research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural, Hirshfeld and DFT studies of conjugated DπA carbazole chalcone crystal

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Fundamental Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 December 2019; accepted 12 February 2020; online 18 February 2020)

A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-di­hydro-8aH-carbazol-9-yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethyl­enic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π inter­actions whose percentage contribution was qu­anti­fied by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and mol­ecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set.

1. Chemical context

Chalcone is a privileged structure comprising two aromatic rings that are linked by a three-carbon α,β-unsaturated carbonyl system. Chalcones demonstrate wide-ranging bio­logical activities such as anti-inflammatory and anti­cancer (Cui et al., 2008[Cui, Y., Ao, M., Hu, J. & Yu, L. (2008). Z. Naturforsch. C. 63, 361-365.]; Srinivasan et al., 2009[Srinivasan, B., Johnson, T. E., Lad, R. & Xing, C. (2009). J. Med. Chem. 52, 7228-7235.]; Wang et al., 2013[Wang, Z., Wang, N., Han, S., Wang, D., Mo, S., Yu, L., Huang, H., Tsui, K., Shen, J. & Chen, J. (2013). PLoS One, 8, e68566.]) and have applications in non-linear optics (Zaini, Arshad et al., 2019[Zaini, M. F., Arshad, S., Thanigaimani, K., Khalib, N. C., Zainuri, D. A., Abdullah, M. & Razak, I. A. (2019). J. Mol. Struct. 1195, 606-619.]). They are currently attracting considerable attention because they offer an excellent π-conjugated system within the double bond at the ethyl­enic bridge (Teo et al., 2017[Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., Khairul, W. M. & Tay, M. G. (2017). J. Mol. Struct. 1143, 42-48.]). Furthermore, the conjugated chalcone could be enhanced with appropriate electron-pulling and electron-pushing functional groups on the benzene rings (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810]). The increased involvement of donor and acceptor inter­actions in the mol­ecule improves the mol­ecular charge transfer and degree of non-linearity (Davanagere et al., 2019[Davanagere, H., Jayarama, A., Patil, P. S. G., Maidur, S. R., Quah, C. K. & Kwong, H. C. (2019). Appl. Phys. A, 125, article No.309.]). The high planarity and presence of stable E isomer in the solid state stabilizes the crystal structure (Custodio et al., 2020[Custodio, J. M. F., Guimarães-Neto, J. J. A., Awad, R., Queiroz, J. E., Verde, G. M. V., Mottin, M., Neves, B. J., Andrade, C. H., Aquino, G. L. B., Valverde, C., Osório, F. A. P., Baseia, B. & Napolitano, H. B. (2020). Arab. J. Chem. 13, 3362-3371.]).

[Scheme 1]

In a continuation of our studies (Zaini et al., 2018[Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589-1594.]; Zaini, Razak et al., 2019[Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2019). Acta Cryst. E75, 685-689.]), we report herein the synthesis and structural properties of the conjugated carbazole chalcone system of (E)-3-[4-(9,9a-di­hydro-8aH-carbazol-9-yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one (CPNC). The experimental and theoretical studies and chemical reactivity analysis are discussed.

2. Structural commentary

CPNC is composed of 9-phenyl­carbazole and nitro­benzene moieties, which represent donor and acceptor groups, connected by an ethyl­enic bridge. The mol­ecular and optimized structures of the CPNC with assigned atom-numbering scheme are illustrated in Fig. 1[link]. The geometrical optimization of CPNC was computed with the Gaussian09W software package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H. & Vreven, T. (2009). Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, CT, USA.]) using the DFT method and the B3LYP/6-311G++(d,p) basis set without enforcing any mol­ecular symmetry constraints. There is good agreement between the experimental and optimized structures (see the table in the supporting information), indicating that the basis set used was appropriate in both isolated conditions and the solid-state phase.

[Figure 1]
Figure 1
(a) The crystal structure of CPNC showing 50% probability ellipsoids, (b) the optimized structure, (c) the dihedral angle between the nitro­benzene plane and the 9H-carbazole unit and (d) the dihedral angle between the nitro­benzene plane and the phenyl ring of the 9-phenyl­carbazole unit.

CPNC crystallizes in the monoclinic Cc space group with four mol­ecules per unit cell. Its mol­ecular structure exhibits an s-cis configuration with respect to the ethyl­enic bridge consisting of carbonyl (C=O; 1.215 (3) Å (experimental), 1.223 Å (DFT)] and carbon–carbon double bond (C=C; 1.320 (3) Å (experimental), 1.348 Å (DFT)]. The CPNC mol­ecule is twisted slightly at the C21—C22 bond, with a C20—C21—C22—C27 torsion angle of −10.4 (3)° (DFT value = −21.3°). The experimental and theoretical C15—C16—C19—C20 torsion angles are 158.6 (3) and 178.8°, respectively. The 9-phenyl­carbazole C13—N1 bond is also observed to be twisted [C1—N1—C13—C14 51.8 (4)° (in experimental) and 53.2° (DFT). The small discrepancies in the torsion angles between the experimental and calculated DFT results are caused by the involvement of inter­molecular inter­actions, which are negligible during the optimization process (Arshad et al., 2018[Arshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218-240.]).

There is also a twist [dihedral angle = 25.30 (17)°] between the mean planes of the nitro­phenyl group [N2/O2/O3/C22–C27; maximum deviation of 0.023 (2) Å at atom O3] and the enone unit [O1/C19–C21; maximum deviation of 0.109 (2) Å at atom C21]. Meanwhile, the enone bridge forms dihedral angles of 31.52 (18) and 21.77 (16)°, respectively, with the C13–C18 phenyl ring and the 9H-carbazole unit [N1/C1–C12; maximum deviation of 0.041 (3) Å at atom C2].

The 9H-carbazole unit and the C13–C18 phenyl ring subtend a dihedral angle of 53.26 (10)°, which is similar to the dihedral angle of 53.8 (3) between the bridge aromatic ring and the 9H-carbazole unit in the related compound 2-[4-(9H-carbazol-9-yl)benzyl­idene]-2,3-di­hydro­inden-1-one (Kim et al., 2011[Kim, B.-S., Kim, S.-H., Matsumoto, S. & Son, Y.-A. (2011). Z. Krist. New Cryst. Struct. 226, 177-178.]). The 9H-carbazole moiety is nearly co-planar with the nitro­benzene unit, making a dihedral angle of 5.19 (7)° (Fig. 1[link]c). This planar nature is possibly due to steric repulsion by the hydrogen atoms of the aromatic rings, leading to a small π-electron delocalization. However, the phenyl ring of the 9-phenyl­carbazole moiety subtends a large dihedral angle to the nitro­benzene group of 56.74 (10)° (Fig. 1[link]d), which tends to suppress the extension of the conjugation effect through the enone moiety.

3. Supra­molecular features

The crystal structure of CPNC is built up in a cluster pattern style where the mol­ecules are linked to each other along the b-axis direction via C15—H15A⋯O1 inter­actions (Table 1[link]), as shown in Fig. 2[link]a. The tilted distortion of 9-phenyl­carbazole ring system is the results of the C18—H18A⋯O2 inter­action involving the nitro group, which links the mol­ecules in a head-to-tail arrangement, propagating diagonally along the ac direction. Weak C9—H9ACg4 inter­actions involving the C13-C18 phenyl ring and a carbazole hydrogen of carbazole moiety link the mol­ecules into infinite chains, as depicted in Fig. 2[link]b. Overall, the inter­molecular C—H⋯O and C—H⋯π inter­actions of CPNC generate a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.93 2.42 3.291 (3) 155
C18—H18A⋯O2ii 0.93 2.56 3.490 (3) 173
C9—H9ACg4iii 0.93 2.89 3.758 (3) 155
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing of CPNC showing (a) C—H⋯O and C—H⋯π inter­actions (dashed lines) and (b) C—H⋯π inter­actions forming an infinite chain along the ac-plane direction.

4. Hirshfeld surface analysis

Hirshfeld surface analysis is used to gain a clear understanding of the mol­ecular structure inter­action and visualize them graphically. The Hirshfeld surface and related two-dimensional fingerprint plots were generated using Crystal Explorer3.1 (Wolff et al., 2012[Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. University of Western Australia.]). In the dnorm surface (Fig. 3[link]), the bright-red spots indicate the involvement of inter­molecular C—H⋯O inter­actions. The fingerprint plots (Ternavisk et al., 2014[Ternavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526.]) (Fig. 4[link]) indicate the percentage contribution of the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts. The H⋯H contacts make the largest contribution to the Hirshfeld surface (38.4%) followed by the C⋯H/H⋯C contacts (28.2%), which are represented as a pair of characteristic wings. The O⋯H/H⋯O (19.1%) contacts display two symmetrical narrow spikes, which confirm the existence of C—H⋯O inter­actions. In addition, the presence of weak inter­molecular C—H⋯π inter­actions can be seen as an orange region marked with black arrows in the shape-index surface (Fig. 5[link]).

[Figure 3]
Figure 3
The dnorm surfaces showing the inter­molecular inter­actions in CPNC: (a) front and (b) back.
[Figure 4]
Figure 4
Qu­anti­fication of different types of contacts and respective fingerprints plots.
[Figure 5]
Figure 5
Representation of the C—H⋯π inter­actions (indicated by black arrows).

5. Mol­ecular electrostatic potential (MEP) analysis

The reactive sites of a mol­ecule can be investigated using mol­ecular electrostatic potential (MEP) analysis (Barakat et al., 2015[Barakat, A., Al-Majid, A. M., Soliman, S. M., Mabkhot, Y. N., Ali, M., Ghabbour, H. A., Fun, H.-K. & Wadood, A. (2015). Chem. Cent. J. 9, 35.]). In this study, DFT with the B3LYP/6-311G++(d,p) basis set was utilized to predict the possible location of the nucleophilic and electrophilic attacks. The MEP surface with a colour code from red (−0.04728 a.u) to blue (0.04728 a.u) is depicted in Fig. 6[link]a. The carbonyl and nitro groups are nucleophilic (electron-rich) sites in the red-coloured region, while the blue colour indicates the electrophilic (electron-deficient) site localized on the hydrogen atom. These reactive sites are responsible for inter­molecular inter­actions where the red and blue spots suggest the strongest repulsion site (electrophilic attack) and strongest attraction site (nucleophilic attack), respectively. The MEP results are further supported by the electrostatic potential contour map showing the iso-surface lines shown in Fig. 6[link]b where the red lines refer to the strong electron-withdrawing atoms such as in carbonyl and nitro substituents.

[Figure 6]
Figure 6
(a) Mol­ecular electrostatic potentials (MEP) and (b) its contour map mapped on the electron density surface calculated by using the DFT/B3LYP/6–311 G++(d,p) basis set.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed one closely related 9-phenyl­carbazole chalcone, namely 1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phen­yl]prop-2-en-1-one (refcode ZIJPUG; Zainuri et al., 2018[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 1302-1308.]) with an anthracene system as the ketone substituent. Another similar compound is 2-[4-(9H-carbazol-9-yl)benzyl­idene]indan-1-one (ISADOW; Kim et al., 2011[Kim, B.-S., Kim, S.-H., Matsumoto, S. & Son, Y.-A. (2011). Z. Krist. New Cryst. Struct. 226, 177-178.]) in which the 9-phenyl­carbazole unit is attached to a 2,3-di­hydro-1H-inden-1-one moiety. The two crystals were grown by different methods, ZIJPUG by slow evaporation from acetone solution and ISADOW by solvent diffusion using di­chloro­methane and hexane. The reported mol­ecular structures of ZIJPUG and ISADOW exhibit a π-bridge linker of an enone moiety and the aromatic ring of 9-phenyl­carbazole, respectively. Furthermore, the C16—C17—C18—C19 torsion angle in ZIJPUG [−16.4 (3)°] indicates a slight twist, which is which comparable to that in ISADOW [C8—C10—C11—C12 = 178.6 (2)°].

7. Synthesis and crystallization

4′-Nitro­aceto­phenone (5 mmol) and N-(4-formyl­phen­yl)carbazole (5 mmol) were dissolved in 20 mL of methanol and then a catalytic amount of sodium hydroxide solution (5 mL, 20%) was added dropwise under continuous stirring for about 5–6 h at room temperature until a precipitate formed. This was filtered off, washed successively with distilled water and recrystallized from acetone solution, yielding orange block-shaped crystals suitable for X-ray diffraction analysis.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C27H18N2O3
Mr 418.43
Crystal system, space group Monoclinic, Cc
Temperature (K) 293
a, b, c (Å) 9.9690 (5), 24.8828 (15), 8.3049 (4)
β (°) 94.356 (1)
V3) 2054.13 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.54 × 0.38 × 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.783, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 39335, 5995, 5046
Rint 0.033
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.04
No. of reflections 5995
No. of parameters 289
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Absolute structure Flack x determined using 2241 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.1 (3)
Computer programs: APEX2 and SAINT (Bruker 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker 2015); cell refinement: SAINT (Bruker 2015); data reduction: SAINT (Bruker 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-[4-(9,9a-Dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C27H18N2O3F(000) = 872
Mr = 418.43Dx = 1.353 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 9.9690 (5) ÅCell parameters from 9847 reflections
b = 24.8828 (15) Åθ = 2.2–29.5°
c = 8.3049 (4) ŵ = 0.09 mm1
β = 94.356 (1)°T = 293 K
V = 2054.13 (19) Å3Block, orange
Z = 40.54 × 0.38 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
5046 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker 2015)
θmax = 30.0°, θmin = 1.6°
Tmin = 0.783, Tmax = 0.942h = 1314
39335 measured reflectionsk = 3434
5995 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.455P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.19 e Å3
5995 reflectionsΔρmin = 0.15 e Å3
289 parametersAbsolute structure: Flack x determined using 2241 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.1 (3)
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71074 8.313 9.985 13.418 68.212 88.424 85.648

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2822 (2)0.52900 (7)0.1628 (3)0.0715 (6)
O20.0014 (2)0.71634 (9)0.3674 (2)0.0685 (5)
O30.1029 (2)0.77955 (9)0.2279 (3)0.0681 (5)
N10.7901 (2)0.62943 (8)0.9806 (2)0.0491 (4)
N20.0790 (2)0.73213 (9)0.2556 (2)0.0514 (5)
C10.8488 (2)0.59669 (10)1.1043 (3)0.0494 (5)
C20.8433 (3)0.54134 (11)1.1238 (3)0.0640 (7)
H2A0.79170.51981.05140.077*
C30.9176 (4)0.51939 (13)1.2555 (4)0.0768 (9)
H3A0.91610.48241.27070.092*
C40.9943 (4)0.55101 (14)1.3656 (4)0.0748 (9)
H4A1.04350.53491.45220.090*
C50.9978 (3)0.60597 (13)1.3474 (3)0.0633 (7)
H5A1.04840.62721.42150.076*
C60.9240 (2)0.62937 (10)1.2159 (3)0.0482 (5)
C70.9091 (2)0.68404 (10)1.1603 (3)0.0462 (5)
C80.9545 (3)0.73328 (11)1.2227 (3)0.0574 (6)
H8A1.00900.73481.31850.069*
C90.9177 (3)0.77957 (11)1.1410 (4)0.0644 (7)
H9A0.94830.81261.18150.077*
C100.8351 (3)0.77768 (11)0.9983 (4)0.0615 (6)
H10A0.81060.80960.94590.074*
C110.7885 (3)0.72941 (10)0.9322 (3)0.0538 (6)
H11A0.73400.72840.83620.065*
C120.8262 (2)0.68269 (9)1.0148 (3)0.0447 (4)
C130.7077 (2)0.61190 (9)0.8430 (3)0.0467 (5)
C140.5978 (3)0.57950 (11)0.8617 (3)0.0565 (6)
H14A0.57800.56850.96430.068*
C150.5166 (3)0.56331 (11)0.7274 (3)0.0558 (6)
H15A0.44350.54100.74070.067*
C160.5429 (2)0.58002 (9)0.5731 (3)0.0481 (5)
C170.6564 (2)0.61148 (10)0.5552 (3)0.0511 (5)
H17A0.67740.62190.45250.061*
C180.7384 (2)0.62741 (10)0.6890 (3)0.0503 (5)
H18A0.81390.64850.67580.060*
C190.4473 (3)0.56599 (10)0.4358 (3)0.0528 (5)
H19A0.39070.53690.44990.063*
C200.4339 (3)0.59058 (10)0.2947 (3)0.0538 (6)
H20A0.49220.61840.27300.065*
C210.3268 (2)0.57442 (10)0.1701 (3)0.0511 (5)
C220.2696 (2)0.61668 (10)0.0544 (3)0.0458 (5)
C230.1803 (3)0.60042 (11)0.0741 (3)0.0568 (6)
H23A0.16230.56410.09040.068*
C240.1188 (2)0.63807 (11)0.1771 (3)0.0550 (6)
H24A0.06010.62750.26370.066*
C250.1462 (2)0.69147 (10)0.1489 (3)0.0452 (5)
C260.2350 (2)0.70923 (10)0.0246 (3)0.0510 (5)
H26A0.25220.74570.00890.061*
C270.2975 (3)0.67082 (10)0.0758 (3)0.0518 (5)
H27A0.35930.68160.15900.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0810 (13)0.0456 (9)0.0816 (13)0.0062 (9)0.0343 (10)0.0086 (9)
O20.0650 (11)0.0839 (14)0.0528 (10)0.0021 (10)0.0193 (8)0.0097 (9)
O30.0688 (12)0.0606 (11)0.0728 (12)0.0061 (9)0.0075 (9)0.0078 (9)
N10.0542 (11)0.0498 (10)0.0410 (9)0.0063 (8)0.0105 (8)0.0006 (8)
N20.0444 (10)0.0643 (13)0.0449 (9)0.0046 (9)0.0001 (8)0.0055 (8)
C10.0538 (13)0.0540 (12)0.0393 (10)0.0010 (10)0.0041 (9)0.0003 (9)
C20.0829 (19)0.0556 (14)0.0521 (14)0.0008 (13)0.0045 (13)0.0000 (11)
C30.110 (3)0.0587 (16)0.0597 (16)0.0113 (16)0.0051 (16)0.0112 (13)
C40.093 (2)0.0776 (19)0.0507 (14)0.0152 (17)0.0109 (14)0.0122 (13)
C50.0670 (16)0.0815 (19)0.0394 (11)0.0020 (14)0.0092 (10)0.0001 (12)
C60.0484 (11)0.0582 (13)0.0375 (10)0.0017 (10)0.0005 (8)0.0012 (9)
C70.0419 (10)0.0578 (13)0.0386 (10)0.0064 (9)0.0017 (8)0.0025 (9)
C80.0582 (14)0.0679 (15)0.0461 (12)0.0185 (12)0.0054 (10)0.0105 (11)
C90.0772 (18)0.0560 (15)0.0621 (16)0.0218 (13)0.0188 (14)0.0103 (12)
C100.0718 (17)0.0531 (13)0.0609 (15)0.0049 (12)0.0137 (13)0.0060 (11)
C110.0555 (13)0.0565 (14)0.0491 (12)0.0000 (10)0.0014 (10)0.0046 (10)
C120.0421 (10)0.0514 (12)0.0401 (10)0.0052 (8)0.0003 (8)0.0017 (8)
C130.0477 (11)0.0486 (11)0.0417 (10)0.0030 (9)0.0096 (8)0.0028 (9)
C140.0618 (14)0.0628 (15)0.0436 (11)0.0136 (11)0.0051 (10)0.0017 (10)
C150.0591 (14)0.0527 (13)0.0536 (12)0.0166 (11)0.0089 (10)0.0029 (10)
C160.0539 (12)0.0419 (10)0.0459 (10)0.0017 (9)0.0129 (9)0.0031 (8)
C170.0518 (12)0.0587 (13)0.0413 (10)0.0008 (10)0.0064 (9)0.0017 (9)
C180.0454 (11)0.0587 (13)0.0454 (11)0.0056 (10)0.0070 (9)0.0029 (9)
C190.0589 (13)0.0424 (11)0.0541 (13)0.0001 (9)0.0154 (11)0.0054 (9)
C200.0541 (13)0.0522 (13)0.0518 (12)0.0028 (10)0.0176 (10)0.0065 (10)
C210.0525 (12)0.0490 (12)0.0490 (12)0.0100 (9)0.0150 (9)0.0099 (9)
C220.0441 (11)0.0494 (11)0.0419 (10)0.0043 (9)0.0099 (8)0.0067 (8)
C230.0559 (13)0.0528 (13)0.0579 (13)0.0003 (10)0.0212 (11)0.0102 (10)
C240.0516 (13)0.0597 (14)0.0504 (12)0.0011 (10)0.0188 (10)0.0065 (10)
C250.0398 (10)0.0572 (12)0.0380 (9)0.0029 (9)0.0022 (8)0.0008 (9)
C260.0561 (13)0.0532 (12)0.0419 (11)0.0033 (10)0.0086 (9)0.0021 (9)
C270.0566 (13)0.0550 (13)0.0412 (10)0.0018 (10)0.0131 (9)0.0071 (9)
Geometric parameters (Å, º) top
O1—C211.215 (3)C11—H11A0.9300
O2—N21.227 (3)C13—C141.378 (4)
O3—N21.222 (3)C13—C181.393 (3)
N1—C121.397 (3)C14—C151.387 (3)
N1—C11.404 (3)C14—H14A0.9300
N1—C131.425 (3)C15—C161.391 (3)
N2—C251.472 (3)C15—H15A0.9300
C1—C21.388 (4)C16—C171.394 (4)
C1—C61.406 (3)C16—C191.471 (3)
C2—C31.386 (4)C17—C181.386 (3)
C2—H2A0.9300C17—H17A0.9300
C3—C41.390 (5)C18—H18A0.9300
C3—H3A0.9300C19—C201.320 (3)
C4—C51.377 (5)C19—H19A0.9300
C4—H4A0.9300C20—C211.485 (3)
C5—C61.396 (3)C20—H20A0.9300
C5—H5A0.9300C21—C221.507 (3)
C6—C71.441 (3)C22—C271.384 (3)
C7—C81.392 (3)C22—C231.397 (3)
C7—C121.412 (3)C23—C241.381 (3)
C8—C91.373 (4)C23—H23A0.9300
C8—H8A0.9300C24—C251.373 (4)
C9—C101.392 (4)C24—H24A0.9300
C9—H9A0.9300C25—C261.380 (3)
C10—C111.386 (4)C26—C271.385 (3)
C10—H10A0.9300C26—H26A0.9300
C11—C121.387 (3)C27—H27A0.9300
C12—N1—C1108.39 (18)C18—C13—N1119.9 (2)
C12—N1—C13125.30 (19)C13—C14—C15120.0 (2)
C1—N1—C13126.31 (19)C13—C14—H14A120.0
O3—N2—O2123.6 (2)C15—C14—H14A120.0
O3—N2—C25118.5 (2)C14—C15—C16121.0 (2)
O2—N2—C25117.9 (2)C14—C15—H15A119.5
C2—C1—N1130.1 (2)C16—C15—H15A119.5
C2—C1—C6121.4 (2)C15—C16—C17118.5 (2)
N1—C1—C6108.6 (2)C15—C16—C19119.1 (2)
C3—C2—C1117.4 (3)C17—C16—C19122.3 (2)
C3—C2—H2A121.3C18—C17—C16120.6 (2)
C1—C2—H2A121.3C18—C17—H17A119.7
C2—C3—C4122.0 (3)C16—C17—H17A119.7
C2—C3—H3A119.0C17—C18—C13120.0 (2)
C4—C3—H3A119.0C17—C18—H18A120.0
C5—C4—C3120.5 (3)C13—C18—H18A120.0
C5—C4—H4A119.8C20—C19—C16126.4 (2)
C3—C4—H4A119.8C20—C19—H19A116.8
C4—C5—C6118.9 (3)C16—C19—H19A116.8
C4—C5—H5A120.5C19—C20—C21120.8 (2)
C6—C5—H5A120.5C19—C20—H20A119.6
C5—C6—C1119.8 (2)C21—C20—H20A119.6
C5—C6—C7132.8 (2)O1—C21—C20121.9 (2)
C1—C6—C7107.34 (19)O1—C21—C22119.9 (2)
C8—C7—C12119.5 (2)C20—C21—C22118.2 (2)
C8—C7—C6133.6 (2)C27—C22—C23119.3 (2)
C12—C7—C6106.9 (2)C27—C22—C21122.34 (19)
C9—C8—C7119.2 (2)C23—C22—C21118.3 (2)
C9—C8—H8A120.4C24—C23—C22120.3 (2)
C7—C8—H8A120.4C24—C23—H23A119.9
C8—C9—C10120.7 (2)C22—C23—H23A119.9
C8—C9—H9A119.6C25—C24—C23118.5 (2)
C10—C9—H9A119.6C25—C24—H24A120.7
C11—C10—C9121.7 (3)C23—C24—H24A120.7
C11—C10—H10A119.2C24—C25—C26123.1 (2)
C9—C10—H10A119.2C24—C25—N2119.1 (2)
C10—C11—C12117.4 (2)C26—C25—N2117.8 (2)
C10—C11—H11A121.3C25—C26—C27117.6 (2)
C12—C11—H11A121.3C25—C26—H26A121.2
C11—C12—N1129.7 (2)C27—C26—H26A121.2
C11—C12—C7121.5 (2)C22—C27—C26121.2 (2)
N1—C12—C7108.8 (2)C22—C27—H27A119.4
C14—C13—C18119.8 (2)C26—C27—H27A119.4
C14—C13—N1120.3 (2)
C12—N1—C1—C2179.4 (3)C12—N1—C13—C1852.0 (3)
C13—N1—C1—C20.6 (4)C1—N1—C13—C18128.0 (3)
C12—N1—C1—C60.9 (3)C18—C13—C14—C151.3 (4)
C13—N1—C1—C6179.1 (2)N1—C13—C14—C15178.9 (2)
N1—C1—C2—C3176.8 (3)C13—C14—C15—C161.1 (4)
C6—C1—C2—C31.6 (4)C14—C15—C16—C172.9 (4)
C1—C2—C3—C40.5 (5)C14—C15—C16—C19174.4 (2)
C2—C3—C4—C50.5 (6)C15—C16—C17—C182.4 (4)
C3—C4—C5—C60.5 (5)C19—C16—C17—C18174.9 (2)
C4—C5—C6—C10.5 (4)C16—C17—C18—C130.1 (4)
C4—C5—C6—C7178.0 (3)C14—C13—C18—C171.8 (4)
C2—C1—C6—C51.5 (4)N1—C13—C18—C17178.4 (2)
N1—C1—C6—C5177.1 (2)C15—C16—C19—C20158.6 (3)
C2—C1—C6—C7179.7 (2)C17—C16—C19—C2018.7 (4)
N1—C1—C6—C71.1 (3)C16—C19—C20—C21175.9 (2)
C5—C6—C7—C85.4 (5)C19—C20—C21—O127.7 (4)
C1—C6—C7—C8176.8 (3)C19—C20—C21—C22150.0 (2)
C5—C6—C7—C12177.0 (3)O1—C21—C22—C27167.4 (3)
C1—C6—C7—C120.8 (2)C20—C21—C22—C2710.4 (3)
C12—C7—C8—C90.1 (3)O1—C21—C22—C239.5 (4)
C6—C7—C8—C9177.5 (3)C20—C21—C22—C23172.7 (2)
C7—C8—C9—C100.6 (4)C27—C22—C23—C241.1 (4)
C8—C9—C10—C110.8 (4)C21—C22—C23—C24175.9 (2)
C9—C10—C11—C120.6 (4)C22—C23—C24—C250.8 (4)
C10—C11—C12—N1177.0 (2)C23—C24—C25—C261.7 (4)
C10—C11—C12—C70.1 (3)C23—C24—C25—N2178.7 (2)
C1—N1—C12—C11177.0 (2)O3—N2—C25—C24179.1 (2)
C13—N1—C12—C113.0 (4)O2—N2—C25—C240.6 (3)
C1—N1—C12—C70.4 (2)O3—N2—C25—C261.3 (3)
C13—N1—C12—C7179.6 (2)O2—N2—C25—C26179.0 (2)
C8—C7—C12—C110.1 (3)C24—C25—C26—C270.6 (4)
C6—C7—C12—C11177.9 (2)N2—C25—C26—C27179.7 (2)
C8—C7—C12—N1177.8 (2)C23—C22—C27—C262.3 (4)
C6—C7—C12—N10.2 (2)C21—C22—C27—C26174.6 (2)
C12—N1—C13—C14128.2 (3)C25—C26—C27—C221.4 (4)
C1—N1—C13—C1451.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.932.423.291 (3)155
C18—H18A···O2ii0.932.563.490 (3)173
C9—H9A···Cg4iii0.932.893.758 (3)155
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities to conduct this work.

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University (RUI) grant No. 1001.PFIZIK.8011081 and the Fundamental Research Grant Scheme (FRGS) No. 203.PFIZIK.6711606.

References

First citationArshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarakat, A., Al-Majid, A. M., Soliman, S. M., Mabkhot, Y. N., Ali, M., Ghabbour, H. A., Fun, H.-K. & Wadood, A. (2015). Chem. Cent. J. 9, 35.  CSD CrossRef PubMed Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y., Ao, M., Hu, J. & Yu, L. (2008). Z. Naturforsch. C. 63, 361–365.  CrossRef PubMed CAS Google Scholar
First citationCustodio, J. M. F., Guimarães-Neto, J. J. A., Awad, R., Queiroz, J. E., Verde, G. M. V., Mottin, M., Neves, B. J., Andrade, C. H., Aquino, G. L. B., Valverde, C., Osório, F. A. P., Baseia, B. & Napolitano, H. B. (2020). Arab. J. Chem. 13, 3362–3371.  CSD CrossRef Google Scholar
First citationDavanagere, H., Jayarama, A., Patil, P. S. G., Maidur, S. R., Quah, C. K. & Kwong, H. C. (2019). Appl. Phys. A, 125, article No.309.  CrossRef Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H. & Vreven, T. (2009). Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, B.-S., Kim, S.-H., Matsumoto, S. & Son, Y.-A. (2011). Z. Krist. New Cryst. Struct. 226, 177–178.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, B., Johnson, T. E., Lad, R. & Xing, C. (2009). J. Med. Chem. 52, 7228–7235.  CrossRef PubMed CAS Google Scholar
First citationTeo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., Khairul, W. M. & Tay, M. G. (2017). J. Mol. Struct. 1143, 42–48.  CrossRef CAS Google Scholar
First citationTernavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526.  CrossRef PubMed Google Scholar
First citationWang, Z., Wang, N., Han, S., Wang, D., Mo, S., Yu, L., Huang, H., Tsui, K., Shen, J. & Chen, J. (2013). PLoS One, 8, e68566.  CrossRef PubMed Google Scholar
First citationWolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationZaini, M. F., Arshad, S., Thanigaimani, K., Khalib, N. C., Zainuri, D. A., Abdullah, M. & Razak, I. A. (2019). J. Mol. Struct. 1195, 606–619.  CSD CrossRef CAS Google Scholar
First citationZaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2019). Acta Cryst. E75, 685–689.  CSD CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 1302–1308.  CSD CrossRef IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds