research communications
r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one
Hirshfeld surface analysis and DFT studies of 1-[aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, and bPG and Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018., Tamil Nadu, India
*Correspondence e-mail: kravichandran05@gmail.com
In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, molecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule.
Keywords: crystal structure; piperidine derivative; Hirshfeld surface; DFT.
CCDC reference: 1814839
1. Chemical context
Piperidine is a heterocyclic six-membered ring containing nitrogen as a hetero atom and is an essential structural part of many important drugs including paroxetine, raloxifene, haloperidol, droperidol and minoxidiln (Wagstaff et al., 2002). Piperidine derivatives exhibit a wide range of biological activities, such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetic (Aridoss et al., 2009). The biological properties of piperidines are highly dependent on the type and position of substituents on the heterocyclic ring. 2,6-Disubstituted piperidine derivatives have been found to possess fungicidal, bactericidal and herbicidal activities (Mobio et al., 1989). Piperidine derivatives are the intermediate products in agrochemicals, pharmaceuticals, rubber vulcanization accelerators and are widely used as building block molecules in many industries. Various piperidine derivatives are present in numerous (Badorrey et al., 1999).
This wide range of biological activities prompted us to synthesize novel 2,6-diphenyl piperdine derivatives. Against this background, the structure of the title compound has been determined.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The diphenyl-substituted piperidine compound crystallizes in the monoclinic P21/n. The bond lengths and angles are well within the expected limits and comparable with literature values (Allen et al., 1998).
The piperidine ring adopts a chair conformation with the puckering parameters Q2 = 0.6191 (15) Å and ϕ2 = 335.12 (14) Å. The piperidine ring (N1/C2–C6) makes dihedral angles of 89.78 (7) and 48.30 (8)°, respectively, with the C7–12 and C13–C18 phenyl rings, and confirms the fact that the moieties are in an axial orientations.
The keto and methyl groups substituted at atom C19 are equatorially orientated as confirmed from the torsion angle values O1—C19—N1—C2 = 177.54 (12)° and C20—C19—N1—C6 = 172.81 (11)°. In the molecule, the isopropyl group substituted at the 5-position of the piperidine ring is equatorially oriented, as confirmed by the torsion angles of C4—C5—C21—C22 = −172.13 (14)° and C6—C5—C21—C23 = −174.73 (14)°. The sum of the bond angles (359.87°) around atom N1 of the piperidine ring is in accordance with the sp2-hybridization state (Beddoes et al., 1986).
3. Supramolecular features
In the crystal, molecules are linked into C(8) chains along the b-axis direction by C—H⋯O hydrogen bonds (Table 1, Fig. 2). The overall crystal packing of the title compound is shown in Fig. 3.
4. DFT study
The optimized structure of the molecule in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke et al., 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009).
The overlay diagram for the optimized structure (purple) and the structure in solid state (green) with respect to the piperidine ring is shown in Fig. 4. The piperidine rings in the two phases have an r.m.s deviation of 0.434 Å for the non-hydrogen atoms. The conformation of the molecules in the two phases differs with respect to the central piperidine ring, as seen in the disparity of about 38.5° in the N1—C6—C5—C4 torsion angles (39.88/1.38°) and 2.25° in the N1—C2—C3—C4 torsion angles (44.41/39.81°) for the optimized and solid-state molecules, respectively.
The highest-occupied molecular orbital (HOMO), acting as an ). When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The electron distribution of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5. The positive and negative phases are shown in green and red, respectively.
and the lowest-unoccupied molecular orbital (LUMO), acting as an are known as frontier molecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry (Fleming, 1976The HOMO of the title molecule is localized on the C=O group, one aromatic ring and the piperidine ring, while the LUMO is located over the whole molecule expect for the isopropyl group. The DFT study shows that the FMO energies EHOMO and ELUMO are −4.804 and −1.694 eV, respectively, and the HOMO–LUMO energy gap is 3.110 eV. The title compound has a small frontier orbital gap, hence the molecule has high chemical reactivity and low kinetic stability.
The I) and (A) of the molecule were calculated using the DFT/B3LYP/6-311++G(d,p) basis set. A high value of the index describes a good while a small value of index describes a good The values of the hardness (η), softness (σ), (χ) and index (ω) for the title compound are given in Table 2.
(
|
5. Hirshfeld surface analysis
CrystalExplorer17 (Turner et al., 2017) was used for the Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) and to generate the associated two-dimensional fingerprint plots (McKinnon et al., 2007) to quantify the various intermolecular interactions in the structure of the title compound. In the HS plotted over dnorm (Fig. 6), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016).
The HS mapped over curvedness and shape-index, introduced by Koendrink (Koenderink, 1990; Koenderink & van Doorn, 1992), give further chemical insight into molecular packing. A surface with low curvedness designates a flat region and may be indicative of π–π stacking in the crystal. A Hirshfeld surface with high curvedness is highlighted as dark-blue edges, and is indicative of the absence of π–π stacking (Fig. 6). The nearest neighbour coordination environment of a molecule is identified from the colour patches on the Hirshfeld surface, depending on their closeness to adjacent molecules (Mohamooda Sumaya et al., 2018).
The 2D fingerprint plots of the di and de points for the contacts contributing to the Hirshfeld surface are shown in Fig. 7. They indicate that intermolecular H⋯H contacts provide the largest contribution (74.2%) to the Hirshfeld surface. The percentage contributions of the other interactions are C⋯H/H⋯C = 18.7%, O⋯H/H⋯O = 7.0% and N⋯H/H⋯N = 0.1%. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions suggest that hydrogen bonding and van der Waals interactions play the major roles in the crystal packing (Hathwar et al., 2015).
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) using piperidine as the main skeleton revealed the presence of more than 30 records with different substituents on the piperidine ring. However, there are only two compounds with the same skeleton as the title compound, viz. r-2,c-6-diphenylpiperidine (NIKYEN; Maheshwaran et al., 2013) and methyl 4-oxo-r-2,c-6-diphenylpiperidine-3-carboxylate (BIHZEY; Sampath et al., 2004). In these compounds, the piperidine ring adopts a chair conformation as the title compound. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend dihedral angles of 89.78 (7) and 48.30 (8)°, respectively, with the best plane of the piperidine ring in the title compound and 81.04 (7) and 81.10 (7)°, respectively, in NIKYEN, whereas in BIHZEY they are equatorially oriented. The C—H⋯O interaction leads to the formation of a C(8) chain in the title compound, while it forms dimers in the other two structures.
7. Synthesis and crystallization
t-3-Isopropyl-r-2,c-6-diphenylpiperidin-4-one was reduced to the corresponding piperidine using the Wolf–Kishner reduction (Ravindran & Jeyaraman, 1992). Piperidine-4-one (10 mmol) was treated with diethylene glycol (40 ml), hydrazine hydrate (10 mmol) and KOH pellets (10 mmol) to give t-3-isopropyl-r-2,c-6-diphenylpiperidine. N-Acetyl piperidine was synthesized by the acetylation of the above piperidine. To t-3-isopropyl-r-2,c-6-diphenylpiperidine (5 mmol) dissolved in benzene (50 ml) were added triethylamine (20 mmol) and acetyl chloride (20 mmol) to give the title compound, which was crystallized by slow evaporation from a benzene/petroleum ether (v:v = ?:?) solution.
8. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (N—H = 0.88–0.90 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.
details are summarized in Table 3Supporting information
CCDC reference: 1814839
https://doi.org/10.1107/S2056989020002042/dx2023sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002042/dx2023Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002042/dx2023Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2020).C22H27NO | F(000) = 696 |
Mr = 321.44 | Dx = 1.155 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3077 (5) Å | Cell parameters from 3546 reflections |
b = 10.3009 (4) Å | θ = 1.9–30.2° |
c = 13.9338 (5) Å | µ = 0.07 mm−1 |
β = 104.657 (1)° | T = 296 K |
V = 1847.91 (12) Å3 | Block, white crystalline |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Bruker SMART APEXII CCD diffractometer | 3546 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
ω and φ scans | θmax = 30.2°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −18→18 |
Tmin = 0.979, Tmax = 0.986 | k = −14→14 |
43393 measured reflections | l = −19→19 |
5246 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0897P)2 + 0.2822P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.169 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.45 e Å−3 |
5246 reflections | Δρmin = −0.22 e Å−3 |
221 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.028 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.65890 (11) | −0.04974 (12) | 0.67960 (9) | 0.0430 (3) | |
H2 | 0.710803 | −0.117590 | 0.703575 | 0.052* | |
C3 | 0.55791 (12) | −0.11907 (14) | 0.63075 (11) | 0.0535 (4) | |
H3A | 0.509789 | −0.058442 | 0.589793 | 0.064* | |
H3B | 0.571443 | −0.188289 | 0.588507 | 0.064* | |
C4 | 0.51045 (13) | −0.17493 (14) | 0.70987 (12) | 0.0553 (4) | |
H4A | 0.562934 | −0.221549 | 0.758707 | 0.066* | |
H4B | 0.455515 | −0.235360 | 0.680048 | 0.066* | |
C5 | 0.46657 (10) | −0.06466 (13) | 0.75983 (10) | 0.0434 (3) | |
H5 | 0.406942 | −0.029180 | 0.710452 | 0.052* | |
C6 | 0.54640 (9) | 0.04763 (12) | 0.79099 (9) | 0.0386 (3) | |
H6 | 0.561919 | 0.050544 | 0.863560 | 0.046* | |
C7 | 0.50324 (9) | 0.18152 (12) | 0.75655 (9) | 0.0401 (3) | |
C8 | 0.44865 (11) | 0.20754 (15) | 0.65996 (11) | 0.0509 (3) | |
H8 | 0.438587 | 0.141664 | 0.612841 | 0.061* | |
C9 | 0.40861 (12) | 0.33048 (16) | 0.63217 (13) | 0.0608 (4) | |
H9 | 0.372408 | 0.346381 | 0.566876 | 0.073* | |
C10 | 0.42249 (12) | 0.42814 (15) | 0.70093 (15) | 0.0649 (5) | |
H10 | 0.395238 | 0.510190 | 0.682456 | 0.078* | |
C11 | 0.47650 (13) | 0.40503 (15) | 0.79693 (15) | 0.0639 (4) | |
H11 | 0.486050 | 0.471484 | 0.843544 | 0.077* | |
C12 | 0.51698 (11) | 0.28257 (14) | 0.82473 (11) | 0.0508 (3) | |
H12 | 0.553878 | 0.267904 | 0.889987 | 0.061* | |
C13 | 0.69896 (10) | 0.03120 (13) | 0.60592 (9) | 0.0435 (3) | |
C14 | 0.68956 (14) | 0.16488 (15) | 0.59909 (12) | 0.0593 (4) | |
H14 | 0.656620 | 0.209142 | 0.640704 | 0.071* | |
C15 | 0.72856 (16) | 0.23353 (17) | 0.53114 (13) | 0.0693 (5) | |
H15 | 0.722127 | 0.323421 | 0.527699 | 0.083* | |
C16 | 0.77685 (15) | 0.16916 (19) | 0.46859 (13) | 0.0695 (5) | |
H16 | 0.803555 | 0.215281 | 0.423235 | 0.083* | |
C17 | 0.78528 (15) | 0.03651 (18) | 0.47370 (13) | 0.0664 (5) | |
H17 | 0.816965 | −0.007417 | 0.430922 | 0.080* | |
C18 | 0.74709 (12) | −0.03242 (15) | 0.54185 (11) | 0.0528 (4) | |
H18 | 0.753688 | −0.122304 | 0.544822 | 0.063* | |
C19 | 0.73417 (10) | 0.06355 (13) | 0.83744 (10) | 0.0443 (3) | |
C20 | 0.83981 (11) | 0.02750 (16) | 0.82495 (13) | 0.0565 (4) | |
H20A | 0.851320 | 0.070404 | 0.767506 | 0.085* | |
H20B | 0.843344 | −0.064779 | 0.816729 | 0.085* | |
H20C | 0.892096 | 0.053889 | 0.882667 | 0.085* | |
C21 | 0.42650 (12) | −0.10889 (15) | 0.84920 (12) | 0.0546 (4) | |
H21 | 0.486985 | −0.132684 | 0.902717 | 0.065* | |
C22 | 0.37021 (14) | 0.00100 (17) | 0.88713 (14) | 0.0665 (5) | |
H22A | 0.313140 | 0.030351 | 0.834665 | 0.100* | |
H22B | 0.417520 | 0.071598 | 0.909149 | 0.100* | |
H22C | 0.344502 | −0.029708 | 0.941477 | 0.100* | |
C23 | 0.35598 (17) | −0.22597 (19) | 0.82723 (17) | 0.0826 (6) | |
H23A | 0.299342 | −0.208302 | 0.770673 | 0.124* | |
H23B | 0.329279 | −0.244610 | 0.883608 | 0.124* | |
H23C | 0.394522 | −0.299376 | 0.813439 | 0.124* | |
N1 | 0.64819 (8) | 0.02265 (10) | 0.76798 (7) | 0.0396 (2) | |
O1 | 0.72737 (8) | 0.12759 (12) | 0.90987 (7) | 0.0591 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0512 (7) | 0.0375 (6) | 0.0451 (7) | 0.0024 (5) | 0.0209 (6) | −0.0028 (5) |
C3 | 0.0679 (9) | 0.0462 (7) | 0.0528 (8) | −0.0114 (7) | 0.0272 (7) | −0.0134 (6) |
C4 | 0.0683 (9) | 0.0406 (7) | 0.0652 (9) | −0.0110 (6) | 0.0322 (7) | −0.0093 (6) |
C5 | 0.0452 (7) | 0.0406 (6) | 0.0475 (7) | −0.0036 (5) | 0.0172 (5) | −0.0013 (5) |
C6 | 0.0403 (6) | 0.0406 (6) | 0.0370 (6) | −0.0001 (5) | 0.0135 (5) | −0.0022 (5) |
C7 | 0.0361 (6) | 0.0390 (6) | 0.0482 (7) | −0.0005 (5) | 0.0159 (5) | −0.0026 (5) |
C8 | 0.0510 (8) | 0.0485 (7) | 0.0519 (8) | 0.0004 (6) | 0.0102 (6) | 0.0004 (6) |
C9 | 0.0479 (8) | 0.0585 (9) | 0.0731 (10) | 0.0054 (7) | 0.0097 (7) | 0.0153 (8) |
C10 | 0.0458 (8) | 0.0446 (8) | 0.1057 (14) | 0.0073 (6) | 0.0220 (9) | 0.0102 (8) |
C11 | 0.0551 (9) | 0.0444 (8) | 0.0961 (13) | 0.0018 (6) | 0.0264 (8) | −0.0164 (8) |
C12 | 0.0490 (8) | 0.0469 (7) | 0.0585 (8) | −0.0001 (6) | 0.0171 (6) | −0.0094 (6) |
C13 | 0.0444 (7) | 0.0455 (7) | 0.0436 (7) | −0.0016 (5) | 0.0166 (5) | −0.0024 (5) |
C14 | 0.0767 (10) | 0.0461 (8) | 0.0656 (9) | 0.0005 (7) | 0.0375 (8) | 0.0000 (7) |
C15 | 0.0948 (13) | 0.0505 (9) | 0.0723 (10) | −0.0069 (8) | 0.0390 (9) | 0.0065 (8) |
C16 | 0.0826 (12) | 0.0743 (11) | 0.0609 (9) | −0.0179 (9) | 0.0357 (9) | 0.0030 (8) |
C17 | 0.0757 (11) | 0.0735 (11) | 0.0628 (9) | −0.0068 (9) | 0.0411 (8) | −0.0087 (8) |
C18 | 0.0575 (8) | 0.0527 (8) | 0.0548 (8) | 0.0004 (6) | 0.0264 (7) | −0.0062 (6) |
C19 | 0.0435 (7) | 0.0426 (7) | 0.0472 (7) | 0.0009 (5) | 0.0122 (5) | 0.0026 (5) |
C20 | 0.0419 (7) | 0.0572 (9) | 0.0714 (10) | 0.0005 (6) | 0.0162 (7) | 0.0017 (7) |
C21 | 0.0575 (8) | 0.0525 (8) | 0.0612 (8) | −0.0021 (6) | 0.0287 (7) | 0.0055 (6) |
C22 | 0.0701 (10) | 0.0686 (10) | 0.0743 (10) | −0.0087 (8) | 0.0433 (9) | −0.0094 (8) |
C23 | 0.0985 (15) | 0.0604 (11) | 0.1080 (15) | −0.0175 (10) | 0.0617 (12) | −0.0009 (10) |
N1 | 0.0411 (5) | 0.0404 (5) | 0.0398 (5) | 0.0016 (4) | 0.0149 (4) | −0.0026 (4) |
O1 | 0.0509 (6) | 0.0719 (7) | 0.0518 (6) | −0.0013 (5) | 0.0080 (4) | −0.0156 (5) |
C2—N1 | 1.4770 (15) | C13—C14 | 1.384 (2) |
C2—C13 | 1.5199 (18) | C13—C18 | 1.3878 (18) |
C2—C3 | 1.522 (2) | C14—C15 | 1.384 (2) |
C2—H2 | 0.9800 | C14—H14 | 0.9300 |
C3—C4 | 1.516 (2) | C15—C16 | 1.377 (3) |
C3—H3A | 0.9700 | C15—H15 | 0.9300 |
C3—H3B | 0.9700 | C16—C17 | 1.371 (3) |
C4—C5 | 1.5238 (19) | C16—H16 | 0.9300 |
C4—H4A | 0.9700 | C17—C18 | 1.381 (2) |
C4—H4B | 0.9700 | C17—H17 | 0.9300 |
C5—C21 | 1.5422 (19) | C18—H18 | 0.9300 |
C5—C6 | 1.5561 (18) | C19—O1 | 1.2280 (16) |
C5—H5 | 0.9800 | C19—N1 | 1.3648 (17) |
C6—N1 | 1.4913 (15) | C19—C20 | 1.5061 (19) |
C6—C7 | 1.5241 (17) | C20—H20A | 0.9600 |
C6—H6 | 0.9800 | C20—H20B | 0.9600 |
C7—C8 | 1.3843 (19) | C20—H20C | 0.9600 |
C7—C12 | 1.3897 (18) | C21—C23 | 1.511 (2) |
C8—C9 | 1.390 (2) | C21—C22 | 1.524 (2) |
C8—H8 | 0.9300 | C21—H21 | 0.9800 |
C9—C10 | 1.369 (2) | C22—H22A | 0.9600 |
C9—H9 | 0.9300 | C22—H22B | 0.9600 |
C10—C11 | 1.370 (3) | C22—H22C | 0.9600 |
C10—H10 | 0.9300 | C23—H23A | 0.9600 |
C11—C12 | 1.388 (2) | C23—H23B | 0.9600 |
C11—H11 | 0.9300 | C23—H23C | 0.9600 |
C12—H12 | 0.9300 | ||
N1—C2—C13 | 114.24 (10) | C14—C13—C18 | 118.30 (13) |
N1—C2—C3 | 110.44 (10) | C14—C13—C2 | 123.46 (12) |
C13—C2—C3 | 112.10 (11) | C18—C13—C2 | 118.25 (12) |
N1—C2—H2 | 106.5 | C15—C14—C13 | 120.84 (15) |
C13—C2—H2 | 106.5 | C15—C14—H14 | 119.6 |
C3—C2—H2 | 106.5 | C13—C14—H14 | 119.6 |
C4—C3—C2 | 109.64 (12) | C16—C15—C14 | 120.20 (16) |
C4—C3—H3A | 109.7 | C16—C15—H15 | 119.9 |
C2—C3—H3A | 109.7 | C14—C15—H15 | 119.9 |
C4—C3—H3B | 109.7 | C17—C16—C15 | 119.48 (15) |
C2—C3—H3B | 109.7 | C17—C16—H16 | 120.3 |
H3A—C3—H3B | 108.2 | C15—C16—H16 | 120.3 |
C3—C4—C5 | 109.13 (11) | C16—C17—C18 | 120.55 (15) |
C3—C4—H4A | 109.9 | C16—C17—H17 | 119.7 |
C5—C4—H4A | 109.9 | C18—C17—H17 | 119.7 |
C3—C4—H4B | 109.9 | C17—C18—C13 | 120.63 (15) |
C5—C4—H4B | 109.9 | C17—C18—H18 | 119.7 |
H4A—C4—H4B | 108.3 | C13—C18—H18 | 119.7 |
C4—C5—C21 | 113.54 (11) | O1—C19—N1 | 121.72 (12) |
C4—C5—C6 | 111.60 (11) | O1—C19—C20 | 119.50 (13) |
C21—C5—C6 | 110.21 (11) | N1—C19—C20 | 118.78 (12) |
C4—C5—H5 | 107.0 | C19—C20—H20A | 109.5 |
C21—C5—H5 | 107.0 | C19—C20—H20B | 109.5 |
C6—C5—H5 | 107.0 | H20A—C20—H20B | 109.5 |
N1—C6—C7 | 112.27 (10) | C19—C20—H20C | 109.5 |
N1—C6—C5 | 113.89 (10) | H20A—C20—H20C | 109.5 |
C7—C6—C5 | 114.11 (10) | H20B—C20—H20C | 109.5 |
N1—C6—H6 | 105.2 | C23—C21—C22 | 109.18 (14) |
C7—C6—H6 | 105.2 | C23—C21—C5 | 113.34 (13) |
C5—C6—H6 | 105.2 | C22—C21—C5 | 111.18 (13) |
C8—C7—C12 | 117.74 (13) | C23—C21—H21 | 107.6 |
C8—C7—C6 | 122.99 (12) | C22—C21—H21 | 107.6 |
C12—C7—C6 | 119.25 (12) | C5—C21—H21 | 107.6 |
C7—C8—C9 | 121.13 (14) | C21—C22—H22A | 109.5 |
C7—C8—H8 | 119.4 | C21—C22—H22B | 109.5 |
C9—C8—H8 | 119.4 | H22A—C22—H22B | 109.5 |
C10—C9—C8 | 120.00 (15) | C21—C22—H22C | 109.5 |
C10—C9—H9 | 120.0 | H22A—C22—H22C | 109.5 |
C8—C9—H9 | 120.0 | H22B—C22—H22C | 109.5 |
C9—C10—C11 | 120.01 (15) | C21—C23—H23A | 109.5 |
C9—C10—H10 | 120.0 | C21—C23—H23B | 109.5 |
C11—C10—H10 | 120.0 | H23A—C23—H23B | 109.5 |
C10—C11—C12 | 120.09 (15) | C21—C23—H23C | 109.5 |
C10—C11—H11 | 120.0 | H23A—C23—H23C | 109.5 |
C12—C11—H11 | 120.0 | H23B—C23—H23C | 109.5 |
C11—C12—C7 | 121.02 (15) | C19—N1—C2 | 120.44 (11) |
C11—C12—H12 | 119.5 | C19—N1—C6 | 116.00 (10) |
C7—C12—H12 | 119.5 | C2—N1—C6 | 123.43 (10) |
N1—C2—C3—C4 | −39.81 (16) | C18—C13—C14—C15 | −1.0 (3) |
C13—C2—C3—C4 | −168.43 (12) | C2—C13—C14—C15 | 179.32 (15) |
C2—C3—C4—C5 | 72.53 (16) | C13—C14—C15—C16 | 0.5 (3) |
C3—C4—C5—C21 | −173.93 (13) | C14—C15—C16—C17 | 0.5 (3) |
C3—C4—C5—C6 | −48.63 (16) | C15—C16—C17—C18 | −0.9 (3) |
C4—C5—C6—N1 | −1.38 (15) | C16—C17—C18—C13 | 0.4 (3) |
C21—C5—C6—N1 | 125.74 (12) | C14—C13—C18—C17 | 0.5 (2) |
C4—C5—C6—C7 | 129.33 (12) | C2—C13—C18—C17 | −179.74 (14) |
C21—C5—C6—C7 | −103.55 (13) | C4—C5—C21—C23 | −48.70 (19) |
N1—C6—C7—C8 | 82.58 (15) | C6—C5—C21—C23 | −174.73 (14) |
C5—C6—C7—C8 | −48.92 (16) | C4—C5—C21—C22 | −172.13 (14) |
N1—C6—C7—C12 | −98.65 (13) | C6—C5—C21—C22 | 61.84 (16) |
C5—C6—C7—C12 | 129.85 (12) | O1—C19—N1—C2 | 177.54 (12) |
C12—C7—C8—C9 | −0.2 (2) | C20—C19—N1—C2 | −3.16 (18) |
C6—C7—C8—C9 | 178.56 (13) | O1—C19—N1—C6 | −6.49 (18) |
C7—C8—C9—C10 | −0.3 (2) | C20—C19—N1—C6 | 172.81 (11) |
C8—C9—C10—C11 | 0.5 (3) | C13—C2—N1—C19 | −69.70 (15) |
C9—C10—C11—C12 | −0.2 (2) | C3—C2—N1—C19 | 162.84 (12) |
C10—C11—C12—C7 | −0.4 (2) | C13—C2—N1—C6 | 114.64 (13) |
C8—C7—C12—C11 | 0.6 (2) | C3—C2—N1—C6 | −12.81 (17) |
C6—C7—C12—C11 | −178.28 (13) | C7—C6—N1—C19 | 87.19 (13) |
N1—C2—C13—C14 | −23.54 (19) | C5—C6—N1—C19 | −141.19 (11) |
C3—C2—C13—C14 | 103.05 (16) | C7—C6—N1—C2 | −96.97 (13) |
N1—C2—C13—C18 | 156.75 (12) | C5—C6—N1—C2 | 34.64 (15) |
C3—C2—C13—C18 | −76.66 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.93 | 2.54 | 3.4378 (19) | 163 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Parameter | Value |
EHOMO (eV) | -4.804 |
ELUMO (eV) | -1.694 |
Energy gap, ΔE (eV) | 3.110 |
HOMO-1 (eV) | -5.478 |
LUMO+1 (eV) | -1.113 |
Ionization potential, I (eV) | 4.804 |
Electron affinity, A | 1.694 |
Electrophilicity Index, ω | 3.394 |
Hardness , η | 1.555 |
Electro negativity, χ | 3.249 |
Softness, σ | 0.322 |
Acknowledgements
The authors thank the SAIF, IIT Madras, India, for the data collection.
Funding information
KR thanks the UGC, New Delhi, for financial assistance in the form of a Minor Research Project.
References
Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592. Web of Science CrossRef PubMed CAS Google Scholar
Badorrey, R., Cativiela, C., Díaz-de-Villegas, M. D. & Gálvez, J. A. (1999). Tetrahedron, 55, 7601–7612. Web of Science CrossRef CAS Google Scholar
Becke, A. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797. CSD CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fleming, I. (1976). Frontier Orbitals and Organic Chemical Reactions. London: Wiley. Google Scholar
Frisch, M. J., , et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Koenderink, J. J. (1990). Solid Shape. Cambridge MA: MIT Press. Google Scholar
Koenderink, J. J. & van Doorn, A. J. (1992). Image Vis. Comput. 10, 557–564. CrossRef Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maheshwaran, V., Abdul Basheer, S., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o1371. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427. CAS Google Scholar
Mohamooda Sumaya, U., Sankar, E., Arasambattu MohanaKrishnan, K., Biruntha, K. & Usha, G. (2018). Acta Cryst. E74, 878–883. CSD CrossRef IUCr Journals Google Scholar
Ravindran, T. & Jeyaraman, R. (1992). Indian J. Chem. B31, 677–682. Google Scholar
Sampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105–o2106. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta, A153, 625–636. Web of Science CSD CrossRef Google Scholar
Wagstaff, A. J., Cheer, S. M., Matheson, A. J., Ormrod, D. & Goa, K. L. (2002). Drugs, 62, 655–703. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.