrogen bonding is consistent with literature precedent, which indicates a very high propensity for these hydrogen-bonding patterns between carb­oxy­lic acids and pyridyl entities, at least in the absence of competing supra­molecular synthons (Shattock et al., 2008[Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]). In only one case of co-crystallization experiments of 4LH2 with carb­oxy­lic acids was a salt formed owing to proton transfer, i.e. in the structure of [4LH4][2,6-di­nitro­benzoate]2, where pyridinium-N—H⋯O(carboxyl­ate) hydrogen bonds are formed instead (Arman, Miller et al., 2012[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mater. 227, 825-830.]). The title co-crystal, (I)[link], was studied in continuation of on-going investigations of 4LH2 co-crystals of carb­oxy­lic acid co-formers (Arman et al., 2012[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mater. 227, 825-830.], 2013[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2013). Zeitschrift Kristallogr. 228, 295-303.], 2014[Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. Cryst. Mater. 229, 295-302.]; Syed et al., 2016[Syed, S., Jotani, M. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 391-398.]; Tan, Halcovitch et al., 2019[Tan, S. L., Halcovitch, N. R. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1133-1139.]; Tan & Tiekink, 2019[Tan, S. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1109-1111.]).

[Scheme 1]

2. Structural commentary

The crystallographic asymmetric unit of (I)[link] comprises two half mol­ecules of 4LH2, each being disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in a general position. Pairs of 4LH2 and CBA mol­ecules are connected via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding, Table 1[link], and with the application of symmetry, two independent, three-mol­ecule aggregates eventuate, i.e. 4LH2(CBA)2, as shown in Fig. 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.88 (1) 2.35 (2) 2.7088 (14) 105 (1)
N4—H4N⋯O2ii 0.87 (1) 2.30 (2) 2.7028 (14) 108 (1)
O4—H4O⋯N1 0.85 (2) 1.82 (2) 2.6559 (15) 171 (2)
O6—H6O⋯N3 0.85 (2) 1.80 (2) 2.6419 (15) 172 (2)
C8—H8⋯O5 0.95 2.53 3.1708 (17) 125
N2—H2N⋯O2iii 0.88 (1) 2.11 (1) 2.8800 (13) 146 (1)
N4—H4N⋯O1 0.87 (1) 2.07 (1) 2.7959 (13) 141 (1)
C2—H2⋯O3iv 0.95 2.53 3.3597 (17) 146
C6—H6A⋯O3iv 0.99 2.59 3.5262 (17) 157
C9—H9⋯O5v 0.95 2.59 3.3701 (17) 140
C13—H13A⋯O5v 0.99 2.48 3.4006 (16) 155
C27—H27⋯O1vi 0.95 2.53 3.4505 (16) 163
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+2, -z; (iii) x-1, y, z; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structures of the two centrosymmetric three-mol­ecule aggregates in the crystal of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. In (a), the unlabelled atoms are related by the symmetry operation (i) 1 − x, 2 − y, − z and in (b), by (ii) 2 − x, 2 − y, − z.

As each 4LH2 mol­ecule is centrosymmetric, the central C2N2O2 chromophore in each is strictly planar. As is usually found in these mol­ecules (Tiekink, 2017[Tiekink, E. R. T. (2017). Multi-Component Crystals: Synthesis, Concepts, Function, edited by E. R. T. Tiekink & J. Schpector- Zukerman, pp. 289-319. Singapore: De Gruyter.]; Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102-110.]), the central C7—C7i [1.537 (2) Å] and C14—C14ii [1.539 (2) Å] bond lengths are longer than usual owing to the electronegative substituents connected to both carbon atoms [symmetry operations (i) 1 − x, 2 − y, − z and (ii) 2 − x, 2 − y, − z]. The conformation of each 4LH2 mol­ecule is (+)anti­periplanar whereby the pyridin-4-yl residues lie to either side of the planar region of the mol­ecule. The dihedral angles between the respective central core and the N1- and N3-pyridyl rings are 68.65 (3) and 86.25 (3)°, respectively. This represents the greatest conformational difference between the 4LH2 mol­ecules and is emphasized in the overlay diagram of Fig. 2[link] which shows the two independent, three-mol­ecule aggregates. Finally, the carbonyl groups are anti, enabling the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds that complete S(5) loops, Table 1[link].

[Figure 2]
Figure 2
An overlay diagram of the two independent, three-mol­ecule aggregates in (I)[link]. The N1-pyrid­yl/O3-carb­oxy­lic acid (red image) and N3-pyrid­yl/O5-carb­oxy­lic acid (blue image) aggregates have been overlapped so that the central C2N2O2 chromophores are coincident.

To a first approximation, the two independent CBA mol­ecules in (I)[link] are similar. The dihedral angle between the benzene ring and the attached CO2 group is 8.06 (10)° for the O3-mol­ecule indicating a closer to co-planar mol­ecule than for the O5-mol­ecule for which the equivalent dihedral angle is 17.24 (8)°. Consistent with the carb­oxy­lic acid assignment, the C15—O3(carbon­yl) bond length of 1.2172 (17) Å is considerably shorter than the C15—O4(hy­droxy) bond of 1.3196 (16) Å; the bonds of the O5-benzoic acid follow the same trend with C22—O5 of 1.2173 (17) Å compared with C22—O6 of 1.3181 (16) Å. As seen from Fig. 2[link], the attached benzoic acid mol­ecules are each twisted out of the plane through the pyridyl ring they are connected to as seen in the N1-pyrid­yl/O3-carb­oxy­lic acid dihedral angle of 41.70 (4)°; the corresponding angle for the second three-mol­ecule aggregate is 35.47 (3)°.

3. Supra­molecular features

The formation of two independent, three-mol­ecule aggregates has already been noted above in the crystal of (I)[link] as has the intra­molecular amide-N—H⋯O(amide) hydrogen bonds, Table 1[link]. The carb­oxy­lic acid-O—H⋯N(pyridyl) hydrogen bond involving the O5-carb­oxy­lic acid and N3-pyridyl ring is supported by a pyridyl-NC—H⋯O(carbon­yl) contact which closes a seven-membered {⋯OCOH⋯NCH} pseudo-heterosynthon; the corresponding H⋯O separation for the O3-carb­oxy­lic acid and N1-pyridyl ring is 2.67 Å. The three-mol­ecule aggregates are connected into a supra­molecular tape along the a axis by amide-N—H⋯O(amide) hydrogen bonding and concatenated, centrosymmetric 10-membered {⋯HNC2O}2 synthons, Fig. 3[link](a). The tapes are consolidated into a three-dimensional architecture by pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions, Fig. 3[link](b).

[Figure 3]
Figure 3
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular tape comprising three-mol­ecule aggregates, each sustained by carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding (orange dashed lines), linked by amide-N—H⋯O(amide) (blue dashed lines) hydrogen bonding and (b) a view of the unit-cell contents down the a axis with C—H⋯O inter­actions highlighted by pink dashed lines.

4. Hirshfeld surface analysis

The calculation of the Hirshfeld surfaces and two-dimensional fingerprint plots were accomplished with the program Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) using procedures described in the literature (Tan, Jotani et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]; Jotani et al., 2019[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. 234, 43-57.]). The input for the calculations were the two independent three-mol­ecule aggregates, hereafter 3M-I and 3M-II, shown in Fig. 2[link], whereby two chloro­benzoic acid (CBA) mol­ecules are connected to each 4LH2 mol­ecule via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonds. Analogous calculations were also performed on the symmetry expanded N1- and N3-oxalamide mol­ecules, hereafter 4LH2-I and 4LH2-II, respectively, and on the independent O3- and O5-chloro­benzoic acid mol­ecules, hereafter CBA-I and CBA-II, respectively. The dnorm distances for short contacts identified through the Hirshfeld surface analysis are given in Table 2[link].

Table 2
A summary of short inter­atomic contacts (Å) in (I)a

Contact Distance Symmetry operation
O5⋯H9 2.49 1 − x, 2 − y, 1 − z
O5⋯H13A 2.40 1 − x, 2 − y, 1 − z
Cl2⋯C14 3.21 −1 + x, −1 + y, 1 + z
Cl2⋯O2 3.22 −1 + x, −1 + y, 1 + z
O1⋯H27 2.92 1 − x, 1 − y, 1 − z
O1⋯H4Nb 1.96 x, y, z
O2⋯H2Nb 2.00 −1 + x, y, z
O5⋯H8 2.46 x, y, z
N3⋯H6Ob 1.67 x, y, z
O3⋯H2 2.42 1 − x, 2 − y, 1 − z
O3⋯H6A 2.51 1 − x, 2 − y, 1 − z
C7⋯Cl1 3.25 x, 1 + y, −1 + z
N1⋯H4Ob 1.68 −1 + x, y, z
O3⋯H1 2.60 −1 + x, y, z
O1⋯Cl1 3.24 x, 1 + y, −1 + z
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values; (b) these inter­actions correspond to conventional hydrogen bonds.

Several dnorm maps showing red spots ranging from moderate to strong intensity are illustrated in Fig. 4[link]. In particular, intense red spots indicative of strong inter­actions (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) are observed for carb­oxy­lic-O4—H4O⋯N1(pyrid­yl) in 3M-I, carb­oxy­lic-O6–H6O⋯N3(pyrid­yl) in 3M-II as well as the inter­actions between amide-N2–H2N⋯O2(amide) and amide-N4—H4N⋯O1(amide) in 3M-I and 3M-II, respectively, while relatively weaker inter­actions with moderately to weakly intense red spots between amide-C7⋯Cl1, pyridyl-C1—H1⋯O3(carboxy­lic acid), pyridyl-C2—H2⋯O3(carb­oxy­lic acid), methyl­ene-C—H6A⋯O3(carb­oxy­lic acid), amide-O1⋯Cl1 in 3M-I, and Cl2⋯C14(amide), methyl­ene-C13—H13A⋯O5(carboxylic acid), pyridyl-C8—H8⋯O5(carb­oxy­lic acid), pyridyl-C9—H9⋯O5(carb­oxy­lic acid), Cl2⋯O2(amide) in 3M-II are observed. As well, spots due to benzene-C27—H27⋯O1(amide) are seen, i.e. providing connections between 3M-I and 3M-II.

[Figure 4]
Figure 4
The dnorm maps showing N—H⋯O (yellow dashed lines), C—H⋯O (blue), Cl⋯C (green) and Cl⋯O (light-blue) close contacts as indicated by the corresponding red spots with varying intensities within the range of −0.0503 to 1.1157 arbitrary units for (a) 4LH2-I, (b) CBA-I, (c) 4LH2-II and (d) CBA-II.

Qualitatively, the dnorm maps for 3M-I and 3M-II exhibit similarity for the corresponding 4LH2 and CBA mol­ecules with the exception of CBA-II. Pairs of CBA-II are aligned around an inversion centre with Cl2 and H25 being directly opposite each other, ostensibly forming an eight-membered heterosynthon despite the distance being longer than the cut-off value of 2.84 Å (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]); such an alignment is not observed for CBA-I. In addition, there are other close contacts: C1—H1⋯O3, C6—H6A⋯O3, C7⋯Cl1, Cl2⋯C14, O1⋯Cl1 and Cl2⋯O2, which were not identified in the PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) analysis.

To establish the nature of the inter­molecular inter­actions, particularly for the weaker contacts, a mapping of the electrostatic potential (ESP) was performed over the Hirshfeld surfaces through DFT-B3LYP/6-31G(d,p) for the independent 4LH2 and CBA mol­ecules in (I)[link], Fig. 5[link]. The results indicate the C1—H1⋯O3, C6—H6A⋯O3, C7⋯Cl1, Cl2⋯C14, O1⋯Cl1 and Cl2⋯O2 contacts are indeed electrostatic in nature, as shown from the red (electronegative) and blue (electropositive) regions on the ESP maps despite being relatively less intense when compared to those arising from the classical hydrogen bonds.

[Figure 5]
Figure 5
The electrostatic potential mapped onto the Hirshfeld surfaces within the isosurface value of −0.0416 to 0.0981 atomic units for (a) 4LH2-I, (b) CBA-I, (c) 4LH2-II and (d) CBA-II. The circles highlight the inter­actions between the electronegative sites of the amide and the chlorine atoms through the electropositive σ-hole region.

ESP calculations were also performed on the individual mol­ecules through Gaussian 16 (Frisch et al., 2016[Frisch, M. J., et al. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT, USA.]) using the long-range corrected wB97XD density functional with Grimme's D2 dispersion density functional theoretical model (Chai & Head-Gordon, 2008[Chai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615-6620.]) coupled with Pople's 6-311+G(d,p) basis set (Petersson et al., 1988[Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A. & Mantzaris, J. (1988). J. Chem. Phys. 89, 2193-2218.]) in order to validate the above results. The calculations show that the individual 4LH2 and CBA mol­ecules possess similar electrostatic surface potentials with the red and blue regions representing the extremities of the electrostatic potential spectrum, Fig. 6[link].

[Figure 6]
Figure 6
The electrostatic potential surface mapping for 4LH2 and CBA as obtained from Gaussian 16, showing the average ESP charge on the surface of the point of contact for the Cl1/Cl2, C7/C14 and O1/O2 inter­actions. The electrostatic potential was mapped onto the isodensity surface (0.0004 a.u.) within the scale of −0.0312 to 0.0312 a.u.

Of particular inter­est is the observation that the chlorine atom inter­acts with the amide-C=O residue through an electron-deficient σ-hole region. To complement the ESP findings on these O⋯Cl and C⋯Cl contacts, non-covalent inter­action plots were generated for the relevant pairwise mol­ecules using NCIPLOT (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]). The results, as shown from the green domain on the isosurface between the 4LH2 and CBA mol­ecules in Fig. 7[link], indicate that those inter­actions are weakly attractive (Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]). The calculated electrostatic potential charge on the surface at the point of contacts calculated with Crystal Explorer 17 employing B3LYP/6-31G(d,p) are comparable to the data obtained from Gaussian 16, in which Cl1, O1, Cl2 and O2 possess charges of +0.0054, −0.0147, +0.0054 and −0.0125 atomic units (a.u.), respectively; while the C7 and C14 atoms each exhibit a weak electrostatic potential charge of +0.0251 and +0.0263 a.u., respectively. Therefore, the C7⋯Cl1 and C14⋯Cl2 inter­actions are dispersive in nature. On the other hand, the apparent charge complementarity between the Cl2 and H25 atoms, which align around a centre of inversion as described above, indicate the existence of an electrostatic inter­action between two CBA-II mol­ecules, Fig. 5[link](d).

[Figure 7]
Figure 7
(a) The NCI plot highlighting the O⋯Cl and C⋯Cl contacts between 4LH2-I and CBA-I mol­ecules, showing the weak, but attractive inter­actions through the green domain and (b) the two-dimensional reduced density gradient versus the electron density times the sign of the second Hessian eigenvalue which reveals the overall contact profile of the pairwise mol­ecules. The gradient cut-off is set at 0.4 and the colour scale is −0.25 < ρ < 0.25 a.u.

The two-dimensional fingerprint plots were generated in order to qu­antify the close contacts for 4LH2-I, 4LH2-II, CBA-I, CBA-II, 3M-I and 3M-II. The overall fingerprint plots for the specified mol­ecules/aggregates are shown in Fig. 8[link](a) and those decomposed into H⋯O/O⋯H/ H⋯C/C⋯H, H⋯N/N⋯H and H⋯Cl/Cl⋯H plots are shown in Fig. 8[link](b)-(e).

[Figure 8]
Figure 8
(a) The overall two-dimensional fingerprint plots for 4LH2-I, 4LH2-II, CBA-I, CBA-II, 3M-I and 3M-II, and those delineated into (b) H⋯O/O⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H and (e) H⋯Cl/Cl⋯H contacts, with the percentage contributions specified within each plot.

The overall fingerprint plot of the individual components and the corresponding three-mol­ecule aggregates exhibit a paw-like profile with asymmetric spikes indicating the inter-dependency of the inter­molecular inter­actions between mol­ecules to sustain the packing. The 3M-I and 3M-II aggregates display almost identical fingerprint profiles which, upon decomposition, can be delineated into H⋯H [32.5% for 3M-I and 30.1% for 3M-II; not illustrated], H⋯C/C⋯H [22.5 and 23.9%, respectively], H⋯O/O⋯H [21.2 and 20.7%], H⋯Cl/Cl⋯H [7.5 and 10.8%], H⋯N/N⋯H [6.4 and 3.8%] and other minor contacts [10.0 and 10.7%]. A detailed analysis on the corresponding decomposed fingerprint plots shows that only the H⋯O/O⋯H and H⋯N/N⋯H contacts for both 3M-I and 3M-II as well as H⋯Cl/Cl⋯H for 3M-II have di + de distances shorter than the sum of the respective van der Waals radii of 2.61, 2.64 and 2.84 Å (adjusted to neutron values). For 3M-I, the di + de values for the H⋯O/O⋯H and H⋯N contacts are, respectively, tipped at ∼1.98, ∼1.95 and ∼1.68 Å, and are attributed to (inter­nal)-N2—H2N⋯O2-(external), (inter­nal)-O1⋯H4N-(external) and (inter­nal)-N1⋯H4O-(external) contacts, respectively. The analogous contacts for 3M-II are tipped at 1.95 Å for (inter­nal)-H4N⋯O1-(external), ∼1.98 Å for (inter­nal)-O2⋯H2N-(external) and ∼1.64 Å for (inter­nal)-N3⋯H6O-(external). For H⋯Cl/Cl⋯H in 3M-II, the contacts are each tipped at ∼2.80 Å owing to the pair of (inter­nal)-H25⋯Cl2-(external) and (inter­nal)-Cl2⋯H25-(external) inter­actions. As for the H⋯H and H⋯C/ C⋯H contacts, their di + de distances are longer than the sum of their respective van der Waals radii of 2.18 and 2.79 Å, and hence contribute little to the overall packing of the crystal despite providing the predominant surface contacts.

The individual 4LH2-I and 4LH2-II mol­ecules exhibit similar fingerprint profiles with only slight differences in the contact distributions. In order of dominance, these are H⋯H (36.3% for 4LH2-I and 33.8% for 4LH2-II), H⋯O/O⋯H (23.6 and 22.8%, respectively), H⋯C/C⋯H (21.4 and 21.2%), H⋯N/N⋯H (11.0 and 8.3%), H⋯Cl (1.7 and 6.1%) and other minor contacts (6.0 and 7.8%). There is no major deviations in the di + de distances cf. 3M-1 and 3M-II, with only the H⋯O/O⋯H as well as N⋯H contacts being shorter than the sums of their respective van der Waals radii. Each of 4LH2-I and 4LH2-II have di + de of about 1.98 Å for H⋯O/O⋯H and ∼1.64 Å for N⋯H contacts.

As for the individual CBA-I and CBA-II mol­ecules, major contacts comprise H⋯H (23.7% for CBA-I and 22.1% for CBA-II), H⋯C/C⋯H (20.7 and 24.2%, respectively), H⋯O/O⋯H (17.7 and 17.9%), H⋯Cl/Cl⋯H (16.8 and 17.5%), H⋯N (5.3 and 4.4%) and other minor contacts (15.7 and 13.9%). A detailed analysis of the corresponding contacts shows all major inter­actions for CBA-I and CBA-II are more inclined toward (inter­nal)-X⋯H-(external) rather than (inter­nal)-H⋯X-(external), as evidenced most notably from the distribution for O⋯H (CBA-I: 14.2%; CBA-II: 14.2%) versus H⋯O (CBA-I: 3.5%; CBA-II: 3.6%) and Cl⋯H (CBA-I: 12.9%; CBA-II: 12.4%) vs H⋯Cl (CBA-I: 3.9%; CBA-II: 5.0%). The inclination arises due to the lack of hydrogen-bond donor atoms in the CBA-I and CBA-II mol­ecules, other than the carb­oxy­lic acid groups, so they act primarily as hydrogen-bond acceptors. Among the contacts, O⋯H and H⋯N for CBA-I have di + de distances of ∼2.40 and ∼1.64 Å, respectively, each being shorter than the sum of the respective van der Waals radii, while the same is true for H⋯O/O⋯H, H⋯N and H⋯Cl/Cl⋯H contact for CBA-II with di + de distances of ∼2.38, ∼1.62 and ∼2.82 Å, respectively.

5. Computational chemistry

The calculation of the inter­action energies for all pairwise inter­acting mol­ecules was performed through Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) based on the method reported previously (Tan, Jotani et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) in order to study the strength of each inter­action identified from the Hirshfeld surface analysis. The calculations showed that the ten-membered synthons formed between 4LH2-I and 4LH2-II through amide-N2—H2N⋯O2(amide) and amide-N4—H4N⋯O1(amide) hydrogen bonds has the greatest energy among all close contacts present in the crystal with an inter­action energy (Eint) of −61.9 kJ mol−1. This is followed by the seven-membered heterosynthon formed between 4LH2-II and CBA-II through the carb­oxy­lic acid-O4—H4O⋯N1(pyrid­yl) hydrogen bond with the supporting pyridyl-C—H8⋯O5(carbon­yl) contact so that Eint = −52.0 kJ mol−1. For the analogous contact between 4LH2-I and CBA-I but lacking the supporting pyridyl-C—H⋯O5(carbon­yl) contact, it is gratifying to note the inter­action energy is correspondingly less, i.e. Eint = −49.4 kJ mol−1. The inter­actions between amide-C7⋯Cl1 and amide-O1⋯Cl1, summing to Eint of −16.6 kJ mol−1, are also significant, as are the inter­actions between methyl­ene-C–H6A⋯O3(amide) and pyridyl-C2–H2⋯O3(amide) with Eint = −15.8 kJ mol−1. The equivalent inter­actions surrounding the 4LH2-II mol­ecule follow the same trends and give similar energies, Table 3[link]. The benzoic-C25—H25⋯Cl2 dimer arising from the connection between two CBA-II mol­ecules is weakly inter­acting with Eint of −8.7 kJ mol−1. Finally, the C27—H27⋯O1(amide) inter­action exhibits an Eint of −20.4 kJ mol−1.

Table 3
A summary of inter­action energies (kJ mol1) calculated for (I)

Contact Eele Epol Edis Erep Etot Symmetry operation
N2—H2N⋯O2/            
N4—H4N⋯O1 −51.0 −12.4 −49.4 71.6 −61.9 x, y, z
O4—H4O⋯N1/            
C1—H1⋯O3 −84.3 −20.1 −12.7 106.3 −49.4 −1 + x, y, z
O6—H6O⋯N3/            
C8—H8⋯O5 −90.9 −21.4 −13.1 115.6 −52.0 x, y, z
C7⋯Cl1/ O1⋯Cl1 −5.3 −1.0 −25.4 19.3 −16.6 x, 1 + y, −1 + z
C6—H6A⋯O3/            
C2—H2⋯O3 −11.9 −3.2 −12.5 16.5 −15.8 1 − x, 2 − y, 1 − z
C9—H9⋯O5/            
C13—H13A⋯O5 −12.8 −3.6 −13.3 18.5 −16.3 1 − x, 2 − y, 1 − z
C14⋯Cl2/ O2⋯Cl2 −6.6 −0.8 −27.3 27.2 −14.5 −1 + x, −1 + y, 1 + z
C25—H25⋯Cl2 −6.4 −0.7 −13.5 16.7 −8.7 x, − y, − z
C27—H27⋯O1 −10.4 −1.6 −23.4 19.7 −20.4 1 − x, 1 − y, 1 − z

The crystal of (I)[link] is mainly governed by electrostatic forces (Eele) as highlighted by the rod-shaped energy framework with a zigzag topology due to the combination of several strong inter­actions, Fig. 9[link](a). Specifically, the combination of inter­actions between 4LH2-I and CBA-I through the terminal O4—H4O⋯N1 hydrogen bonding as well as between 4LH2-II and CBA-II via O6—H6O⋯N3 and C8—H8⋯O5 inter­actions leads to the formation of the core framework parallel to (101). The overall Eele of these inter­actions is much greater than that associated with the ten-membered synthons formed by a combination of N2—H2N⋯O2 and N4—H4N⋯O1 hydrogen bonds as evidenced from the relatively small rod radius in the energy model of the latter inter­actions, which align in a parallel fashion along the b axis, Fig. 9[link](a).

[Figure 9]
Figure 9
Perspective views of the energy frameworks of (I)[link], showing the (a) electrostatic force, (b) dispersion force and (c) total energy. The radius of the cylinders is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 100 with a cut-off value of 8 kJ mol−1 within a 2 × 2 × 2 unit cells.

Apart from the electrostatic forces, the crystal is also sustained by substantial dispersion forces, which are mainly associated with the ten-membered {⋯HNC2O}2 synthon along with the peripheral C7⋯Cl1/O1⋯Cl1 and C14⋯Cl2/O2⋯Cl2 inter­actions which lead to a ladder-like topology, Fig. 9[link](b). The combination of the electrostatic and dispersion forces results in an enhancement of the influence of the ten-membered synthons which supersedes the energy force for the terminal carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonds as seen in the total energy framework, Fig. 9[link](c).

6. Database survey

The formation of carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonds, involving both pyridyl rings, leading to three-mol­ecule aggregates, is an almost universal trait when co-crystals are formed between 4LH2 and mono-functional carb­oxy­lic acids; one exception was noted in the Chemical context. A different situation pertains when bi-functional carb­oxy­lic acids are employed in co-crystal formation. In these circumstances, e.g. when the carb­oxy­lic acid is bis­(carb­oxy­meth­yl)urea and diglycineoxamide (Nguyen et al., 2001[Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.]), two-dimensional sheets result, owing to strands of {⋯HO2C-R-CO2H⋯4LH2⋯HO2C-R-CO2H⋯}n being connected by almost orthogonal tapes comprising ten-membered {⋯HNC2O}2 synthons provided by the 4LH2 mol­ecules. These are reinforced by hydrogen bonding afforded by the R residues of the bi-functional carb­oxy­lic acids, e.g. linked by six-membered synthons {⋯HNCNH⋯O} provided by the urea bridges in the case of bis­(carb­oxy­meth­yl)urea (Nguyen et al., 2001[Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.]). Clearly, scope remains for the development of novel supra­molecular architectures in co-crystals comprising 4LH2 and multi-functional carb­oxy­lic acids.

7. Synthesis and crystallization

The precursor, N,N′-bis­(pyridin-4-ylmeth­yl)oxalamide (4LH2) was prepared according to a literature procedure: m.p.: 486.3–487.6 K; lit. 486–487 K (Nguyen et al., 1998[Luong Nguyen, T., Scott, A., Dinkelmeyer, B., Fowler, F. W. & Lauher, J. W. (1998). New J. Chem. 22, 129-135.]). 4-Chloro­benzoic acid (Merck) was reagent grade and used as received without further purification. The co-former 4LH2 (0.271 g, 0.001 mol) was mixed with 4-chloro­benzoic acid (0.157 g, 0.001 mol) and the mixture was then ground for 15 min in the presence of a few drops of methanol. The procedure was repeated twice. Colourless blocks were obtained through careful layering of toluene (1 ml) on an N,N-di­methyl­formamide (1 ml) solution of the ground mixture. M.p.: 456.9–458.6 K. IR (cm−1): 3211 ν(N—H), 3052—2935 ν(C—H), 1669–1604 ν(C=O), 1492 ν(C=C), 1419 ν(C—N), 794 ν(C—Cl).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The oxygen- and nitro­gen-bound H atoms were located from a difference-Fourier map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N).

Table 4
Experimental details

Crystal data
Chemical formula C14H14N4O2·2C7H5ClO2
Mr 583.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.9401 (2), 11.2002 (2), 12.3308 (3)
α, β, γ (°) 78.871 (2), 78.816 (2), 81.992 (2)
V3) 1313.98 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.67
Crystal size (mm) 0.13 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.])
Tmin, Tmax 0.847, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33133, 5486, 4814
Rint 0.034
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.03
No. of reflections 5486
No. of parameters 373
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

N,N'-Bis(pyridin-4-ylmethyl)ethanediamide–4-chlorobenzoic acid (1/2) top
Crystal data top
C14H14N4O2·2C7H5ClO2Z = 2
Mr = 583.41F(000) = 604
Triclinic, P1Dx = 1.475 Mg m3
a = 9.9401 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.2002 (2) ÅCell parameters from 14644 reflections
c = 12.3308 (3) Åθ = 3.7–76.1°
α = 78.871 (2)°µ = 2.67 mm1
β = 78.816 (2)°T = 100 K
γ = 81.992 (2)°Plate, colourless
V = 1313.98 (5) Å30.13 × 0.04 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
5486 independent reflections
Radiation source: micro-focus sealed X-ray tube4814 reflections with I > 2σ(I)
Detector resolution: 5.2558 pixels mm-1Rint = 0.034
ω scansθmax = 76.5°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 912
Tmin = 0.847, Tmax = 1.000k = 1414
33133 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.3813P]
where P = (Fo2 + 2Fc2)/3
5486 reflections(Δ/σ)max = 0.002
373 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60739 (8)0.97776 (8)0.10123 (7)0.01871 (18)
N10.18629 (11)0.75161 (10)0.46595 (9)0.0226 (2)
N20.37710 (10)1.03739 (10)0.11754 (9)0.0171 (2)
H2N0.3042 (12)1.0441 (15)0.0858 (13)0.021*
C10.10938 (13)0.85755 (12)0.43978 (11)0.0219 (3)
H10.0148700.8649690.4735250.026*
C20.16098 (12)0.95678 (12)0.36591 (11)0.0200 (2)
H20.1027521.0303290.3495500.024*
C30.29944 (12)0.94745 (11)0.31582 (10)0.0179 (2)
C40.38016 (13)0.83804 (12)0.34405 (11)0.0213 (3)
H40.4753650.8287210.3126280.026*
C50.32023 (13)0.74264 (12)0.41854 (11)0.0235 (3)
H50.3760450.6680800.4367550.028*
C60.35802 (12)1.05429 (12)0.23434 (11)0.0197 (2)
H6A0.2951051.1296100.2440750.024*
H6B0.4479771.0655480.2519640.024*
C70.50027 (11)1.00274 (10)0.06174 (10)0.0146 (2)
O21.10206 (8)0.99617 (8)0.10296 (7)0.02007 (19)
N30.69677 (11)0.75172 (10)0.47531 (9)0.0211 (2)
N40.86920 (10)1.03345 (10)0.11304 (9)0.0173 (2)
H4N0.8027 (13)1.0328 (15)0.0771 (12)0.021*
C80.65934 (13)0.86787 (12)0.49045 (11)0.0216 (3)
H80.5999650.8825240.5579150.026*
C90.70303 (12)0.96737 (12)0.41257 (11)0.0202 (2)
H90.6743401.0482010.4269010.024*
C100.78943 (11)0.94780 (11)0.31302 (10)0.0174 (2)
C110.82958 (12)0.82740 (12)0.29757 (11)0.0210 (3)
H110.8892900.8101060.2310790.025*
C120.78155 (13)0.73269 (12)0.38030 (11)0.0221 (3)
H120.8101080.6508220.3689680.027*
C130.83531 (12)1.05668 (11)0.22714 (10)0.0186 (2)
H13A0.7608681.1251370.2310710.022*
H13B0.9171961.0829450.2469300.022*
C140.99697 (11)1.00732 (11)0.06123 (10)0.0154 (2)
Cl10.37720 (3)0.26656 (3)1.00591 (3)0.02890 (10)
O30.07627 (10)0.73883 (9)0.67521 (9)0.0304 (2)
O40.03544 (10)0.58218 (9)0.59372 (8)0.0268 (2)
H4O0.0841 (18)0.6388 (14)0.5594 (16)0.040*
C150.06010 (13)0.63083 (12)0.66763 (11)0.0222 (3)
C160.14493 (12)0.53923 (12)0.74585 (11)0.0205 (3)
C170.23844 (13)0.57765 (12)0.83541 (11)0.0216 (3)
H170.2524190.6618130.8418950.026*
C180.31121 (13)0.49417 (12)0.91512 (11)0.0220 (3)
H180.3747270.5201780.9763630.026*
C190.28935 (13)0.37174 (12)0.90357 (12)0.0217 (3)
C200.19944 (13)0.33124 (12)0.81370 (12)0.0240 (3)
H200.1875170.2473310.8064670.029*
C210.12741 (13)0.41610 (12)0.73471 (12)0.0230 (3)
H210.0656660.3901630.6725370.028*
Cl20.09083 (4)0.27800 (3)0.98266 (3)0.03057 (10)
O50.42589 (10)0.74219 (9)0.67193 (9)0.0298 (2)
O60.56489 (9)0.58098 (9)0.61812 (8)0.0242 (2)
H6O0.6094 (17)0.6374 (14)0.5776 (14)0.036*
C220.45469 (13)0.63220 (12)0.67727 (11)0.0205 (3)
C230.36560 (12)0.54182 (12)0.75218 (11)0.0194 (2)
C240.22992 (13)0.58221 (12)0.79557 (11)0.0221 (3)
H240.1962330.6659340.7772380.026*
C250.14420 (13)0.50108 (12)0.86510 (11)0.0227 (3)
H250.0514480.5279960.8936460.027*
C260.19648 (14)0.37974 (12)0.89221 (11)0.0223 (3)
C270.33072 (14)0.33723 (12)0.85065 (12)0.0237 (3)
H270.3644330.2537130.8702180.028*
C280.41476 (13)0.41920 (12)0.77991 (11)0.0212 (3)
H280.5067440.3914140.7500810.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0124 (4)0.0244 (4)0.0184 (4)0.0031 (3)0.0020 (3)0.0012 (3)
N10.0252 (5)0.0229 (6)0.0182 (5)0.0028 (4)0.0006 (4)0.0039 (4)
N20.0126 (4)0.0213 (5)0.0165 (5)0.0018 (4)0.0001 (4)0.0036 (4)
C10.0181 (5)0.0265 (7)0.0199 (6)0.0024 (5)0.0006 (5)0.0049 (5)
C20.0179 (6)0.0229 (6)0.0181 (6)0.0003 (5)0.0019 (5)0.0041 (5)
C30.0184 (5)0.0217 (6)0.0145 (5)0.0025 (4)0.0016 (4)0.0063 (5)
C40.0189 (6)0.0246 (6)0.0192 (6)0.0007 (5)0.0001 (5)0.0062 (5)
C50.0256 (6)0.0223 (6)0.0202 (6)0.0029 (5)0.0018 (5)0.0041 (5)
C60.0198 (6)0.0208 (6)0.0179 (6)0.0033 (5)0.0015 (5)0.0061 (5)
C70.0134 (5)0.0125 (5)0.0166 (6)0.0038 (4)0.0002 (4)0.0002 (4)
O20.0128 (4)0.0279 (5)0.0189 (4)0.0032 (3)0.0018 (3)0.0028 (4)
N30.0195 (5)0.0227 (5)0.0200 (5)0.0023 (4)0.0010 (4)0.0031 (4)
N40.0118 (4)0.0227 (5)0.0168 (5)0.0019 (4)0.0011 (4)0.0036 (4)
C80.0219 (6)0.0249 (6)0.0179 (6)0.0028 (5)0.0006 (5)0.0069 (5)
C90.0196 (6)0.0207 (6)0.0202 (6)0.0014 (5)0.0001 (5)0.0070 (5)
C100.0124 (5)0.0220 (6)0.0185 (6)0.0020 (4)0.0026 (4)0.0047 (5)
C110.0179 (5)0.0227 (6)0.0205 (6)0.0003 (5)0.0024 (5)0.0062 (5)
C120.0202 (6)0.0199 (6)0.0247 (7)0.0001 (5)0.0004 (5)0.0057 (5)
C130.0161 (5)0.0202 (6)0.0184 (6)0.0020 (4)0.0015 (4)0.0053 (5)
C140.0134 (5)0.0142 (5)0.0171 (6)0.0036 (4)0.0005 (4)0.0003 (4)
Cl10.02788 (17)0.02064 (16)0.03483 (19)0.00701 (12)0.00165 (13)0.00283 (13)
O30.0325 (5)0.0191 (5)0.0334 (6)0.0029 (4)0.0071 (4)0.0023 (4)
O40.0290 (5)0.0232 (5)0.0250 (5)0.0049 (4)0.0060 (4)0.0053 (4)
C150.0219 (6)0.0215 (6)0.0221 (6)0.0008 (5)0.0026 (5)0.0030 (5)
C160.0186 (5)0.0205 (6)0.0224 (6)0.0020 (5)0.0038 (5)0.0037 (5)
C170.0223 (6)0.0171 (6)0.0252 (7)0.0015 (5)0.0034 (5)0.0043 (5)
C180.0204 (6)0.0213 (6)0.0237 (6)0.0029 (5)0.0012 (5)0.0045 (5)
C190.0186 (5)0.0195 (6)0.0268 (7)0.0047 (5)0.0052 (5)0.0005 (5)
C200.0220 (6)0.0174 (6)0.0337 (7)0.0016 (5)0.0057 (5)0.0065 (5)
C210.0202 (6)0.0228 (6)0.0265 (7)0.0012 (5)0.0026 (5)0.0078 (5)
Cl20.03914 (19)0.02243 (17)0.02819 (18)0.01267 (13)0.00685 (14)0.00548 (13)
O50.0297 (5)0.0185 (5)0.0339 (6)0.0007 (4)0.0079 (4)0.0010 (4)
O60.0214 (4)0.0210 (5)0.0258 (5)0.0010 (4)0.0039 (4)0.0023 (4)
C220.0199 (6)0.0198 (6)0.0206 (6)0.0004 (5)0.0027 (5)0.0027 (5)
C230.0199 (6)0.0196 (6)0.0184 (6)0.0018 (5)0.0025 (5)0.0037 (5)
C240.0218 (6)0.0180 (6)0.0247 (6)0.0009 (5)0.0026 (5)0.0030 (5)
C250.0205 (6)0.0233 (6)0.0237 (6)0.0019 (5)0.0009 (5)0.0053 (5)
C260.0272 (6)0.0207 (6)0.0196 (6)0.0073 (5)0.0007 (5)0.0046 (5)
C270.0298 (7)0.0167 (6)0.0238 (6)0.0007 (5)0.0029 (5)0.0039 (5)
C280.0214 (6)0.0200 (6)0.0216 (6)0.0010 (5)0.0022 (5)0.0059 (5)
Geometric parameters (Å, º) top
O1—C71.2307 (14)C13—H13A0.9900
N1—C11.3386 (17)C13—H13B0.9900
N1—C51.3445 (17)C14—C14ii1.539 (2)
N2—C71.3292 (15)Cl1—C191.7402 (13)
N2—C61.4612 (16)O3—C151.2172 (17)
N2—H2N0.876 (9)O4—C151.3196 (16)
C1—C21.3838 (19)O4—H4O0.847 (9)
C1—H10.9500C15—C161.4958 (18)
C2—C31.3935 (17)C16—C171.3938 (19)
C2—H20.9500C16—C211.3957 (18)
C3—C41.3915 (18)C17—C181.3861 (19)
C3—C61.5111 (17)C17—H170.9500
C4—C51.3879 (19)C18—C191.3886 (19)
C4—H40.9500C18—H180.9500
C5—H50.9500C19—C201.389 (2)
C6—H6A0.9900C20—C211.388 (2)
C6—H6B0.9900C20—H200.9500
C7—C7i1.537 (2)C21—H210.9500
O2—C141.2325 (14)Cl2—C261.7418 (13)
N3—C121.3385 (17)O5—C221.2173 (17)
N3—C81.3408 (17)O6—C221.3181 (16)
N4—C141.3269 (15)O6—H6O0.846 (9)
N4—C131.4471 (16)C22—C231.4945 (18)
N4—H4N0.865 (9)C23—C281.3923 (18)
C8—C91.3830 (19)C23—C241.3977 (17)
C8—H80.9500C24—C251.3850 (19)
C9—C101.3911 (17)C24—H240.9500
C9—H90.9500C25—C261.3871 (19)
C10—C111.3906 (18)C25—H250.9500
C10—C131.5118 (17)C26—C271.3862 (19)
C11—C121.3886 (19)C27—C281.3869 (19)
C11—H110.9500C27—H270.9500
C12—H120.9500C28—H280.9500
C1—N1—C5117.89 (11)N4—C13—H13B108.7
C7—N2—C6121.67 (10)C10—C13—H13B108.7
C7—N2—H2N119.5 (11)H13A—C13—H13B107.6
C6—N2—H2N118.6 (11)O2—C14—N4125.67 (11)
N1—C1—C2123.12 (12)O2—C14—C14ii121.76 (13)
N1—C1—H1118.4N4—C14—C14ii112.57 (12)
C2—C1—H1118.4C15—O4—H4O106.4 (14)
C1—C2—C3119.15 (12)O3—C15—O4124.16 (12)
C1—C2—H2120.4O3—C15—C16122.31 (12)
C3—C2—H2120.4O4—C15—C16113.49 (11)
C4—C3—C2117.87 (12)C17—C16—C21119.62 (12)
C4—C3—C6121.98 (11)C17—C16—C15118.56 (12)
C2—C3—C6120.14 (11)C21—C16—C15121.73 (12)
C5—C4—C3119.37 (11)C18—C17—C16120.60 (12)
C5—C4—H4120.3C18—C17—H17119.7
C3—C4—H4120.3C16—C17—H17119.7
N1—C5—C4122.59 (12)C17—C18—C19118.62 (12)
N1—C5—H5118.7C17—C18—H18120.7
C4—C5—H5118.7C19—C18—H18120.7
N2—C6—C3112.69 (10)C18—C19—C20122.06 (12)
N2—C6—H6A109.1C18—C19—Cl1118.50 (10)
C3—C6—H6A109.1C20—C19—Cl1119.44 (10)
N2—C6—H6B109.1C21—C20—C19118.52 (12)
C3—C6—H6B109.1C21—C20—H20120.7
H6A—C6—H6B107.8C19—C20—H20120.7
O1—C7—N2125.33 (11)C20—C21—C16120.55 (12)
O1—C7—C7i121.12 (13)C20—C21—H21119.7
N2—C7—C7i113.55 (12)C16—C21—H21119.7
C12—N3—C8117.64 (11)C22—O6—H6O108.1 (13)
C14—N4—C13123.73 (10)O5—C22—O6124.16 (12)
C14—N4—H4N117.5 (11)O5—C22—C23122.35 (12)
C13—N4—H4N118.7 (11)O6—C22—C23113.49 (11)
N3—C8—C9123.14 (12)C28—C23—C24119.54 (12)
N3—C8—H8118.4C28—C23—C22121.62 (11)
C9—C8—H8118.4C24—C23—C22118.84 (11)
C8—C9—C10119.28 (12)C25—C24—C23120.48 (12)
C8—C9—H9120.4C25—C24—H24119.8
C10—C9—H9120.4C23—C24—H24119.8
C11—C10—C9117.71 (12)C24—C25—C26118.68 (12)
C11—C10—C13123.06 (11)C24—C25—H25120.7
C9—C10—C13119.23 (11)C26—C25—H25120.7
C12—C11—C10119.35 (12)C27—C26—C25122.06 (12)
C12—C11—H11120.3C27—C26—Cl2118.96 (10)
C10—C11—H11120.3C25—C26—Cl2118.97 (10)
N3—C12—C11122.87 (12)C26—C27—C28118.61 (12)
N3—C12—H12118.6C26—C27—H27120.7
C11—C12—H12118.6C28—C27—H27120.7
N4—C13—C10114.16 (10)C27—C28—C23120.62 (12)
N4—C13—H13A108.7C27—C28—H28119.7
C10—C13—H13A108.7C23—C28—H28119.7
C5—N1—C1—C20.7 (2)O4—C15—C16—C17172.82 (12)
N1—C1—C2—C30.1 (2)O3—C15—C16—C21178.55 (13)
C1—C2—C3—C40.79 (18)O4—C15—C16—C213.73 (18)
C1—C2—C3—C6179.63 (11)C21—C16—C17—C181.81 (19)
C2—C3—C4—C51.09 (18)C15—C16—C17—C18174.81 (12)
C6—C3—C4—C5179.34 (12)C16—C17—C18—C190.24 (19)
C1—N1—C5—C40.3 (2)C17—C18—C19—C201.41 (19)
C3—C4—C5—N10.5 (2)C17—C18—C19—Cl1178.20 (10)
C7—N2—C6—C3101.17 (13)C18—C19—C20—C211.4 (2)
C4—C3—C6—N276.87 (14)Cl1—C19—C20—C21178.18 (10)
C2—C3—C6—N2103.57 (13)C19—C20—C21—C160.20 (19)
C6—N2—C7—O12.55 (18)C17—C16—C21—C201.79 (19)
C6—N2—C7—C7i176.74 (11)C15—C16—C21—C20174.72 (12)
C12—N3—C8—C90.65 (19)O5—C22—C23—C28163.13 (13)
N3—C8—C9—C100.33 (19)O6—C22—C23—C2817.41 (17)
C8—C9—C10—C110.96 (18)O5—C22—C23—C2416.56 (19)
C8—C9—C10—C13179.04 (11)O6—C22—C23—C24162.89 (12)
C9—C10—C11—C120.65 (18)C28—C23—C24—C250.43 (19)
C13—C10—C11—C12179.36 (11)C22—C23—C24—C25179.87 (12)
C8—N3—C12—C110.99 (19)C23—C24—C25—C261.1 (2)
C10—C11—C12—N30.3 (2)C24—C25—C26—C270.9 (2)
C14—N4—C13—C1098.77 (13)C24—C25—C26—Cl2178.27 (10)
C11—C10—C13—N426.33 (16)C25—C26—C27—C280.1 (2)
C9—C10—C13—N4153.67 (11)Cl2—C26—C27—C28179.13 (10)
C13—N4—C14—O22.03 (19)C26—C27—C28—C230.6 (2)
C13—N4—C14—C14ii177.41 (12)C24—C23—C28—C270.46 (19)
O3—C15—C16—C174.90 (19)C22—C23—C28—C27179.24 (12)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.88 (1)2.35 (2)2.7088 (14)105 (1)
N4—H4N···O2ii0.87 (1)2.30 (2)2.7028 (14)108 (1)
O4—H4O···N10.85 (2)1.82 (2)2.6559 (15)171 (2)
O6—H6O···N30.85 (2)1.80 (2)2.6419 (15)172 (2)
C8—H8···O50.952.533.1708 (17)125
N2—H2N···O2iii0.88 (1)2.11 (1)2.8800 (13)146 (1)
N4—H4N···O10.87 (1)2.07 (1)2.7959 (13)141 (1)
C2—H2···O3iv0.952.533.3597 (17)146
C6—H6A···O3iv0.992.593.5262 (17)157
C9—H9···O5v0.952.593.3701 (17)140
C13—H13A···O5v0.992.483.4006 (16)155
C27—H27···O1vi0.952.533.4505 (16)163
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1.
A summary of short interatomic contacts (Å) in (I)a top
ContactDistanceSymmetry operation
O5···H92.491 - x, 2 - y, 1 - z
O5···H13A2.401 - x, 2 - y, 1 - z
Cl2···C143.21-1 + x, -1 + y, 1 + z
Cl2···O23.22-1 + x, -1 + y, 1 + z
O1···H272.921 - x, 1 - y, 1 - z
O1···H4Nb1.96x, y, z
O2···H2Nb2.00-1 + x, y, z
O5···H82.46x, y, z
N3···H6Ob1.67x, y, z
O3···H22.421 - x, 2 - y, 1 - z
O3···H6A2.511 - x, 2 - y, 1 - z
C7···Cl13.25x, 1 + y, -1 + z
N1···H4Ob1.68-1 + x, y, z
O3···H12.60-1 + x, y, z
O1···Cl13.24x, 1 + y, -1 + z
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values; (b) these interactions correspond to conventional hydrogen bonds.
A summary of interaction energies (kJ mol1) calculated for (I) top
ContactEeleEpolEdisErepEtotSymmetry operation
N2—H2N···O2/
N4—H4N···O1-51.0-12.4-49.471.6-61.9x, y, z
O4—H4O···N1/
C1—H1···O3-84.3-20.1-12.7106.3-49.4-1 + x, y, z
O6—H6O···N3/
C8—H8···O5-90.9-21.4-13.1115.6-52.0x, y, z
C7···Cl1/ O1···Cl1-5.3-1.0-25.419.3-16.6x, 1 + y, -1 + z
C6—H6A···O3/
C2—H2···O3-11.9-3.2-12.516.5-15.81 - x, 2 - y, 1 - z
C9—H9···O5/
C13—H13A···O5-12.8-3.6-13.318.5-16.31 - x, 2 - y, 1 - z
C14···Cl2/ O2···Cl2-6.6-0.8-27.327.2-14.5-1 + x, -1 + y, 1 + z
C25—H25···Cl2-6.4-0.7-13.516.7-8.7-x, - y, - z
C27—H27···O1-10.4-1.6-23.419.7-20.41 - x, 1 - y, 1 - z
 

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

References

First citationArman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. Cryst. Mater. 229, 295–302.  Web of Science CSD CrossRef CAS Google Scholar
First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3178–o3179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2013). Zeitschrift Kristallogr. 228, 295–303.  CSD CrossRef CAS Google Scholar
First citationArman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mater. 227, 825–830.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. 234, 43–57.  CSD CrossRef CAS Google Scholar
First citationLuong Nguyen, T., Scott, A., Dinkelmeyer, B., Fowler, F. W. & Lauher, J. W. (1998). New J. Chem. 22, 129–135.  CSD CrossRef CAS Google Scholar
First citationNguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057–11064.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPetersson, G. A., Bennett, A., Tensfeldt, T. G., Al–Laham, M. A., Shirley, W. A. & Mantzaris, J. (1988). J. Chem. Phys. 89, 2193–2218.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.  Google Scholar
First citationShattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSyed, S., Jotani, M. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 391–398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Halcovitch, N. R. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1133–1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1109–1111.  CSD CrossRef CAS Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102–110.  CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Multi-Component Crystals: Synthesis, Concepts, Function, edited by E. R. T. Tiekink & J. Schpector- Zukerman, pp. 289–319. Singapore: De Gruyter.  Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds