research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl-N-(4-methyl­benz­yl)benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, 1 Campus Dr., Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 January 2020; accepted 14 January 2020; online 17 January 2020)

The title compound, C15H17NO2S, was synthesized via a substitution reaction between 4-methyl­benzyl­amine and p-toluene­sulfonyl chloride. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two inter­molecular C—H⋯π inter­actions that link these hydrogen-bonded ribbons into a three-dimensional network.

1. Chemical context

Sulfonamides, commonly referred to as `sulfa drugs', are a biologically significant class of drugs. Over 70 years since its discovery, the sulfonamide moiety is frequently used in modern medicine (Zhao et al., 2016[Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950-3954.]). First recognized as a class of anti­biotics in the 1930s, this class of drugs is used today to treat infectious diseases such as malaria, tuberculosis, HIV, and many more by targeting the di­hydro­pteroate synthase (DHPS) pathway (Dennis et al., 2018[Dennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B. & Swarbrick, J. D. (2018). Chem. Eur. J. 24, 1922-1930.]). Sulfonamides also exhibit remarkable anti­tumor, anti­cancer, and anti­thyroid activities among others (Scozzafava et al., 2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]).

[Scheme 1]

The title compound, 4-methyl­benzyl­amine-4-methyl­benzene­sulfonamide (I)[link], is structurally similar to N-benzyl-p-toluene sulfonamide (BTS, Fig. 1[link]). BTS is known to be a potent and specific inhibitor of the ATPase activity of skeletal myosin II subfragment 1 (S1) (Cheung et al., 2002[Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., Mitchison, T. J. & Straight, A. F. (2002). Nat. Cell Biol. 4, 83-88.]). The properties of BTS are significant in the study of muscle contraction (Pinniger et al., 2005[Pinniger, G. J., Bruton, J. D., Westerblad, H. & Ranatunga, K. W. (2005). J. Muscle Res. Cell Motil. 26, 135-141.]). In addition, the 4-methyl­benzyl­amine-4-methyl­benzene­sulfonamide moiety is found in a potent and selective kappa opioid receptor (KOR) antag­on­ist (Frankowski et al., 2012[Frankowski, K. J., Hedrick, M. P., Gosalia, P., Li, K., Shi, S., Whipple, D., Ghosh, P., Prisinzano, T. E., Schoenen, F. J., Su, Y., Vasile, S., Sergienko, E., Gray, W., Hariharan, S., Milan, L., Heynen-Genel, S., Mangravita-Novo, A., Vicchiarelli, M., Smith, L. H., Streicher, J. M., Caron, M. G., Barak, L. S., Bohn, L. M., Chung, T. D. Y. & Aubé, J. (2012). ACS Chem. Neurosci. 3, 221-236.]; Fig. 1[link]).

[Figure 1]
Figure 1
(a) N-benzyl-p-toluene sulfonamide (BTS) and (b) a kappa opioid receptor (KOR) antagonist containing the 4-methyl­benzyl­amine-4-methyl­benzene­sulfonamide moiety.

As therapeutic properties of sulfonamides continue to be discovered, it is important to synthesize these compounds efficiently. Sulfonamides are commonly synthesized by a mechanism analogous to the nucleophilic acyl-substitution reaction between an electrophile and a nucleophilic amine (Patel et al., 2018[Patel, Z. S., Stevens, A. C., Bookout, E. C., Staples, R. J., Biros, S. M. & Ngassa, F. N. (2018). Acta Cryst. E74, 1126-1129.]). A review of the literature suggests that the most efficient method for synthesizing these compounds is by the sulfonyl­ation of amines using either sulfonyl halides or sulfonic acids as electrophiles (Yan et al., 2007[Yan, J., Li, J. & Cheng, D. (2007). Synlett, pp. 2442-2444.]; De Luca & Giacomelli, 2008[De Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967-3969.]). The title compound was synthesized in di­chloro­methane using a sulfonyl chloride, in the presence of pyridine. The main purpose of pyridine is to act as a hydro­chloric acid scavenger. However, in our ongoing efforts to produce sulfonamides, we have recently discovered an environmentally benign and facile synthesis of aryl sulfonamides. This method uses aqueous potassium carbonate in tetra­hydro­furan. An increased rate of reaction and yield of sulfonamide compounds produced from a wide range of amines have been observed. We report here the synthesis of the title compound (I)[link], as well as its mol­ecular and crystal structures.

2. Structural commentary

The crystal structure of compound (I)[link] was solved in the Sohnke space group P21, with a Flack parameter of 0.06 (4). The mol­ecular structure is shown in Fig. 2[link] along with the atom-labeling scheme. The S=O bond lengths are 1.429 (2) and 1.424 (2) Å, with S1—N1 and S1—C1 bond lengths of 1.608 (2) and 1.764 (3) Å, respectively. The aryl groups of the sulfonamide are oriented gauche to one another with a C1—S1—N1—C8 torsion angle of 57.9 (2)°. The τ4 descriptor for fourfold coordination around the sulfur atom S1 is 0.94, indicating a slightly distorted tetra­hedral geometry of the sulfonamide group (where 0.00 = square-planar, 0.85 = trigonal–pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). An intra­molecular C—H⋯O contact (Sutor, 1958[Sutor, D. J. (1958). Acta Cryst. 11, 453-458.],1962[Sutor, D. J. (1962). Nature, 195, 68-69.],1963[Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.]; Table 1[link]) is present between an aromatic C—H group and an O atom of the sulfonamide moiety in a S(5) motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.95 2.51 2.890 (4) 104
N1—H1⋯O1i 0.86 (1) 2.03 (2) 2.889 (3) 170 (3)
C5—H5⋯Cgii 0.95 2.86 3.761 (3) 159
C10—H10⋯Cgiii 0.95 2.89 3.564 (3) 129
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound using standard CPK colors, showing the atom-labeling scheme. Aniosotropic displacement ellipsoids are shown at the 40% probability level.

3. Supra­molecular features

Mol­ecules of compound (I)[link] exhibit both inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions in the crystal structure (Fig. 3[link]). The inter­molecular N1—H1⋯O1 hydrogen bond is of medium strength and links mol­ecules of title compound into ribbons that run parallel to the b axis (Table 1[link], Fig. 4[link]). The C9–C14 ring hosts two C—H⋯π inter­actions that link the ribbons into an intricate three-dimensional network (Table 1[link], Fig. 5[link]).

[Figure 3]
Figure 3
Depiction of the intra- and inter­molecular hydrogen bonds present in the structure of the title compound, using standard CPK colors with a ball-and-stick model. Hydrogen bonds and contacts are depicted with purple dashed lines, while C—H⋯π inter­actions are shown with green dotted lines. [Symmetry codes: (i) −x, −[{1\over 2}] + y, 1 − z; (ii) 1 + x, y, z; (iii) −x, −[{1\over 2}] + y, 2 − z.]
[Figure 4]
Figure 4
Depiction of the supra­molecular ribbons formed via inter­molecular N—H⋯O hydrogen bonds (purple dashed lines), as viewed down the a axis.
[Figure 5]
Figure 5
A view down the b axis of the crystal, showing the supra­molecular inter­actions. Hydrogen bonds and contacts and are shown with purple dashed lines, and C—H⋯π inter­actions are shown with green dotted lines. For clarity, only hydrogen atoms involved in a non-covalent inter­action are shown, and the intra­molecular hydrogen-bonding inter­actions have been omitted.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.40, Aug 2019; Groom, et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 11 structures with the N-benzyl-p-toluene sulfonamide moiety. Included in this set is the structure of N-benzyl-p-toluene sulfonamide (BTS, Fig. 1[link]). This structure has been deposited four times as PTSBZA–PTSBZA03 (Cameron, et al., 1975[Cameron, T. S., Prout, K., Denton, B., Spagna, R. & White, E. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 176-185.]; Yi-Ni, 2014[Yi-Ni, Y. (2014). Private communication (refcode PTSBZA01). CCDC, Cambridge, England.]; Bagchi et al., 2014[Bagchi, V., Paraskevopoulou, P., Das, P., Chi, L., Wang, Q., Choudhury, A., Mathieson, J. S., Cronin, L., Pardue, D. B., Cundari, T. R., Mitrikas, G., Sanakis, Y. & Stavropoulos, P. (2014). J. Am. Chem. Soc. 136, 11362-11381.]; Valerga & Puerta, 2016[Valerga, P. & Puerta, M. C. (2016). Private communication (refcode PTSBZA03). CCDC, Cambridge, England.]). Other structures that are closely related to the title compound are N-(2,4-di­meth­oxy­benz­yl)-4-methyl­benzene­sulfonamide (DERXAA; Hashmi et al., 2006[Hashmi, A. S. K., Weyrauch, J. P., Kurpejović, E., Frost, T. M., Miehlich, B., Frey, W. & Bats, J. W. (2006). Chem. Eur. J. 12, 5806-5814.]) and 2-(p-tosyl­amino­meth­yl)aniline (MILHIZ; Sanmartín et al., 2007[Sanmartín, J., Novio, F., García-Deibe, A. M., Fondo, M. & Bermejo, M. R. (2007). New J. Chem. 31, 1605-1612.]). All three crystal structures exhibit intra­molecular C—H⋯O hydrogen bonds, and MILHIZ is the only structure that does not show C—H⋯π inter­actions.

5. Synthesis and crystallization

The title compound was prepared by the dropwise addition of p-toluene­sulfonyl chloride (1.00 g, 5.25 mmol) to a stirring mixture of 4-methyl­benzyl­amine (0.75 ml, 5.90 mmol), pyridine (0.48 ml, 5.90 mmol) and 10 ml of degassed di­chloro­methane under a nitro­gen atmosphere. The reaction mixture was stirred at room temperature for 24 h under a nitro­gen atmosphere. The mixture was acidified with 5 M HCl and diluted with 15 ml of di­chloro­methane. The organic phase was washed with water. The aqueous layers were combined and back extracted with di­chloro­methane (10 ml). The combined organic layers were dried over anhydrous sodium sulfate and evaporated to dryness. The residue was dissolved in hot ethanol and filtered. The filtrate was transferred to a scintillation vial and, upon standing for 24 h, crystallized to afford pale-yellow crystals that were filtered from the mother liquor (42%; m.p. 376–378 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups. The hydrogen atom bonded to the nitro­gen atom (H1) was located using electron-density difference maps. The N1—H1 bond distance was restrained using DFIX instructions in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) at 0.88 Å to agree with the known value.

Table 2
Experimental details

Crystal data
Chemical formula C15H17NO2S
Mr 275.35
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 9.655 (2), 5.8820 (15), 12.180 (3)
β (°) 96.275 (3)
V3) 687.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.49 × 0.22 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.474, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10794, 2811, 2619
Rint 0.047
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.04
No. of reflections 2811
No. of parameters 178
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.21
Absolute structure Flack x determined using 1114 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (4)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

4-Methyl-N-(4-methylbenzyl)benzenesulfonamide top
Crystal data top
C15H17NO2SF(000) = 292
Mr = 275.35Dx = 1.330 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.655 (2) ÅCell parameters from 6778 reflections
b = 5.8820 (15) Åθ = 2.6–26.4°
c = 12.180 (3) ŵ = 0.23 mm1
β = 96.275 (3)°T = 173 K
V = 687.5 (3) Å3Block, pale yellow
Z = 20.49 × 0.22 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2619 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 1.7°
Tmin = 0.474, Tmax = 0.745h = 1212
10794 measured reflectionsk = 77
2811 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.0356P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.35 e Å3
2811 reflectionsΔρmin = 0.21 e Å3
178 parametersAbsolute structure: Flack x determined using 1114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.06 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12783 (6)0.74015 (12)0.63296 (5)0.03224 (19)
O10.0878 (2)0.7954 (4)0.51967 (17)0.0460 (6)
O20.1502 (2)0.9174 (4)0.71256 (18)0.0414 (5)
N10.0070 (2)0.5761 (4)0.66826 (19)0.0323 (5)
H10.028 (3)0.485 (5)0.617 (2)0.040 (9)*
C10.2818 (3)0.5768 (5)0.6401 (2)0.0307 (6)
C20.2808 (3)0.3720 (5)0.5847 (2)0.0344 (6)
H20.19800.31940.54320.041*
C30.4009 (3)0.2447 (6)0.5903 (2)0.0352 (6)
H30.40070.10470.55140.042*
C40.5223 (3)0.3174 (5)0.6518 (2)0.0323 (6)
C50.5210 (3)0.5225 (6)0.7066 (2)0.0381 (7)
H50.60360.57450.74860.046*
C60.4011 (3)0.6544 (5)0.7014 (2)0.0358 (6)
H60.40120.79550.73940.043*
C70.6530 (3)0.1762 (6)0.6601 (3)0.0434 (8)
H7A0.62870.01700.64400.065*
H7B0.70130.18820.73490.065*
H7C0.71410.23160.60670.065*
C80.0272 (3)0.4685 (5)0.7768 (2)0.0334 (6)
H8A0.12060.50970.81310.040*
H8B0.02480.30140.76710.040*
C90.0812 (3)0.5358 (5)0.8516 (2)0.0298 (6)
C100.1137 (3)0.3858 (5)0.9318 (2)0.0340 (6)
H100.07090.24030.93710.041*
C110.2081 (3)0.4445 (5)1.0049 (2)0.0370 (6)
H110.22920.33851.05950.044*
C120.2721 (3)0.6552 (5)0.9995 (2)0.0351 (6)
C130.2383 (3)0.8054 (5)0.9192 (2)0.0343 (6)
H130.28100.95110.91390.041*
C140.1435 (2)0.7477 (6)0.8463 (2)0.0321 (5)
H140.12120.85440.79240.038*
C150.3752 (3)0.7190 (7)1.0793 (2)0.0451 (7)
H15A0.46280.63721.05970.068*
H15B0.39250.88311.07530.068*
H15C0.33700.67791.15450.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (3)0.0305 (3)0.0357 (3)0.0031 (3)0.0072 (2)0.0024 (3)
O10.0453 (11)0.0546 (16)0.0393 (11)0.0127 (10)0.0100 (9)0.0138 (10)
O20.0414 (11)0.0331 (11)0.0510 (13)0.0007 (9)0.0112 (9)0.0031 (10)
N10.0286 (11)0.0358 (13)0.0332 (12)0.0018 (10)0.0060 (9)0.0034 (10)
C10.0282 (12)0.0313 (14)0.0334 (14)0.0010 (10)0.0076 (10)0.0040 (12)
C20.0310 (13)0.0343 (16)0.0375 (15)0.0029 (11)0.0023 (11)0.0027 (13)
C30.0380 (13)0.0316 (13)0.0369 (13)0.0002 (14)0.0076 (10)0.0011 (14)
C40.0288 (12)0.0387 (15)0.0310 (13)0.0007 (11)0.0103 (10)0.0058 (11)
C50.0307 (13)0.0430 (17)0.0406 (16)0.0066 (12)0.0041 (11)0.0015 (14)
C60.0357 (14)0.0334 (14)0.0387 (15)0.0054 (12)0.0059 (11)0.0037 (12)
C70.0346 (14)0.0469 (19)0.0500 (17)0.0068 (13)0.0103 (12)0.0019 (14)
C80.0310 (12)0.0303 (14)0.0397 (15)0.0033 (11)0.0079 (11)0.0023 (12)
C90.0259 (12)0.0294 (14)0.0339 (14)0.0035 (10)0.0030 (10)0.0044 (11)
C100.0332 (13)0.0307 (14)0.0375 (15)0.0025 (11)0.0013 (11)0.0007 (12)
C110.0386 (14)0.0362 (16)0.0369 (15)0.0014 (12)0.0072 (12)0.0041 (12)
C120.0302 (13)0.0417 (16)0.0334 (14)0.0010 (12)0.0037 (10)0.0062 (12)
C130.0285 (12)0.0301 (15)0.0443 (16)0.0001 (10)0.0037 (11)0.0047 (12)
C140.0292 (11)0.0284 (13)0.0394 (13)0.0022 (13)0.0068 (10)0.0027 (15)
C150.0401 (14)0.052 (2)0.0458 (16)0.0010 (16)0.0152 (12)0.0031 (18)
Geometric parameters (Å, º) top
S1—O11.429 (2)C7—H7C0.9800
S1—O21.424 (2)C8—H8A0.9900
S1—N11.608 (2)C8—H8B0.9900
S1—C11.764 (3)C8—C91.513 (4)
N1—H10.865 (13)C9—C101.378 (4)
N1—C81.460 (4)C9—C141.382 (4)
C1—C21.380 (4)C10—H100.9500
C1—C61.380 (4)C10—C111.385 (4)
C2—H20.9500C11—H110.9500
C2—C31.375 (4)C11—C121.383 (4)
C3—H30.9500C12—C131.383 (4)
C3—C41.388 (4)C12—C151.513 (4)
C4—C51.379 (4)C13—H130.9500
C4—C71.504 (4)C13—C141.385 (4)
C5—H50.9500C14—H140.9500
C5—C61.389 (4)C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—H7A0.9800C15—H15C0.9800
C7—H7B0.9800
O1—S1—N1105.50 (13)H7B—C7—H7C109.5
O1—S1—C1108.00 (12)N1—C8—H8A108.9
O2—S1—O1119.71 (14)N1—C8—H8B108.9
O2—S1—N1108.51 (12)N1—C8—C9113.5 (2)
O2—S1—C1107.52 (13)H8A—C8—H8B107.7
N1—S1—C1106.98 (13)C9—C8—H8A108.9
S1—N1—H1115 (2)C9—C8—H8B108.9
C8—N1—S1118.26 (18)C10—C9—C8119.1 (2)
C8—N1—H1113 (2)C10—C9—C14118.6 (2)
C2—C1—S1119.3 (2)C14—C9—C8122.3 (2)
C6—C1—S1119.7 (2)C9—C10—H10119.6
C6—C1—C2121.0 (3)C9—C10—C11120.9 (3)
C1—C2—H2120.3C11—C10—H10119.6
C3—C2—C1119.3 (3)C10—C11—H11119.5
C3—C2—H2120.3C12—C11—C10120.9 (3)
C2—C3—H3119.4C12—C11—H11119.5
C2—C3—C4121.1 (3)C11—C12—C15120.9 (3)
C4—C3—H3119.4C13—C12—C11117.9 (3)
C3—C4—C7121.3 (3)C13—C12—C15121.2 (3)
C5—C4—C3118.6 (3)C12—C13—H13119.3
C5—C4—C7120.2 (3)C12—C13—C14121.3 (3)
C4—C5—H5119.4C14—C13—H13119.3
C4—C5—C6121.2 (3)C9—C14—C13120.4 (3)
C6—C5—H5119.4C9—C14—H14119.8
C1—C6—C5118.8 (3)C13—C14—H14119.8
C1—C6—H6120.6C12—C15—H15A109.5
C5—C6—H6120.6C12—C15—H15B109.5
C4—C7—H7A109.5C12—C15—H15C109.5
C4—C7—H7B109.5H15A—C15—H15B109.5
C4—C7—H7C109.5H15A—C15—H15C109.5
H7A—C7—H7B109.5H15B—C15—H15C109.5
H7A—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.512.890 (4)104
N1—H1···O1i0.86 (1)2.03 (2)2.889 (3)170 (3)
C5—H5···Cgii0.952.863.761 (3)159
C10—H10···Cgiii0.952.893.564 (3)129
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z; (iii) x, y1/2, z+2.
 

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699); Grand Valley State University (Chemistry Department's Weldon Fund).

References

First citationBagchi, V., Paraskevopoulou, P., Das, P., Chi, L., Wang, Q., Choudhury, A., Mathieson, J. S., Cronin, L., Pardue, D. B., Cundari, T. R., Mitrikas, G., Sanakis, Y. & Stavropoulos, P. (2014). J. Am. Chem. Soc. 136, 11362–11381.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCameron, T. S., Prout, K., Denton, B., Spagna, R. & White, E. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 176–185.  CSD CrossRef Web of Science Google Scholar
First citationCheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., Mitchison, T. J. & Straight, A. F. (2002). Nat. Cell Biol. 4, 83–88.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967–3969.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B. & Swarbrick, J. D. (2018). Chem. Eur. J. 24, 1922–1930.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrankowski, K. J., Hedrick, M. P., Gosalia, P., Li, K., Shi, S., Whipple, D., Ghosh, P., Prisinzano, T. E., Schoenen, F. J., Su, Y., Vasile, S., Sergienko, E., Gray, W., Hariharan, S., Milan, L., Heynen-Genel, S., Mangravita-Novo, A., Vicchiarelli, M., Smith, L. H., Streicher, J. M., Caron, M. G., Barak, L. S., Bohn, L. M., Chung, T. D. Y. & Aubé, J. (2012). ACS Chem. Neurosci. 3, 221–236.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHashmi, A. S. K., Weyrauch, J. P., Kurpejović, E., Frost, T. M., Miehlich, B., Frey, W. & Bats, J. W. (2006). Chem. Eur. J. 12, 5806–5814.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, Z. S., Stevens, A. C., Bookout, E. C., Staples, R. J., Biros, S. M. & Ngassa, F. N. (2018). Acta Cryst. E74, 1126–1129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinniger, G. J., Bruton, J. D., Westerblad, H. & Ranatunga, K. W. (2005). J. Muscle Res. Cell Motil. 26, 135–141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSanmartín, J., Novio, F., García-Deibe, A. M., Fondo, M. & Bermejo, M. R. (2007). New J. Chem. 31, 1605–1612.  Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutor, D. J. (1958). Acta Cryst. 11, 453–458.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.  CrossRef Web of Science Google Scholar
First citationValerga, P. & Puerta, M. C. (2016). Private communication (refcode PTSBZA03). CCDC, Cambridge, England.  Google Scholar
First citationYan, J., Li, J. & Cheng, D. (2007). Synlett, pp. 2442–2444.  Web of Science CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYi-Ni, Y. (2014). Private communication (refcode PTSBZA01). CCDC, Cambridge, England.  Google Scholar
First citationZhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950–3954.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds