research communications
N-(4-methylbenzyl)benzenesulfonamide
of 4-methyl-aDepartment of Chemistry, 1 Campus Dr., Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu
The title compound, C15H17NO2S, was synthesized via a between 4-methylbenzylamine and p-toluenesulfonyl chloride. In the crystal, N—H⋯O hydrogen bonds link the molecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two intermolecular C—H⋯π interactions that link these hydrogen-bonded ribbons into a three-dimensional network.
Keywords: crystal structure; sulfonamide; N—H⋯O hydrogen bond; C—H⋯π interaction.
CCDC reference: 1977684
1. Chemical context
et al., 2016). First recognized as a class of antibiotics in the 1930s, this class of drugs is used today to treat infectious diseases such as malaria, tuberculosis, HIV, and many more by targeting the dihydropteroate synthase (DHPS) pathway (Dennis et al., 2018). also exhibit remarkable antitumor, anticancer, and antithyroid activities among others (Scozzafava et al., 2003).
commonly referred to as `sulfa drugs', are a biologically significant class of drugs. Over 70 years since its discovery, the sulfonamide moiety is frequently used in modern medicine (ZhaoThe title compound, 4-methylbenzylamine-4-methylbenzenesulfonamide (I), is structurally similar to N-benzyl-p-toluene sulfonamide (BTS, Fig. 1). BTS is known to be a potent and specific inhibitor of the ATPase activity of skeletal myosin II subfragment 1 (S1) (Cheung et al., 2002). The properties of BTS are significant in the study of muscle contraction (Pinniger et al., 2005). In addition, the 4-methylbenzylamine-4-methylbenzenesulfonamide moiety is found in a potent and selective kappa opioid receptor (KOR) antagonist (Frankowski et al., 2012; Fig. 1).
As therapeutic properties of et al., 2018). A review of the literature suggests that the most efficient method for synthesizing these compounds is by the sulfonylation of using either sulfonyl halides or as electrophiles (Yan et al., 2007; De Luca & Giacomelli, 2008). The title compound was synthesized in dichloromethane using a sulfonyl chloride, in the presence of pyridine. The main purpose of pyridine is to act as a hydrochloric acid scavenger. However, in our ongoing efforts to produce we have recently discovered an environmentally benign and facile synthesis of aryl This method uses aqueous potassium carbonate in tetrahydrofuran. An increased rate of reaction and yield of sulfonamide compounds produced from a wide range of have been observed. We report here the synthesis of the title compound (I), as well as its molecular and crystal structures.
continue to be discovered, it is important to synthesize these compounds efficiently. are commonly synthesized by a mechanism analogous to the nucleophilic acyl-substitution reaction between an and a nucleophilic amine (Patel2. Structural commentary
The was solved in the Sohnke P21, with a of 0.06 (4). The molecular structure is shown in Fig. 2 along with the atom-labeling scheme. The S=O bond lengths are 1.429 (2) and 1.424 (2) Å, with S1—N1 and S1—C1 bond lengths of 1.608 (2) and 1.764 (3) Å, respectively. The of the sulfonamide are oriented gauche to one another with a C1—S1—N1—C8 torsion angle of 57.9 (2)°. The τ4 descriptor for fourfold coordination around the sulfur atom S1 is 0.94, indicating a slightly distorted tetrahedral geometry of the sulfonamide group (where 0.00 = square-planar, 0.85 = trigonal–pyramidal, and 1.00 = tetrahedral; Yang et al., 2007). An intramolecular C—H⋯O contact (Sutor, 1958,1962,1963; Table 1) is present between an aromatic C—H group and an O atom of the sulfonamide moiety in a S(5) motif (Table 1).
of compound (I)3. Supramolecular features
Molecules of compound (I) exhibit both intermolecular N—H⋯O hydrogen bonds and C—H⋯π interactions in the (Fig. 3). The intermolecular N1—H1⋯O1 hydrogen bond is of medium strength and links molecules of title compound into ribbons that run parallel to the b axis (Table 1, Fig. 4). The C9–C14 ring hosts two C—H⋯π interactions that link the ribbons into an intricate three-dimensional network (Table 1, Fig. 5).
4. Database survey
The Cambridge Structural Database (CSD, Version 5.40, Aug 2019; Groom, et al., 2016) contains 11 structures with the N-benzyl-p-toluene sulfonamide moiety. Included in this set is the structure of N-benzyl-p-toluene sulfonamide (BTS, Fig. 1). This structure has been deposited four times as PTSBZA–PTSBZA03 (Cameron, et al., 1975; Yi-Ni, 2014; Bagchi et al., 2014; Valerga & Puerta, 2016). Other structures that are closely related to the title compound are N-(2,4-dimethoxybenzyl)-4-methylbenzenesulfonamide (DERXAA; Hashmi et al., 2006) and 2-(p-tosylaminomethyl)aniline (MILHIZ; Sanmartín et al., 2007). All three crystal structures exhibit intramolecular C—H⋯O hydrogen bonds, and MILHIZ is the only structure that does not show C—H⋯π interactions.
5. Synthesis and crystallization
The title compound was prepared by the dropwise addition of p-toluenesulfonyl chloride (1.00 g, 5.25 mmol) to a stirring mixture of 4-methylbenzylamine (0.75 ml, 5.90 mmol), pyridine (0.48 ml, 5.90 mmol) and 10 ml of degassed dichloromethane under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 24 h under a nitrogen atmosphere. The mixture was acidified with 5 M HCl and diluted with 15 ml of dichloromethane. The organic phase was washed with water. The aqueous layers were combined and back extracted with dichloromethane (10 ml). The combined organic layers were dried over anhydrous sodium sulfate and evaporated to dryness. The residue was dissolved in hot ethanol and filtered. The filtrate was transferred to a scintillation vial and, upon standing for 24 h, crystallized to afford pale-yellow crystals that were filtered from the mother liquor (42%; m.p. 376–378 K).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methylene groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups. The hydrogen atom bonded to the nitrogen atom (H1) was located using electron-density difference maps. The N1—H1 bond distance was restrained using DFIX instructions in SHELXL (Sheldrick, 2015) at 0.88 Å to agree with the known value.
details are summarized in Table 2Supporting information
CCDC reference: 1977684
https://doi.org/10.1107/S2056989020000535/wm5537sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000535/wm5537Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020000535/wm5537Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).C15H17NO2S | F(000) = 292 |
Mr = 275.35 | Dx = 1.330 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.655 (2) Å | Cell parameters from 6778 reflections |
b = 5.8820 (15) Å | θ = 2.6–26.4° |
c = 12.180 (3) Å | µ = 0.23 mm−1 |
β = 96.275 (3)° | T = 173 K |
V = 687.5 (3) Å3 | Block, pale yellow |
Z = 2 | 0.49 × 0.22 × 0.16 mm |
Bruker APEXII CCD diffractometer | 2619 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.047 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 1.7° |
Tmin = 0.474, Tmax = 0.745 | h = −12→12 |
10794 measured reflections | k = −7→7 |
2811 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0564P)2 + 0.0356P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.092 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.35 e Å−3 |
2811 reflections | Δρmin = −0.21 e Å−3 |
178 parameters | Absolute structure: Flack x determined using 1114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.06 (4) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.12783 (6) | 0.74015 (12) | 0.63296 (5) | 0.03224 (19) | |
O1 | 0.0878 (2) | 0.7954 (4) | 0.51967 (17) | 0.0460 (6) | |
O2 | 0.1502 (2) | 0.9174 (4) | 0.71256 (18) | 0.0414 (5) | |
N1 | 0.0070 (2) | 0.5761 (4) | 0.66826 (19) | 0.0323 (5) | |
H1 | −0.028 (3) | 0.485 (5) | 0.617 (2) | 0.040 (9)* | |
C1 | 0.2818 (3) | 0.5768 (5) | 0.6401 (2) | 0.0307 (6) | |
C2 | 0.2808 (3) | 0.3720 (5) | 0.5847 (2) | 0.0344 (6) | |
H2 | 0.1980 | 0.3194 | 0.5432 | 0.041* | |
C3 | 0.4009 (3) | 0.2447 (6) | 0.5903 (2) | 0.0352 (6) | |
H3 | 0.4007 | 0.1047 | 0.5514 | 0.042* | |
C4 | 0.5223 (3) | 0.3174 (5) | 0.6518 (2) | 0.0323 (6) | |
C5 | 0.5210 (3) | 0.5225 (6) | 0.7066 (2) | 0.0381 (7) | |
H5 | 0.6036 | 0.5745 | 0.7486 | 0.046* | |
C6 | 0.4011 (3) | 0.6544 (5) | 0.7014 (2) | 0.0358 (6) | |
H6 | 0.4012 | 0.7955 | 0.7394 | 0.043* | |
C7 | 0.6530 (3) | 0.1762 (6) | 0.6601 (3) | 0.0434 (8) | |
H7A | 0.6287 | 0.0170 | 0.6440 | 0.065* | |
H7B | 0.7013 | 0.1882 | 0.7349 | 0.065* | |
H7C | 0.7141 | 0.2316 | 0.6067 | 0.065* | |
C8 | 0.0272 (3) | 0.4685 (5) | 0.7768 (2) | 0.0334 (6) | |
H8A | 0.1206 | 0.5097 | 0.8131 | 0.040* | |
H8B | 0.0248 | 0.3014 | 0.7671 | 0.040* | |
C9 | −0.0812 (3) | 0.5358 (5) | 0.8516 (2) | 0.0298 (6) | |
C10 | −0.1137 (3) | 0.3858 (5) | 0.9318 (2) | 0.0340 (6) | |
H10 | −0.0709 | 0.2403 | 0.9371 | 0.041* | |
C11 | −0.2081 (3) | 0.4445 (5) | 1.0049 (2) | 0.0370 (6) | |
H11 | −0.2292 | 0.3385 | 1.0595 | 0.044* | |
C12 | −0.2721 (3) | 0.6552 (5) | 0.9995 (2) | 0.0351 (6) | |
C13 | −0.2383 (3) | 0.8054 (5) | 0.9192 (2) | 0.0343 (6) | |
H13 | −0.2810 | 0.9511 | 0.9139 | 0.041* | |
C14 | −0.1435 (2) | 0.7477 (6) | 0.8463 (2) | 0.0321 (5) | |
H14 | −0.1212 | 0.8544 | 0.7924 | 0.038* | |
C15 | −0.3752 (3) | 0.7190 (7) | 1.0793 (2) | 0.0451 (7) | |
H15A | −0.4628 | 0.6372 | 1.0597 | 0.068* | |
H15B | −0.3925 | 0.8831 | 1.0753 | 0.068* | |
H15C | −0.3370 | 0.6779 | 1.1545 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0313 (3) | 0.0305 (3) | 0.0357 (3) | 0.0031 (3) | 0.0072 (2) | 0.0024 (3) |
O1 | 0.0453 (11) | 0.0546 (16) | 0.0393 (11) | 0.0127 (10) | 0.0100 (9) | 0.0138 (10) |
O2 | 0.0414 (11) | 0.0331 (11) | 0.0510 (13) | 0.0007 (9) | 0.0112 (9) | −0.0031 (10) |
N1 | 0.0286 (11) | 0.0358 (13) | 0.0332 (12) | −0.0018 (10) | 0.0060 (9) | −0.0034 (10) |
C1 | 0.0282 (12) | 0.0313 (14) | 0.0334 (14) | 0.0010 (10) | 0.0076 (10) | 0.0040 (12) |
C2 | 0.0310 (13) | 0.0343 (16) | 0.0375 (15) | −0.0029 (11) | 0.0023 (11) | −0.0027 (13) |
C3 | 0.0380 (13) | 0.0316 (13) | 0.0369 (13) | 0.0002 (14) | 0.0076 (10) | −0.0011 (14) |
C4 | 0.0288 (12) | 0.0387 (15) | 0.0310 (13) | 0.0007 (11) | 0.0103 (10) | 0.0058 (11) |
C5 | 0.0307 (13) | 0.0430 (17) | 0.0406 (16) | −0.0066 (12) | 0.0041 (11) | −0.0015 (14) |
C6 | 0.0357 (14) | 0.0334 (14) | 0.0387 (15) | −0.0054 (12) | 0.0059 (11) | −0.0037 (12) |
C7 | 0.0346 (14) | 0.0469 (19) | 0.0500 (17) | 0.0068 (13) | 0.0103 (12) | 0.0019 (14) |
C8 | 0.0310 (12) | 0.0303 (14) | 0.0397 (15) | 0.0033 (11) | 0.0079 (11) | 0.0023 (12) |
C9 | 0.0259 (12) | 0.0294 (14) | 0.0339 (14) | −0.0035 (10) | 0.0030 (10) | −0.0044 (11) |
C10 | 0.0332 (13) | 0.0307 (14) | 0.0375 (15) | 0.0025 (11) | 0.0013 (11) | 0.0007 (12) |
C11 | 0.0386 (14) | 0.0362 (16) | 0.0369 (15) | −0.0014 (12) | 0.0072 (12) | 0.0041 (12) |
C12 | 0.0302 (13) | 0.0417 (16) | 0.0334 (14) | −0.0010 (12) | 0.0037 (10) | −0.0062 (12) |
C13 | 0.0285 (12) | 0.0301 (15) | 0.0443 (16) | −0.0001 (10) | 0.0037 (11) | −0.0047 (12) |
C14 | 0.0292 (11) | 0.0284 (13) | 0.0394 (13) | −0.0022 (13) | 0.0068 (10) | 0.0027 (15) |
C15 | 0.0401 (14) | 0.052 (2) | 0.0458 (16) | 0.0010 (16) | 0.0152 (12) | −0.0031 (18) |
S1—O1 | 1.429 (2) | C7—H7C | 0.9800 |
S1—O2 | 1.424 (2) | C8—H8A | 0.9900 |
S1—N1 | 1.608 (2) | C8—H8B | 0.9900 |
S1—C1 | 1.764 (3) | C8—C9 | 1.513 (4) |
N1—H1 | 0.865 (13) | C9—C10 | 1.378 (4) |
N1—C8 | 1.460 (4) | C9—C14 | 1.382 (4) |
C1—C2 | 1.380 (4) | C10—H10 | 0.9500 |
C1—C6 | 1.380 (4) | C10—C11 | 1.385 (4) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C2—C3 | 1.375 (4) | C11—C12 | 1.383 (4) |
C3—H3 | 0.9500 | C12—C13 | 1.383 (4) |
C3—C4 | 1.388 (4) | C12—C15 | 1.513 (4) |
C4—C5 | 1.379 (4) | C13—H13 | 0.9500 |
C4—C7 | 1.504 (4) | C13—C14 | 1.385 (4) |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.389 (4) | C15—H15A | 0.9800 |
C6—H6 | 0.9500 | C15—H15B | 0.9800 |
C7—H7A | 0.9800 | C15—H15C | 0.9800 |
C7—H7B | 0.9800 | ||
O1—S1—N1 | 105.50 (13) | H7B—C7—H7C | 109.5 |
O1—S1—C1 | 108.00 (12) | N1—C8—H8A | 108.9 |
O2—S1—O1 | 119.71 (14) | N1—C8—H8B | 108.9 |
O2—S1—N1 | 108.51 (12) | N1—C8—C9 | 113.5 (2) |
O2—S1—C1 | 107.52 (13) | H8A—C8—H8B | 107.7 |
N1—S1—C1 | 106.98 (13) | C9—C8—H8A | 108.9 |
S1—N1—H1 | 115 (2) | C9—C8—H8B | 108.9 |
C8—N1—S1 | 118.26 (18) | C10—C9—C8 | 119.1 (2) |
C8—N1—H1 | 113 (2) | C10—C9—C14 | 118.6 (2) |
C2—C1—S1 | 119.3 (2) | C14—C9—C8 | 122.3 (2) |
C6—C1—S1 | 119.7 (2) | C9—C10—H10 | 119.6 |
C6—C1—C2 | 121.0 (3) | C9—C10—C11 | 120.9 (3) |
C1—C2—H2 | 120.3 | C11—C10—H10 | 119.6 |
C3—C2—C1 | 119.3 (3) | C10—C11—H11 | 119.5 |
C3—C2—H2 | 120.3 | C12—C11—C10 | 120.9 (3) |
C2—C3—H3 | 119.4 | C12—C11—H11 | 119.5 |
C2—C3—C4 | 121.1 (3) | C11—C12—C15 | 120.9 (3) |
C4—C3—H3 | 119.4 | C13—C12—C11 | 117.9 (3) |
C3—C4—C7 | 121.3 (3) | C13—C12—C15 | 121.2 (3) |
C5—C4—C3 | 118.6 (3) | C12—C13—H13 | 119.3 |
C5—C4—C7 | 120.2 (3) | C12—C13—C14 | 121.3 (3) |
C4—C5—H5 | 119.4 | C14—C13—H13 | 119.3 |
C4—C5—C6 | 121.2 (3) | C9—C14—C13 | 120.4 (3) |
C6—C5—H5 | 119.4 | C9—C14—H14 | 119.8 |
C1—C6—C5 | 118.8 (3) | C13—C14—H14 | 119.8 |
C1—C6—H6 | 120.6 | C12—C15—H15A | 109.5 |
C5—C6—H6 | 120.6 | C12—C15—H15B | 109.5 |
C4—C7—H7A | 109.5 | C12—C15—H15C | 109.5 |
C4—C7—H7B | 109.5 | H15A—C15—H15B | 109.5 |
C4—C7—H7C | 109.5 | H15A—C15—H15C | 109.5 |
H7A—C7—H7B | 109.5 | H15B—C15—H15C | 109.5 |
H7A—C7—H7C | 109.5 |
Cg is the centroid of the C9–C14 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O2 | 0.95 | 2.51 | 2.890 (4) | 104 |
N1—H1···O1i | 0.86 (1) | 2.03 (2) | 2.889 (3) | 170 (3) |
C5—H5···Cgii | 0.95 | 2.86 | 3.761 (3) | 159 |
C10—H10···Cgiii | 0.95 | 2.89 | 3.564 (3) | 129 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x+1, y, z; (iii) −x, y−1/2, −z+2. |
Acknowledgements
The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.
Funding information
Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699); Grand Valley State University (Chemistry Department's Weldon Fund).
References
Bagchi, V., Paraskevopoulou, P., Das, P., Chi, L., Wang, Q., Choudhury, A., Mathieson, J. S., Cronin, L., Pardue, D. B., Cundari, T. R., Mitrikas, G., Sanakis, Y. & Stavropoulos, P. (2014). J. Am. Chem. Soc. 136, 11362–11381. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Cameron, T. S., Prout, K., Denton, B., Spagna, R. & White, E. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 176–185. CSD CrossRef Web of Science Google Scholar
Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., Mitchison, T. J. & Straight, A. F. (2002). Nat. Cell Biol. 4, 83–88. Web of Science CrossRef PubMed CAS Google Scholar
De Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967–3969. Web of Science CrossRef PubMed CAS Google Scholar
Dennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B. & Swarbrick, J. D. (2018). Chem. Eur. J. 24, 1922–1930. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frankowski, K. J., Hedrick, M. P., Gosalia, P., Li, K., Shi, S., Whipple, D., Ghosh, P., Prisinzano, T. E., Schoenen, F. J., Su, Y., Vasile, S., Sergienko, E., Gray, W., Hariharan, S., Milan, L., Heynen-Genel, S., Mangravita-Novo, A., Vicchiarelli, M., Smith, L. H., Streicher, J. M., Caron, M. G., Barak, L. S., Bohn, L. M., Chung, T. D. Y. & Aubé, J. (2012). ACS Chem. Neurosci. 3, 221–236. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hashmi, A. S. K., Weyrauch, J. P., Kurpejović, E., Frost, T. M., Miehlich, B., Frey, W. & Bats, J. W. (2006). Chem. Eur. J. 12, 5806–5814. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patel, Z. S., Stevens, A. C., Bookout, E. C., Staples, R. J., Biros, S. M. & Ngassa, F. N. (2018). Acta Cryst. E74, 1126–1129. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pinniger, G. J., Bruton, J. D., Westerblad, H. & Ranatunga, K. W. (2005). J. Muscle Res. Cell Motil. 26, 135–141. Web of Science CrossRef PubMed CAS Google Scholar
Sanmartín, J., Novio, F., García-Deibe, A. M., Fondo, M. & Bermejo, M. R. (2007). New J. Chem. 31, 1605–1612. Google Scholar
Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sutor, D. J. (1958). Acta Cryst. 11, 453–458. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sutor, D. J. (1962). Nature, 195, 68–69. CAS Google Scholar
Sutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110. CrossRef Web of Science Google Scholar
Valerga, P. & Puerta, M. C. (2016). Private communication (refcode PTSBZA03). CCDC, Cambridge, England. Google Scholar
Yan, J., Li, J. & Cheng, D. (2007). Synlett, pp. 2442–2444. Web of Science CrossRef Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yi-Ni, Y. (2014). Private communication (refcode PTSBZA01). CCDC, Cambridge, England. Google Scholar
Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950–3954. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.