research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-di­phenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one

aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, and bPG and Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018., Tamil Nadu, India
*Correspondence e-mail: kravichandran05@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 9 December 2019; accepted 12 February 2020; online 18 February 2020)

In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, mol­ecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.

1. Chemical context

Piperidine is a heterocyclic six-membered ring containing nitro­gen as a hetero atom and is an essential structural part of many important drugs including paroxetine, raloxifene, haloperidol, droperidol and minoxidiln (Wagstaff et al., 2002[Wagstaff, A. J., Cheer, S. M., Matheson, A. J., Ormrod, D. & Goa, K. L. (2002). Drugs, 62, 655-703.]). Piperidine derivatives exhibit a wide range of biological activities, such as anti­microbial, anti-inflammatory, anti­viral, anti­malarial and general anesthetic (Aridoss et al., 2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]). The biological properties of piperidines are highly dependent on the type and position of substituents on the heterocyclic ring. 2,6-Disubstituted piperidine derivatives have been found to possess fungicidal, bactericidal and herbicidal activities (Mobio et al., 1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]). Piperidine derivatives are the inter­mediate products in agrochemicals, pharmaceuticals, rubber vulcanization accelerators and are widely used as building block mol­ecules in many industries. Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999[Badorrey, R., Cativiela, C., Díaz-de-Villegas, M. D. & Gálvez, J. A. (1999). Tetrahedron, 55, 7601-7612.]).

[Scheme 1]

This wide range of biological activities prompted us to synthesize novel 2,6-diphenyl piperdine derivatives. Against this background, the structure of the title compound has been determined.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The diphenyl-substituted piperidine compound crystallizes in the monoclinic space group P21/n. The bond lengths and angles are well within the expected limits and comparable with literature values (Allen et al., 1998[Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.

The piperidine ring adopts a chair conformation with the puckering parameters Q2 = 0.6191 (15) Å and ϕ2 = 335.12 (14) Å. The piperidine ring (N1/C2–C6) makes dihed­ral angles of 89.78 (7) and 48.30 (8)°, respectively, with the C7–12 and C13–C18 phenyl rings, and confirms the fact that the moieties are in an axial orientations.

The keto and methyl groups substituted at atom C19 are equatorially orientated as confirmed from the torsion angle values O1—C19—N1—C2 = 177.54 (12)° and C20—C19—N1—C6 = 172.81 (11)°. In the mol­ecule, the isopropyl group substituted at the 5-position of the piperidine ring is equatorially oriented, as confirmed by the torsion angles of C4—C5—C21—C22 = −172.13 (14)° and C6—C5—C21—C23 = −174.73 (14)°. The sum of the bond angles (359.87°) around atom N1 of the piperidine ring is in accordance with the sp2-hybridization state (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked into C(8) chains along the b-axis direction by C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). The overall crystal packing of the title compound is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.54 3.4378 (19) 163
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound, showing the formation of a mol­ecular chain by C—H⋯O inter­actions (dotted lines).
[Figure 3]
Figure 3
The overall crystal packing of the title compound, viewed along the b-axis direction. Hydrogen bonds are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

4. DFT study

The optimized structure of the mol­ecule in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke et al., 1993[Becke, A. (1993). J. Chem. Phys. 98, 5648-5652.]), as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., , et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]).

The overlay diagram for the optimized structure (purple) and the structure in solid state (green) with respect to the piperidine ring is shown in Fig. 4[link]. The piperidine rings in the two phases have an r.m.s deviation of 0.434 Å for the non-hydrogen atoms. The conformation of the mol­ecules in the two phases differs with respect to the central piperidine ring, as seen in the disparity of about 38.5° in the N1—C6—C5—C4 torsion angles (39.88/1.38°) and 2.25° in the N1—C2—C3—C4 torsion angles (44.41/39.81°) for the optimized and solid-state mol­ecules, respectively.

[Figure 4]
Figure 4
A structural overlay diagram (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) for the optimized structure (purple) and the solid-state structure (green) of the title compound.

The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are known as frontier mol­ecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry (Fleming, 1976[Fleming, I. (1976). Frontier Orbitals and Organic Chemical Reactions. London: Wiley.]). When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron distribution of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5[link]. The positive and negative phases are shown in green and red, respectively.

[Figure 5]
Figure 5
The frontier mol­ecular orbitals (FMOs) of the title compound.

The HOMO of the title mol­ecule is localized on the C=O group, one aromatic ring and the piperidine ring, while the LUMO is located over the whole mol­ecule expect for the isopropyl group. The DFT study shows that the FMO energies EHOMO and ELUMO are −4.804 and −1.694 eV, respectively, and the HOMO–LUMO energy gap is 3.110 eV. The title compound has a small frontier orbital gap, hence the mol­ecule has high chemical reactivity and low kinetic stability.

The electron affinity (I) and ionization potential (A) of the mol­ecule were calculated using the DFT/B3LYP/6-311++G(d,p) basis set. A high value of the electrophilicity index describes a good electrophile, while a small value of electrophilicity index describes a good nucleophile. The values of the hardness (η), softness (σ), electronegativity (χ) and electrophilicity index (ω) for the title compound are given in Table 2[link].

Table 2
Calculated frontier mol­ecular orbital analysis of the title compound

Parameter Value
EHOMO (eV) −4.804
ELUMO (eV) −1.694
Energy gap, ΔE (eV) 3.110
HOMO−1 (eV) −5.478
LUMO+1 (eV) −1.113
Ionization potential, I (eV) 4.804
Electron affinity, A 1.694
Electrophilicity Index, ω 3.394
Hardness, η 1.555
Electro negativity, χ 3.249
Softness, σ 0.322

5. Hirshfeld surface analysis

CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.]) was used for the Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and to generate the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) to qu­antify the various inter­molecular inter­actions in the structure of the title compound. In the HS plotted over dnorm (Fig. 6[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta, A153, 625-636.]).

[Figure 6]
Figure 6
Hirshfeld surfaces mapped over (a) dnorm, (b) shape-index, (c) curvedness and (d) fragment patches.

The HS mapped over curvedness and shape-index, introduced by Koendrink (Koenderink, 1990[Koenderink, J. J. (1990). Solid Shape. Cambridge MA: MIT Press.]; Koenderink & van Doorn, 1992[Koenderink, J. J. & van Doorn, A. J. (1992). Image Vis. Comput. 10, 557-564.]), give further chemical insight into mol­ecular packing. A surface with low curvedness designates a flat region and may be indicative of ππ stacking in the crystal. A Hirshfeld surface with high curvedness is highlighted as dark-blue edges, and is indicative of the absence of ππ stacking (Fig. 6[link]). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface, depending on their closeness to adjacent mol­ecules (Mohamooda Sumaya et al., 2018[Mohamooda Sumaya, U., Sankar, E., Arasambattu MohanaKrishnan, K., Biruntha, K. & Usha, G. (2018). Acta Cryst. E74, 878-883.]).

The 2D fingerprint plots of the di and de points for the contacts contributing to the Hirshfeld surface are shown in Fig. 7[link]. They indicate that inter­molecular H⋯H contacts provide the largest contribution (74.2%) to the Hirshfeld surface. The percentage contributions of the other inter­actions are C⋯H/H⋯C = 18.7%, O⋯H/H⋯O = 7.0% and N⋯H/H⋯N = 0.1%. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that hydrogen bonding and van der Waals inter­actions play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 7]
Figure 7
Two-dimensional fingerprint plot for the title compound showing the contributions of individual types of inter­actions: (a) all inter­molecular contacts, (b) H⋯H contacts, (c) C⋯H/H⋯C contacts, (d) O⋯H/H⋯O contacts, (e) N⋯H/H⋯N contacts.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using piperidine as the main skeleton revealed the presence of more than 30 records with different substituents on the piperidine ring. However, there are only two compounds with the same skeleton as the title compound, viz. r-2,c-6-di­phenyl­piperidine (NIKYEN; Maheshwaran et al., 2013[Maheshwaran, V., Abdul Basheer, S., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o1371.]) and methyl 4-oxo-r-2,c-6-di­phenyl­piperidine-3-carboxyl­ate (BIHZEY; Sampath et al., 2004[Sampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105-o2106.]). In these compounds, the piperidine ring adopts a chair conformation as the title compound. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend dihedral angles of 89.78 (7) and 48.30 (8)°, respectively, with the best plane of the piperidine ring in the title compound and 81.04 (7) and 81.10 (7)°, respectively, in NIKYEN, whereas in BIHZEY they are equatorially oriented. The C—H⋯O inter­action leads to the formation of a C(8) chain in the title compound, while it forms dimers in the other two structures.

7. Synthesis and crystallization

t-3-Isopropyl-r-2,c-6-di­phenyl­piperidin-4-one was reduced to the corresponding piperidine using the Wolf–Kishner reduction (Ravindran & Jeyaraman, 1992[Ravindran, T. & Jeyaraman, R. (1992). Indian J. Chem. B31, 677-682.]). Piperidine-4-one (10 mmol) was treated with di­ethyl­ene glycol (40 ml), hydrazine hydrate (10 mmol) and KOH pellets (10 mmol) to give t-3-isopropyl-r-2,c-6-di­phenyl­piperidine. N-Acetyl piperidine was synthesized by the acetyl­ation of the above piperidine. To t-3-isopropyl-r-2,c-6-di­phenyl­piperidine (5 mmol) dissolved in benzene (50 ml) were added tri­ethyl­amine (20 mmol) and acetyl chloride (20 mmol) to give the title compound, which was crystallized by slow evaporation from a benzene/petroleum ether (v:v = ?:?) solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (N—H = 0.88–0.90 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C22H27NO
Mr 321.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.3077 (5), 10.3009 (4), 13.9338 (5)
β (°) 104.657 (1)
V3) 1847.91 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 43393, 5246, 3546
Rint 0.028
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.169, 1.02
No. of reflections 5246
No. of parameters 221
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.22
Computer programs: APEX2 and SAINT, SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2020).

N-acetyl-3-isopropyl-2,6-diphenylpiperidine top
Crystal data top
C22H27NOF(000) = 696
Mr = 321.44Dx = 1.155 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.3077 (5) ÅCell parameters from 3546 reflections
b = 10.3009 (4) Åθ = 1.9–30.2°
c = 13.9338 (5) ŵ = 0.07 mm1
β = 104.657 (1)°T = 296 K
V = 1847.91 (12) Å3Block, white crystalline
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
ω and φ scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.979, Tmax = 0.986k = 1414
43393 measured reflectionsl = 1919
5246 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0897P)2 + 0.2822P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.45 e Å3
5246 reflectionsΔρmin = 0.22 e Å3
221 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.028 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.65890 (11)0.04974 (12)0.67960 (9)0.0430 (3)
H20.7108030.1175900.7035750.052*
C30.55791 (12)0.11907 (14)0.63075 (11)0.0535 (4)
H3A0.5097890.0584420.5897930.064*
H3B0.5714430.1882890.5885070.064*
C40.51045 (13)0.17493 (14)0.70987 (12)0.0553 (4)
H4A0.5629340.2215490.7587070.066*
H4B0.4555150.2353600.6800480.066*
C50.46657 (10)0.06466 (13)0.75983 (10)0.0434 (3)
H50.4069420.0291800.7104520.052*
C60.54640 (9)0.04763 (12)0.79099 (9)0.0386 (3)
H60.5619190.0505440.8635600.046*
C70.50324 (9)0.18152 (12)0.75655 (9)0.0401 (3)
C80.44865 (11)0.20754 (15)0.65996 (11)0.0509 (3)
H80.4385870.1416640.6128410.061*
C90.40861 (12)0.33048 (16)0.63217 (13)0.0608 (4)
H90.3724080.3463810.5668760.073*
C100.42249 (12)0.42814 (15)0.70093 (15)0.0649 (5)
H100.3952380.5101900.6824560.078*
C110.47650 (13)0.40503 (15)0.79693 (15)0.0639 (4)
H110.4860500.4714840.8435440.077*
C120.51698 (11)0.28257 (14)0.82473 (11)0.0508 (3)
H120.5538780.2679040.8899870.061*
C130.69896 (10)0.03120 (13)0.60592 (9)0.0435 (3)
C140.68956 (14)0.16488 (15)0.59909 (12)0.0593 (4)
H140.6566200.2091420.6407040.071*
C150.72856 (16)0.23353 (17)0.53114 (13)0.0693 (5)
H150.7221270.3234210.5276990.083*
C160.77685 (15)0.16916 (19)0.46859 (13)0.0695 (5)
H160.8035550.2152810.4232350.083*
C170.78528 (15)0.03651 (18)0.47370 (13)0.0664 (5)
H170.8169650.0074170.4309220.080*
C180.74709 (12)0.03242 (15)0.54185 (11)0.0528 (4)
H180.7536880.1223040.5448220.063*
C190.73417 (10)0.06355 (13)0.83744 (10)0.0443 (3)
C200.83981 (11)0.02750 (16)0.82495 (13)0.0565 (4)
H20A0.8513200.0704040.7675060.085*
H20B0.8433440.0647790.8167290.085*
H20C0.8920960.0538890.8826670.085*
C210.42650 (12)0.10889 (15)0.84920 (12)0.0546 (4)
H210.4869850.1326840.9027170.065*
C220.37021 (14)0.00100 (17)0.88713 (14)0.0665 (5)
H22A0.3131400.0303510.8346650.100*
H22B0.4175200.0715980.9091490.100*
H22C0.3445020.0297080.9414770.100*
C230.35598 (17)0.22597 (19)0.82723 (17)0.0826 (6)
H23A0.2993420.2083020.7706730.124*
H23B0.3292790.2446100.8836080.124*
H23C0.3945220.2993760.8134390.124*
N10.64819 (8)0.02265 (10)0.76798 (7)0.0396 (2)
O10.72737 (8)0.12759 (12)0.90987 (7)0.0591 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0512 (7)0.0375 (6)0.0451 (7)0.0024 (5)0.0209 (6)0.0028 (5)
C30.0679 (9)0.0462 (7)0.0528 (8)0.0114 (7)0.0272 (7)0.0134 (6)
C40.0683 (9)0.0406 (7)0.0652 (9)0.0110 (6)0.0322 (7)0.0093 (6)
C50.0452 (7)0.0406 (6)0.0475 (7)0.0036 (5)0.0172 (5)0.0013 (5)
C60.0403 (6)0.0406 (6)0.0370 (6)0.0001 (5)0.0135 (5)0.0022 (5)
C70.0361 (6)0.0390 (6)0.0482 (7)0.0005 (5)0.0159 (5)0.0026 (5)
C80.0510 (8)0.0485 (7)0.0519 (8)0.0004 (6)0.0102 (6)0.0004 (6)
C90.0479 (8)0.0585 (9)0.0731 (10)0.0054 (7)0.0097 (7)0.0153 (8)
C100.0458 (8)0.0446 (8)0.1057 (14)0.0073 (6)0.0220 (9)0.0102 (8)
C110.0551 (9)0.0444 (8)0.0961 (13)0.0018 (6)0.0264 (8)0.0164 (8)
C120.0490 (8)0.0469 (7)0.0585 (8)0.0001 (6)0.0171 (6)0.0094 (6)
C130.0444 (7)0.0455 (7)0.0436 (7)0.0016 (5)0.0166 (5)0.0024 (5)
C140.0767 (10)0.0461 (8)0.0656 (9)0.0005 (7)0.0375 (8)0.0000 (7)
C150.0948 (13)0.0505 (9)0.0723 (10)0.0069 (8)0.0390 (9)0.0065 (8)
C160.0826 (12)0.0743 (11)0.0609 (9)0.0179 (9)0.0357 (9)0.0030 (8)
C170.0757 (11)0.0735 (11)0.0628 (9)0.0068 (9)0.0411 (8)0.0087 (8)
C180.0575 (8)0.0527 (8)0.0548 (8)0.0004 (6)0.0264 (7)0.0062 (6)
C190.0435 (7)0.0426 (7)0.0472 (7)0.0009 (5)0.0122 (5)0.0026 (5)
C200.0419 (7)0.0572 (9)0.0714 (10)0.0005 (6)0.0162 (7)0.0017 (7)
C210.0575 (8)0.0525 (8)0.0612 (8)0.0021 (6)0.0287 (7)0.0055 (6)
C220.0701 (10)0.0686 (10)0.0743 (10)0.0087 (8)0.0433 (9)0.0094 (8)
C230.0985 (15)0.0604 (11)0.1080 (15)0.0175 (10)0.0617 (12)0.0009 (10)
N10.0411 (5)0.0404 (5)0.0398 (5)0.0016 (4)0.0149 (4)0.0026 (4)
O10.0509 (6)0.0719 (7)0.0518 (6)0.0013 (5)0.0080 (4)0.0156 (5)
Geometric parameters (Å, º) top
C2—N11.4770 (15)C13—C141.384 (2)
C2—C131.5199 (18)C13—C181.3878 (18)
C2—C31.522 (2)C14—C151.384 (2)
C2—H20.9800C14—H140.9300
C3—C41.516 (2)C15—C161.377 (3)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.371 (3)
C4—C51.5238 (19)C16—H160.9300
C4—H4A0.9700C17—C181.381 (2)
C4—H4B0.9700C17—H170.9300
C5—C211.5422 (19)C18—H180.9300
C5—C61.5561 (18)C19—O11.2280 (16)
C5—H50.9800C19—N11.3648 (17)
C6—N11.4913 (15)C19—C201.5061 (19)
C6—C71.5241 (17)C20—H20A0.9600
C6—H60.9800C20—H20B0.9600
C7—C81.3843 (19)C20—H20C0.9600
C7—C121.3897 (18)C21—C231.511 (2)
C8—C91.390 (2)C21—C221.524 (2)
C8—H80.9300C21—H210.9800
C9—C101.369 (2)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.370 (3)C22—H22C0.9600
C10—H100.9300C23—H23A0.9600
C11—C121.388 (2)C23—H23B0.9600
C11—H110.9300C23—H23C0.9600
C12—H120.9300
N1—C2—C13114.24 (10)C14—C13—C18118.30 (13)
N1—C2—C3110.44 (10)C14—C13—C2123.46 (12)
C13—C2—C3112.10 (11)C18—C13—C2118.25 (12)
N1—C2—H2106.5C15—C14—C13120.84 (15)
C13—C2—H2106.5C15—C14—H14119.6
C3—C2—H2106.5C13—C14—H14119.6
C4—C3—C2109.64 (12)C16—C15—C14120.20 (16)
C4—C3—H3A109.7C16—C15—H15119.9
C2—C3—H3A109.7C14—C15—H15119.9
C4—C3—H3B109.7C17—C16—C15119.48 (15)
C2—C3—H3B109.7C17—C16—H16120.3
H3A—C3—H3B108.2C15—C16—H16120.3
C3—C4—C5109.13 (11)C16—C17—C18120.55 (15)
C3—C4—H4A109.9C16—C17—H17119.7
C5—C4—H4A109.9C18—C17—H17119.7
C3—C4—H4B109.9C17—C18—C13120.63 (15)
C5—C4—H4B109.9C17—C18—H18119.7
H4A—C4—H4B108.3C13—C18—H18119.7
C4—C5—C21113.54 (11)O1—C19—N1121.72 (12)
C4—C5—C6111.60 (11)O1—C19—C20119.50 (13)
C21—C5—C6110.21 (11)N1—C19—C20118.78 (12)
C4—C5—H5107.0C19—C20—H20A109.5
C21—C5—H5107.0C19—C20—H20B109.5
C6—C5—H5107.0H20A—C20—H20B109.5
N1—C6—C7112.27 (10)C19—C20—H20C109.5
N1—C6—C5113.89 (10)H20A—C20—H20C109.5
C7—C6—C5114.11 (10)H20B—C20—H20C109.5
N1—C6—H6105.2C23—C21—C22109.18 (14)
C7—C6—H6105.2C23—C21—C5113.34 (13)
C5—C6—H6105.2C22—C21—C5111.18 (13)
C8—C7—C12117.74 (13)C23—C21—H21107.6
C8—C7—C6122.99 (12)C22—C21—H21107.6
C12—C7—C6119.25 (12)C5—C21—H21107.6
C7—C8—C9121.13 (14)C21—C22—H22A109.5
C7—C8—H8119.4C21—C22—H22B109.5
C9—C8—H8119.4H22A—C22—H22B109.5
C10—C9—C8120.00 (15)C21—C22—H22C109.5
C10—C9—H9120.0H22A—C22—H22C109.5
C8—C9—H9120.0H22B—C22—H22C109.5
C9—C10—C11120.01 (15)C21—C23—H23A109.5
C9—C10—H10120.0C21—C23—H23B109.5
C11—C10—H10120.0H23A—C23—H23B109.5
C10—C11—C12120.09 (15)C21—C23—H23C109.5
C10—C11—H11120.0H23A—C23—H23C109.5
C12—C11—H11120.0H23B—C23—H23C109.5
C11—C12—C7121.02 (15)C19—N1—C2120.44 (11)
C11—C12—H12119.5C19—N1—C6116.00 (10)
C7—C12—H12119.5C2—N1—C6123.43 (10)
N1—C2—C3—C439.81 (16)C18—C13—C14—C151.0 (3)
C13—C2—C3—C4168.43 (12)C2—C13—C14—C15179.32 (15)
C2—C3—C4—C572.53 (16)C13—C14—C15—C160.5 (3)
C3—C4—C5—C21173.93 (13)C14—C15—C16—C170.5 (3)
C3—C4—C5—C648.63 (16)C15—C16—C17—C180.9 (3)
C4—C5—C6—N11.38 (15)C16—C17—C18—C130.4 (3)
C21—C5—C6—N1125.74 (12)C14—C13—C18—C170.5 (2)
C4—C5—C6—C7129.33 (12)C2—C13—C18—C17179.74 (14)
C21—C5—C6—C7103.55 (13)C4—C5—C21—C2348.70 (19)
N1—C6—C7—C882.58 (15)C6—C5—C21—C23174.73 (14)
C5—C6—C7—C848.92 (16)C4—C5—C21—C22172.13 (14)
N1—C6—C7—C1298.65 (13)C6—C5—C21—C2261.84 (16)
C5—C6—C7—C12129.85 (12)O1—C19—N1—C2177.54 (12)
C12—C7—C8—C90.2 (2)C20—C19—N1—C23.16 (18)
C6—C7—C8—C9178.56 (13)O1—C19—N1—C66.49 (18)
C7—C8—C9—C100.3 (2)C20—C19—N1—C6172.81 (11)
C8—C9—C10—C110.5 (3)C13—C2—N1—C1969.70 (15)
C9—C10—C11—C120.2 (2)C3—C2—N1—C19162.84 (12)
C10—C11—C12—C70.4 (2)C13—C2—N1—C6114.64 (13)
C8—C7—C12—C110.6 (2)C3—C2—N1—C612.81 (17)
C6—C7—C12—C11178.28 (13)C7—C6—N1—C1987.19 (13)
N1—C2—C13—C1423.54 (19)C5—C6—N1—C19141.19 (11)
C3—C2—C13—C14103.05 (16)C7—C6—N1—C296.97 (13)
N1—C2—C13—C18156.75 (12)C5—C6—N1—C234.64 (15)
C3—C2—C13—C1876.66 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.543.4378 (19)163
Symmetry code: (i) x1/2, y+1/2, z1/2.
Calculated frontier molecular orbital analysis of the title compound top
ParameterValue
EHOMO (eV)-4.804
ELUMO (eV)-1.694
Energy gap, ΔE (eV)3.110
HOMO-1 (eV)-5.478
LUMO+1 (eV)-1.113
Ionization potential, I (eV)4.804
Electron affinity, A1.694
Electrophilicity Index, ω3.394
Hardness , η1.555
Electro negativity, χ3.249
Softness, σ0.322
 

Acknowledgements

The authors thank the SAIF, IIT Madras, India, for the data collection.

Funding information

KR thanks the UGC, New Delhi, for financial assistance in the form of a Minor Research Project.

References

First citationAllen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBadorrey, R., Cativiela, C., Díaz-de-Villegas, M. D. & Gálvez, J. A. (1999). Tetrahedron, 55, 7601–7612.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleming, I. (1976). Frontier Orbitals and Organic Chemical Reactions. London: Wiley.  Google Scholar
First citationFrisch, M. J., , et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKoenderink, J. J. (1990). Solid Shape. Cambridge MA: MIT Press.  Google Scholar
First citationKoenderink, J. J. & van Doorn, A. J. (1992). Image Vis. Comput. 10, 557–564.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaheshwaran, V., Abdul Basheer, S., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o1371.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationMohamooda Sumaya, U., Sankar, E., Arasambattu MohanaKrishnan, K., Biruntha, K. & Usha, G. (2018). Acta Cryst. E74, 878–883.  CSD CrossRef IUCr Journals Google Scholar
First citationRavindran, T. & Jeyaraman, R. (1992). Indian J. Chem. B31, 677–682.  Google Scholar
First citationSampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105–o2106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta, A153, 625–636.  Web of Science CSD CrossRef Google Scholar
First citationWagstaff, A. J., Cheer, S. M., Matheson, A. J., Ormrod, D. & Goa, K. L. (2002). Drugs, 62, 655–703.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds