research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and spectroscopic and Hirshfeld surface analysis of 4-hy­dr­oxy-3-meth­­oxy-5-nitro­benzaldehyde

aPLIVA Croatia Ltd., Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia, bDepartment of Chemistry, Faculty of Science, University of Zagreb, Horvatovac, 102a, HR-10000 Zagreb, Croatia, and cDepartment of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
*Correspondence e-mail: vitomir.vusak@pliva.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 December 2019; accepted 9 January 2020; online 21 January 2020)

The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intra­molecular O—H⋯O hydrogen bond involving the adjacent hy­droxy and nitro groups forms an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H⋯O hydrogen bond, forming slabs, which are linked by C=O⋯π inter­actions, forming a three-dimensional supra­molecular structure. Hirshfeld surface analysis was used to investigate inter­molecular inter­actions in the solid state. The mol­ecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis.

1. Chemical context

The title compound is a key starting material in the preparation of entacapone (Srikanth et al., 2012[Srikanth, G., Ray, U. K., Srinivas Rao, D. V. N., Gupta, P. B., Lavanya, P. & Islam, A. (2012). Synth. Commun. 42, 1359-1366.]; Mantegazza et al., 2008[Mantegazza, S., Allegrini, P. & Razzetti, G. (2008). US Patent 2008/0097127A1.]; Chinnapillai Rajendiran et al., 2007[Chinnapillai Rajendiran, C., Kondakindi Indrasena Reddy, K., Arava Verra Reddy, A. & Jasti Venkateswaralu, J. (2007). WO Patent 2007/020654.]; Deshpande et al., 2010[Deshpande, P. B., Randey, K. A., Dhameliya, D. R., Dayawant, R. B. & Luthra, K. P. (2010). WO Patent 2010/0234632.]). Entacapone, (E)-2-cyano-N,N-diethyl-3-(3,4-dihy­droxy-5-nitro­phen­yl)propenamide (II), whose crystal structure has been reported by Leppänen et al. (2001[Leppänen, J., Wegelius, E., Nevalainen, T., Järvinen, T., Gynther, J. & Huuskonen, J. (2001). J. Mol. Struct. 562, 129-135.]), is a selective and reversible catechol-O-methyl­transferase inhib­itor used in the treatment of Parkinson's disease in combin­ation with levodopa and carbidopa (Najib, 2001[Najib, J. (2001). Clin. Ther. 23, 802-832.]; Pahwa & Lyons, 2009[Pahwa, R. & Lyons, K. E. (2009). Curr. Med. Res. Opin. 25, 841-849.]). Entacapone (II), prevents metabolism and inactivation of levodopa and carbidopa, which allows better bio-availability of these compounds. Several synthetic routes for the synthesis of entacapone have been reported (Bartra Sanmarti et al., 2008[Bartra Sanmarti, M., Solsona Rocabert, J. G., Palomo Nicolau, F. & Molina Ponce, A. (2008). WO Patent 2008/119793.]; Harisha et al., 2015[Harisha, A. S., Nayak, S. P., Pavan, M. S., Shridhara, K., Sundarraya, R. K., Rayendra, K., Pari, K., Sivaramkrishnan, H., Guru Row, T. N. & Nagarajan, K. (2015). J. Chem. Sci. 127, 1977-1991.]; Jasti et al., 2005[Jasti, V., Veera Reddy, A., Rajendiran, C. & Qadeeruddin, S. (2005). WO Patent 2018/167776.]; Cziáky, 2006[Cziáky, Z. (2006). HU Patent 0402573A2.]); however, only a few inter­mediates/starting materials have been characterized crystallographically (Keng et al., 2011[Keng, T. C., Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, m710.]; Babu et al., 2009[Babu, S., Raghavamenon, A. C., Fronczek, F. R. & Uppu, R. M. (2009). Acta Cryst. E65, o2292-o2293.]; Vladimirova et al., 2016[Vladimirova, A., Patskovsky, Y., Fedorov, A. A., Bonanno, J. B., Fedorov, E. V., Toro, R., Hillerich, B., Seidel, R. D., Richards, N. G. J., Almo, S. C. & Raushel, F. M. (2016). J. Am. Chem. Soc. 138, 826-836.]). Knowledge of the crystal structure is beneficial for understanding the properties of the starting materials as well as being the gold standard for the identification of starting materials. Recently, we have synthesized and studied the influence of different entacapone-related compounds on the crystallization of the final forms of entacapone. As part of this work, the title compound, 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde (I), was synthesized and its spectroscopic and structural features were studied. There are two reasons for this study, one is connected with the utilization of crystal structures in the identification of materials in the solid state, and the other is to build a library of structurally related compounds of entacapone that will be utilized in a future crystallization study.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound I is illustrated in Fig. 1[link]. The intra­molecular O1—H1⋯O5 hydrogen bond (Table 1[link]), involving the adjacent hydroxyl and nitro groups, forms an S(6) ring motif. The mol­ecule is planar (r.m.s. deviation for all non-hydrogen atoms is 0.018 Å) with the maximum deviation from the mean plane being 0.038 (1) Å for atom O5. The bonds lengths and bond angles are close to those found for similar structures (see §4. Database survey).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 2.12 2.6989 (12) 128
O1—H1⋯O5 0.82 1.94 2.6247 (14) 140
C7—H7⋯O4ii 0.93 2.50 3.4018 (16) 163
C8—H8A⋯O3iii 0.96 2.60 3.4733 (18) 152
C8—H8B⋯O4iv 0.96 2.58 3.476 (2) 156
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O1—H1⋯O5 hydrogen bond is shown as a dashed line (Table 1[link]).

3. Supra­molecular features

In the crystal of compound I, mol­ecules are linked by inter­molecular bifurcated hydrogen bonds involving the hydroxyl group. Details of the hydrogen bonding together with the symmetry codes are given in Table 1[link]. The O1—H1⋯O3ialdehyde hydrogen bonds [2.6989 (12) Å] link the mol­ecules into chains with a C(8) motif. Each oxygen atom is involved in one or more inter­molecular hydrogen bonds, except for the O5nitro atom, which is involved only in the intra­molecular hydrogen bond. Each mol­ecule is connected by six adjacent mol­ecules through strong O1—H1⋯O3aldehyde and weak C7—H7⋯O4iinitro and C8—H8A⋯O3iiialdehyde hydrogen bonds, forming undulating layers parallel to the bc plane, enclosing two type of ring motifs – R32(16) and R33(16) (Fig. 2[link]). The layers are linked by a further C—H⋯O hydrogen bond, C8—H8B⋯O4ivnitro, forming slabs (Fig. 3[link]). Moreover, C7=O3⋯π [oxygen–centroid distance = 3.4028 (12) Å] and C2—O1⋯π [3.353 (su?) Å] close contacts (Fig. 4[link]) are present, linking the slabs to form a three-dimensional supra­molecular structure.

[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of compound I, illustrating the two different ring motifs. The hydrogen bonds (Table 1[link]) are shown as dashed lines.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of compound I. The hydrogen bonds (Table 1[link]) are shown as dashed lines. For clarity, only the H atoms involved in hydrogen bonding have been included.
[Figure 4]
Figure 4
Short C—Ohy­droxyπ and C=Oaldehydeπ contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version V5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), for crystal structures containing a nitro group on the benzene ring, oxygen atoms bonded on carbon position 2 and 3, and the –C=O group located on position 5, gave three hits, out of which only one entry contained the title mol­ecule, viz. a tin complex of the 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde with a deprotonated hydroxyl group and benzyl anions (CSD refcode EREWII; Keng et al., 2011[Keng, T. C., Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, m710.]). The other two entries do not contain an aldehyde group, but a methyl­keto (MUCDOE; Babu et al., 2009[Babu, S., Raghavamenon, A. C., Fronczek, F. R. & Uppu, R. M. (2009). Acta Cryst. E65, o2292-o2293.]) and carb­oxy­lic group (TAFSAX; Vladimirova et al., 2016[Vladimirova, A., Patskovsky, Y., Fedorov, A. A., Bonanno, J. B., Fedorov, E. V., Toro, R., Hillerich, B., Seidel, R. D., Richards, N. G. J., Almo, S. C. & Raushel, F. M. (2016). J. Am. Chem. Soc. 138, 826-836.]) instead.

A second search of the CSD for a nitro group on a benzene ring, OH groups on carbon atoms 2 and 3, and a carbon atom on position 5 gave eight hits for seven structures. These include the structure of entacapone II (OFAZUQ; Leppanen et al., 2001[Leppänen, J., Wegelius, E., Nevalainen, T., Järvinen, T., Gynther, J. & Huuskonen, J. (2001). J. Mol. Struct. 562, 129-135.]), and four of its acyl esters, viz. (E)-2-cyano-3-(3,4-dihy­droxy-5-nitro­phen­yl)-N,N-di­ethyl­prop-2-enamide 1,3-di­methyl-3,7-di­hydro-1H-purine-2,6-dione monohydrate (XIPNOC; Bommaka et al., 2018[Bommaka, M. K., Mannava, M. K. C., Suresh, K., Gunnam, A. & Nangia, A. (2018). Cryst. Growth Des. 18, 6061-6069.]), (E)-2-cyano-3-(3,4-dihy­droxy-5-nitro­phen­yl)-N,N-di­ethyl­prop-2-enamide pyridine-4-carboxamide (XIPNUI; Bommaka et al., 2018[Bommaka, M. K., Mannava, M. K. C., Suresh, K., Gunnam, A. & Nangia, A. (2018). Cryst. Growth Des. 18, 6061-6069.]), (E)-2-cyano-3-(3,4-dihy­droxy-5-nitro­phen­yl)-N,N-di­ethyl­prop-2-enamide pyrazine-2-carboxamide (XIPPAQ; Bommaka et al., 2018[Bommaka, M. K., Mannava, M. K. C., Suresh, K., Gunnam, A. & Nangia, A. (2018). Cryst. Growth Des. 18, 6061-6069.]), and (E)-2-cyano-3-(3,4-dihy­droxy-5-nitro­phen­yl)-N,N-di­ethyl­prop-2-enamide acetamide (XIPPEU; Bommaka et al., 2018[Bommaka, M. K., Mannava, M. K. C., Suresh, K., Gunnam, A. & Nangia, A. (2018). Cryst. Growth Des. 18, 6061-6069.]). These four compounds were prepared by solvent-assisted grinding, and the study was aimed at improving the aqueous solubility, diffusion permeability, and co-crystal stability of entacapone.

5. Hirshfeld surface analysis

Inter­molecular inter­actions in the crystal of compound I were further investigated by the Hirshfeld surfaces. Calculations were performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The dnorm values were mapped onto the Hirshfeld surface over the whole mol­ecule (Fig. 5[link]). Red areas represent contacts of the atoms shorter then the sum of the van der Waals radii, such as hydrogen bonds, or C=O⋯π contacts, whereas blue areas represent contacts between atoms longer then the sum of the van der Waals radii. White areas represent contacts equal to the sum of the van der Waals radii.

[Figure 5]
Figure 5
A view of the Hirshfeld surface of compound I, mapped over dnorm in the colour range −0.448 to 1.186 a.u.. Red areas show inter­molecular contacts shorter than the sum of the van der Waals radii of the atoms. The shortest inter­molecular O—H⋯O hydrogen bond is also shown.

The two-dimensional fingerprint plots show inter­molecular contacts and distances between atoms (Fig. 6[link]). The most abundant contacts are between oxygen and hydrogen atoms, comprising almost half of the Hirshfeld surface area (47.3%). This finding is not surprising having in mind the number of oxygen atoms located on the edges of the mol­ecule with respect its size, each of them is involved in one or more hydrogen bonds. Also, because of the large number of oxygen atoms and C=O⋯π contacts, there is a high proportion of C⋯O/O⋯C contacts, which comprise 12.0% of the surface area. Since there is no stacking of the aromatic rings, only 3.9% of the surface derives from C⋯C contacts.

[Figure 6]
Figure 6
(a) Two-dimensional fingerprint plot for compound I, and the fingerprint plots delineated into (b) H⋯O/O⋯H (47.3%), (c) H⋯H (19.8%), (d) C⋯O/O⋯C (12.0%), (e) C⋯H/H⋯C (8.5%), (f) O⋯O (4.6%), (g) C⋯C (3.9%), (h) N⋯O/O⋯N (3.1%), (i) H⋯N/N⋯H (0.6%).

Electrostatic potentials were calculated using TONTO with a 3-21G basis set at the Hartree–Fock level of theory and were mapped on the Hirshfeld surface (Fig. 7[link]) in the energy range between −0.0923 and 0.1232 a.u.. The most positive region is around the hydroxyl hydrogen atom (Fig. 7[link]a), while the most negative region is around the carbonyl oxygen atom (Fig. 7[link]b). Those two atoms are involved in the shortest inter­molecular hydrogen bond in the crystal structure (O1—H1⋯O3i), where O1⋯O3i = 2.6989 (12) Å; see Table 1[link].

[Figure 7]
Figure 7
Calculated electrostatic potentials over the Hirshfeld surface of compound I. Electrostatic potential was mapped in the energy range −0.0923 to 0.1232 a.u.. The blue area around the hydroxyl oxygen atom in (a) represents the most positive part, while the red area around the carbonyl oxygen atom in (b) represents the most negative part of the mol­ecule.

6. Synthesis and crystallization

4-Hy­droxy-3-meth­oxy­benzaldehyde (20 g; 131.4 mmol) was dissolved in acetic acid (200 ml) and the solution was cooled to 283–288 K and 65% HNO3 (10.5 ml) was added dropwise over 30 min. The reaction mixture was stirred for 30 min at 283–288 K and 30 min at 293–298 K. The suspension was then filtered and the crystals obtained were washed with water (3 × 20 ml). The crystals were dried in a vacuum dryer (10 mbar, 313 K, 16 h) to obtain pure yellow compound I (yield 20.28 g; 78.3%). Yellow block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution in acetone after 10 d at room temperature.

Spectroscopic analysis:

The structure of compound I (Fig. 8[link]) was confirmed by 1H and 13C NMR, recorded on a Bruker Avance DRX 500 at 500.1 MHz (1H) and 125.8 MHz (13C) in CD3OD (Fig. 9[link]a and 9b, respectively); see Tables 2[link] and 3[link] for further details.

Table 2
Chemical shifts of protons (DMSO-d6) of 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde (I)

Chemical shift (δ, p.p.m.) Multiplicity Number of protons Assignment
3.962 s 3 H9
7.622–7.626 d 1 H3
8.095–8.098 d 1 H5
9.867 s 1 H10

Table 3
Chemical shifts of carbons (DMSO-d6) of 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde (I)

Chemical shift (δ, p.p.m.) Number of carbons Assignment
56.78 1 C9
112.52 1 C3
120.87 1 C5
126.81 1 C4
137.04 1 C6
147.73 1 C1
150.03 1 C2
190.42 1 C10
[Figure 8]
Figure 8
Structure of compound I in relation to the NMR data in Tables 2[link] and 3[link].
[Figure 9]
Figure 9
1H NMR spectra of compound I (CD3OD); (b) 13C NMR spectra of compound I (CD3OD)

7. Thermal analysis

The thermal stability of compound I was investigated in the solid state by differential scanning calorimetry (DSC) and by thermogravimetric analysis (TGA). DSC analysis was performed on a TA Instruments Discovery DSC in a closed aluminium pan (40 µL) under nitro­gen flow (50 ml min−1) and a heating rate of 10°C min−1 in the temperature range 25–300 °C (Fig. 10[link]). Thermogravimetric analysis was performed on a TA Instruments Discovery TG in a closed aluminium pan (40 µL) under nitro­gen flow (50 ml min−1) and a heating rate of 10°C min−1 in the temperature range 25–300°C (Fig. 11[link]). DSC analysis shows one endotherm at about 176°C that corresponds to the melting point of the title compound. Thermogravimetric analysis does not show any weight loss during heating up to 140°C where a change in mass can be observed that can be attributed to the thermal decomposition of the sample.

[Figure 10]
Figure 10
DSC curve of compound I.
[Figure 11]
Figure 11
TG curve of compound I.

8. IR spectroscopy

The IR spectrum (Fig. 12[link]) of compound I was recorded on a Thermo Scientific Nicolet instrument by ATR (attenuated total reflectance) technique. It shows a broad band at about 3200 cm−1, which corresponds to the O—H stretching vibrations. Strong stretching vibrations of C=O (aldehyde) and C—O (aromatic ether) appear at 1683 and 1266 cm−1, respectively. Bands corresponding to N—O asymmetric and symmetric stretching modes can be found at 1547 and 1366 cm−1, respectively. Characteristic weak overtones of the aromatic ring can be seen at 1800–1700 cm−1.

[Figure 12]
Figure 12
IR spectra (ATR) of compound I.

9. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were located in a difference-Fourier map and refined as riding on their parent atom: O—H = 0.82 Å, C—H = 0.93-0.96 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C8H7NO5
Mr 197.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.8249 (2), 14.3395 (5), 8.9089 (3)
β (°) 106.678 (4)
V3) 835.21 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.16
Crystal size (mm) 0.30 × 0.15 × 0.13
 
Data collection
Diffractometer Rigaku Xcalibur Ruby Nova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD, (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.647, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 3633, 1697, 1574
Rint 0.016
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.174, 0.81
No. of reflections 1697
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.17
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD, (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

4-Hydroxy-3-methoxy-5-nitrobenzaldehyde top
Crystal data top
C8H7NO5F(000) = 408
Mr = 197.15Dx = 1.568 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2167 reflections
a = 6.8249 (2) Åθ = 3.2–75.6°
b = 14.3395 (5) ŵ = 1.16 mm1
c = 8.9089 (3) ÅT = 293 K
β = 106.678 (4)°Block, yellow
V = 835.21 (5) Å30.30 × 0.15 × 0.13 mm
Z = 4
Data collection top
Rigaku Xcalibur Ruby Nova
diffractometer
1697 independent reflections
Radiation source: micro-focus sealed X-ray tube1574 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4323 pixels mm-1θmax = 76.0°, θmin = 6.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1617
Tmin = 0.647, Tmax = 1l = 711
3633 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
1697 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24420 (14)0.44411 (6)0.92251 (10)0.0442 (3)
H10.2588850.4882420.8681970.066*
O20.19059 (16)0.31818 (6)1.10856 (11)0.0506 (3)
O30.23301 (16)0.48763 (7)1.62543 (10)0.0508 (3)
O40.3265 (2)0.72037 (7)1.06656 (14)0.0655 (4)
O50.29317 (17)0.62262 (8)0.87895 (11)0.0547 (3)
N10.30056 (15)0.64166 (7)1.01585 (12)0.0422 (3)
C10.27609 (15)0.56669 (8)1.11855 (13)0.0353 (3)
C20.24838 (14)0.47461 (7)1.06403 (13)0.0347 (3)
C30.22165 (16)0.40479 (8)1.17059 (14)0.0375 (3)
C40.22427 (16)0.42865 (8)1.32044 (13)0.0386 (3)
H40.2065820.3827061.3890780.046*
C50.25347 (16)0.52194 (8)1.37123 (13)0.0377 (3)
C60.27967 (15)0.59084 (8)1.27155 (13)0.0376 (3)
H60.2994410.6524391.3051550.045*
C70.25478 (19)0.54494 (9)1.53231 (14)0.0424 (3)
H70.2733580.606891.5641150.051*
C80.1668 (2)0.24460 (10)1.21046 (17)0.0577 (4)
H8A0.1458070.1866681.1540940.086*
H8B0.2877880.2403371.2977630.086*
H8C0.050980.2574531.2478790.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0671 (5)0.0406 (5)0.0279 (5)0.0002 (3)0.0184 (4)0.0015 (3)
O20.0823 (6)0.0336 (5)0.0392 (6)0.0058 (4)0.0229 (5)0.0032 (3)
O30.0749 (6)0.0513 (6)0.0302 (5)0.0034 (4)0.0214 (4)0.0005 (3)
O40.1106 (9)0.0351 (6)0.0529 (7)0.0071 (5)0.0268 (6)0.0028 (4)
O50.0838 (7)0.0512 (6)0.0326 (6)0.0033 (4)0.0223 (5)0.0063 (4)
N10.0540 (5)0.0378 (6)0.0353 (6)0.0005 (4)0.0135 (4)0.0052 (4)
C10.0423 (5)0.0336 (6)0.0304 (6)0.0017 (4)0.0112 (4)0.0029 (4)
C20.0415 (5)0.0366 (6)0.0274 (6)0.0017 (4)0.0120 (4)0.0014 (4)
C30.0481 (5)0.0335 (7)0.0318 (6)0.0002 (4)0.0126 (4)0.0002 (4)
C40.0517 (6)0.0353 (6)0.0316 (6)0.0014 (4)0.0163 (5)0.0022 (4)
C50.0453 (6)0.0396 (7)0.0296 (6)0.0012 (4)0.0131 (4)0.0015 (4)
C60.0469 (6)0.0340 (6)0.0325 (7)0.0010 (4)0.0124 (5)0.0017 (4)
C70.0575 (6)0.0407 (7)0.0312 (6)0.0001 (4)0.0162 (5)0.0024 (4)
C80.0881 (9)0.0352 (7)0.0513 (8)0.0040 (6)0.0225 (7)0.0040 (5)
Geometric parameters (Å, º) top
O1—C21.3271 (14)C3—C41.3733 (16)
O1—H10.82C4—C51.4080 (17)
O2—C31.3510 (15)C4—H40.93
O2—C81.4310 (15)C5—C61.3740 (15)
O3—C71.2068 (16)C5—C71.4700 (16)
O4—N11.2097 (15)C6—H60.93
O5—N11.2367 (15)C7—H70.93
N1—C11.4520 (15)C8—H8A0.96
C1—C61.3998 (15)C8—H8B0.96
C1—C21.4008 (17)C8—H8C0.96
C2—C31.4270 (15)
C2—O1—H1109.5C5—C4—H4119.7
C3—O2—C8116.83 (9)C6—C5—C4120.54 (10)
O4—N1—O5122.31 (11)C6—C5—C7120.27 (11)
O4—N1—C1119.11 (11)C4—C5—C7119.18 (11)
O5—N1—C1118.58 (10)C5—C6—C1118.84 (11)
C6—C1—C2122.25 (11)C5—C6—H6120.6
C6—C1—N1117.22 (11)C1—C6—H6120.6
C2—C1—N1120.52 (10)O3—C7—C5123.43 (12)
O1—C2—C1127.16 (10)O3—C7—H7118.3
O1—C2—C3115.39 (10)C5—C7—H7118.3
C1—C2—C3117.46 (10)O2—C8—H8A109.5
O2—C3—C4125.69 (11)O2—C8—H8B109.5
O2—C3—C2114.08 (10)H8A—C8—H8B109.5
C4—C3—C2120.22 (11)O2—C8—H8C109.5
C3—C4—C5120.69 (11)H8A—C8—H8C109.5
C3—C4—H4119.7H8B—C8—H8C109.5
O4—N1—C1—C61.36 (17)O1—C2—C3—C4179.72 (9)
O5—N1—C1—C6178.32 (10)C1—C2—C3—C40.22 (16)
O4—N1—C1—C2179.20 (11)O2—C3—C4—C5178.50 (10)
O5—N1—C1—C21.12 (16)C2—C3—C4—C50.07 (17)
C6—C1—C2—O1179.40 (10)C3—C4—C5—C60.07 (17)
N1—C1—C2—O11.19 (17)C3—C4—C5—C7179.82 (10)
C6—C1—C2—C30.52 (16)C4—C5—C6—C10.22 (16)
N1—C1—C2—C3178.89 (8)C7—C5—C6—C1179.52 (10)
C8—O2—C3—C42.73 (18)C2—C1—C6—C50.53 (16)
C8—O2—C3—C2178.76 (10)N1—C1—C6—C5178.90 (8)
O1—C2—C3—O21.68 (14)C6—C5—C7—O3179.85 (11)
C1—C2—C3—O2178.39 (9)C4—C5—C7—O30.40 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.822.122.6989 (12)128
O1—H1···O50.821.942.6247 (14)140
C7—H7···O4ii0.932.503.4018 (16)163
C8—H8A···O3iii0.962.603.4733 (18)152
C8—H8B···O4iv0.962.583.476 (2)156
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+5/2.
Chemical shifts of protons (DMSO-d6) of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde (I) top
Chemical shift (δ, ppm)MultiplicityNumber of protonsAssignment
3.962s3H9
7.622–7.626d1H3
8.095–8.098d1H5
9.867s1H10
Chemical shifts of carbons (DMSO-d6) of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde (I) top
Chemical shift (δ, ppm)Number of carbonsAssignment
56.781C9
112.521C3
120.871C5
126.811C4
137.041C6
147.731C1
150.031C2
190.421C10
 

Footnotes

Current address: Xellia Ltd, Slavonska avenija 24/6, HR-10000 Zagreb, Croatia.

Funding information

VV and EM acknowledge PLIVA for financial support.

References

First citationBabu, S., Raghavamenon, A. C., Fronczek, F. R. & Uppu, R. M. (2009). Acta Cryst. E65, o2292–o2293.  CSD CrossRef IUCr Journals Google Scholar
First citationBartra Sanmarti, M., Solsona Rocabert, J. G., Palomo Nicolau, F. & Molina Ponce, A. (2008). WO Patent 2008/119793.  Google Scholar
First citationBommaka, M. K., Mannava, M. K. C., Suresh, K., Gunnam, A. & Nangia, A. (2018). Cryst. Growth Des. 18, 6061–6069.  CSD CrossRef CAS Google Scholar
First citationChinnapillai Rajendiran, C., Kondakindi Indrasena Reddy, K., Arava Verra Reddy, A. & Jasti Venkateswaralu, J. (2007). WO Patent 2007/020654.  Google Scholar
First citationCziáky, Z. (2006). HU Patent 0402573A2.  Google Scholar
First citationDeshpande, P. B., Randey, K. A., Dhameliya, D. R., Dayawant, R. B. & Luthra, K. P. (2010). WO Patent 2010/0234632.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarisha, A. S., Nayak, S. P., Pavan, M. S., Shridhara, K., Sundarraya, R. K., Rayendra, K., Pari, K., Sivaramkrishnan, H., Guru Row, T. N. & Nagarajan, K. (2015). J. Chem. Sci. 127, 1977–1991.  CrossRef CAS Google Scholar
First citationJasti, V., Veera Reddy, A., Rajendiran, C. & Qadeeruddin, S. (2005). WO Patent 2018/167776.  Google Scholar
First citationKeng, T. C., Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, m710.  CSD CrossRef IUCr Journals Google Scholar
First citationLeppänen, J., Wegelius, E., Nevalainen, T., Järvinen, T., Gynther, J. & Huuskonen, J. (2001). J. Mol. Struct. 562, 129–135.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMantegazza, S., Allegrini, P. & Razzetti, G. (2008). US Patent 2008/0097127A1.  Google Scholar
First citationNajib, J. (2001). Clin. Ther. 23, 802–832.  CrossRef PubMed CAS Google Scholar
First citationPahwa, R. & Lyons, K. E. (2009). Curr. Med. Res. Opin. 25, 841–849.  CrossRef PubMed CAS Google Scholar
First citationRigaku OD, (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrikanth, G., Ray, U. K., Srinivas Rao, D. V. N., Gupta, P. B., Lavanya, P. & Islam, A. (2012). Synth. Commun. 42, 1359–1366.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationVladimirova, A., Patskovsky, Y., Fedorov, A. A., Bonanno, J. B., Fedorov, E. V., Toro, R., Hillerich, B., Seidel, R. D., Richards, N. G. J., Almo, S. C. & Raushel, F. M. (2016). J. Am. Chem. Soc. 138, 826–836.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds