research communications
Structural, Hirshfeld and DFT studies of conjugated D–π–A carbazole chalcone crystal
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Fundamental Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my
A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric Cc and adopts an s-cis conformation with respect to the ethylenic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π interactions whose percentage contribution was quantified by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and molecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set.
Keywords: carbazole chalcone; crystal structure; Hirshfeld surface; DFT; molecular electrostatic potential.
CCDC reference: 1967669
1. Chemical context
Chalcone is a privileged structure comprising two aromatic rings that are linked by a three-carbon α,β-unsaturated carbonyl system. demonstrate wide-ranging biological activities such as anti-inflammatory and anticancer (Cui et al., 2008; Srinivasan et al., 2009; Wang et al., 2013) and have applications in non-linear optics (Zaini, Arshad et al., 2019). They are currently attracting considerable attention because they offer an excellent π-conjugated system within the double bond at the ethylenic bridge (Teo et al., 2017). Furthermore, the conjugated chalcone could be enhanced with appropriate electron-pulling and electron-pushing functional groups on the benzene rings (Zhuang et al., 2017). The increased involvement of donor and acceptor interactions in the molecule improves the molecular charge transfer and degree of non-linearity (Davanagere et al., 2019). The high planarity and presence of stable E isomer in the solid state stabilizes the (Custodio et al., 2020).
In a continuation of our studies (Zaini et al., 2018; Zaini, Razak et al., 2019), we report herein the synthesis and structural properties of the conjugated carbazole chalcone system of (E)-3-[4-(9,9a-dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CPNC). The experimental and theoretical studies and chemical reactivity analysis are discussed.
2. Structural commentary
CPNC is composed of 9-phenylcarbazole and nitrobenzene moieties, which represent donor and acceptor groups, connected by an ethylenic bridge. The molecular and optimized structures of the CPNC with assigned atom-numbering scheme are illustrated in Fig. 1. The geometrical optimization of CPNC was computed with the Gaussian09W software package (Frisch et al., 2009) using the DFT method and the B3LYP/6-311G++(d,p) basis set without enforcing any molecular symmetry constraints. There is good agreement between the experimental and optimized structures (see the table in the supporting information), indicating that the basis set used was appropriate in both isolated conditions and the solid-state phase.
CPNC crystallizes in the monoclinic Cc with four molecules per Its molecular structure exhibits an s-cis configuration with respect to the ethylenic bridge consisting of carbonyl (C=O; 1.215 (3) Å (experimental), 1.223 Å (DFT)] and carbon–carbon double bond (C=C; 1.320 (3) Å (experimental), 1.348 Å (DFT)]. The CPNC molecule is twisted slightly at the C21—C22 bond, with a C20—C21—C22—C27 torsion angle of −10.4 (3)° (DFT value = −21.3°). The experimental and theoretical C15—C16—C19—C20 torsion angles are 158.6 (3) and 178.8°, respectively. The 9-phenylcarbazole C13—N1 bond is also observed to be twisted [C1—N1—C13—C14 51.8 (4)° (in experimental) and 53.2° (DFT). The small discrepancies in the torsion angles between the experimental and calculated DFT results are caused by the involvement of intermolecular interactions, which are negligible during the optimization process (Arshad et al., 2018).
There is also a twist [dihedral angle = 25.30 (17)°] between the mean planes of the nitrophenyl group [N2/O2/O3/C22–C27; maximum deviation of 0.023 (2) Å at atom O3] and the enone unit [O1/C19–C21; maximum deviation of 0.109 (2) Å at atom C21]. Meanwhile, the enone bridge forms dihedral angles of 31.52 (18) and 21.77 (16)°, respectively, with the C13–C18 phenyl ring and the 9H-carbazole unit [N1/C1–C12; maximum deviation of 0.041 (3) Å at atom C2].
The 9H-carbazole unit and the C13–C18 phenyl ring subtend a dihedral angle of 53.26 (10)°, which is similar to the dihedral angle of 53.8 (3) between the bridge aromatic ring and the 9H-carbazole unit in the related compound 2-[4-(9H-carbazol-9-yl)benzylidene]-2,3-dihydroinden-1-one (Kim et al., 2011). The 9H-carbazole moiety is nearly co-planar with the nitrobenzene unit, making a dihedral angle of 5.19 (7)° (Fig. 1c). This planar nature is possibly due to steric repulsion by the hydrogen atoms of the aromatic rings, leading to a small π-electron delocalization. However, the phenyl ring of the 9-phenylcarbazole moiety subtends a large dihedral angle to the nitrobenzene group of 56.74 (10)° (Fig. 1d), which tends to suppress the extension of the conjugation effect through the enone moiety.
3. Supramolecular features
The b-axis direction via C15—H15A⋯O1 interactions (Table 1), as shown in Fig. 2a. The tilted distortion of 9-phenylcarbazole ring system is the results of the C18—H18A⋯O2 interaction involving the nitro group, which links the molecules in a head-to-tail arrangement, propagating diagonally along the ac direction. Weak C9—H9A⋯Cg4 interactions involving the C13-C18 phenyl ring and a carbazole hydrogen of carbazole moiety link the molecules into infinite chains, as depicted in Fig. 2b. Overall, the intermolecular C—H⋯O and C—H⋯π interactions of CPNC generate a three-dimensional network.
of CPNC is built up in a cluster pattern style where the molecules are linked to each other along the4. Hirshfeld surface analysis
Hirshfeld surface analysis is used to gain a clear understanding of the molecular structure interaction and visualize them graphically. The Hirshfeld surface and related two-dimensional fingerprint plots were generated using Crystal Explorer3.1 (Wolff et al., 2012). In the dnorm surface (Fig. 3), the bright-red spots indicate the involvement of intermolecular C—H⋯O interactions. The fingerprint plots (Ternavisk et al., 2014) (Fig. 4) indicate the percentage contribution of the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts. The H⋯H contacts make the largest contribution to the Hirshfeld surface (38.4%) followed by the C⋯H/H⋯C contacts (28.2%), which are represented as a pair of characteristic wings. The O⋯H/H⋯O (19.1%) contacts display two symmetrical narrow spikes, which confirm the existence of C—H⋯O interactions. In addition, the presence of weak intermolecular C—H⋯π interactions can be seen as an orange region marked with black arrows in the shape-index surface (Fig. 5).
5. Molecular electrostatic potential (MEP) analysis
The reactive sites of a molecule can be investigated using molecular electrostatic potential (MEP) analysis (Barakat et al., 2015). In this study, DFT with the B3LYP/6-311G++(d,p) basis set was utilized to predict the possible location of the nucleophilic and electrophilic attacks. The MEP surface with a colour code from red (−0.04728 a.u) to blue (0.04728 a.u) is depicted in Fig. 6a. The carbonyl and nitro groups are nucleophilic (electron-rich) sites in the red-coloured region, while the blue colour indicates the electrophilic (electron-deficient) site localized on the hydrogen atom. These reactive sites are responsible for intermolecular interactions where the red and blue spots suggest the strongest repulsion site (electrophilic attack) and strongest attraction site (nucleophilic attack), respectively. The MEP results are further supported by the electrostatic potential contour map showing the iso-surface lines shown in Fig. 6b where the red lines refer to the strong electron-withdrawing atoms such as in carbonyl and nitro substituents.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016) revealed one closely related 9-phenylcarbazole chalcone, namely 1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (refcode ZIJPUG; Zainuri et al., 2018) with an anthracene system as the ketone substituent. Another similar compound is 2-[4-(9H-carbazol-9-yl)benzylidene]indan-1-one (ISADOW; Kim et al., 2011) in which the 9-phenylcarbazole unit is attached to a 2,3-dihydro-1H-inden-1-one moiety. The two crystals were grown by different methods, ZIJPUG by slow evaporation from acetone solution and ISADOW by solvent diffusion using dichloromethane and hexane. The reported molecular structures of ZIJPUG and ISADOW exhibit a π-bridge linker of an enone moiety and the aromatic ring of 9-phenylcarbazole, respectively. Furthermore, the C16—C17—C18—C19 torsion angle in ZIJPUG [−16.4 (3)°] indicates a slight twist, which is which comparable to that in ISADOW [C8—C10—C11—C12 = 178.6 (2)°].
7. Synthesis and crystallization
4′-Nitroacetophenone (5 mmol) and N-(4-formylphenyl)carbazole (5 mmol) were dissolved in 20 mL of methanol and then a catalytic amount of sodium hydroxide solution (5 mL, 20%) was added dropwise under continuous stirring for about 5–6 h at room temperature until a precipitate formed. This was filtered off, washed successively with distilled water and recrystallized from acetone solution, yielding orange block-shaped crystals suitable for X-ray diffraction analysis.
8. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1967669
https://doi.org/10.1107/S2056989020002054/ex2028sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002054/ex2028Isup2.hkl
SI Comparison between the calculated optimized and X-ray geometrical parameters for the CPNC compound. DOI: https://doi.org/10.1107/S2056989020002054/ex2028sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002054/ex2028Isup4.cml
Data collection: APEX2 (Bruker 2015); cell
SAINT (Bruker 2015); data reduction: SAINT (Bruker 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C27H18N2O3 | F(000) = 872 |
Mr = 418.43 | Dx = 1.353 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9690 (5) Å | Cell parameters from 9847 reflections |
b = 24.8828 (15) Å | θ = 2.2–29.5° |
c = 8.3049 (4) Å | µ = 0.09 mm−1 |
β = 94.356 (1)° | T = 293 K |
V = 2054.13 (19) Å3 | Block, orange |
Z = 4 | 0.54 × 0.38 × 0.23 mm |
Bruker APEXII CCD diffractometer | 5046 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Bruker 2015) | θmax = 30.0°, θmin = 1.6° |
Tmin = 0.783, Tmax = 0.942 | h = −13→14 |
39335 measured reflections | k = −34→34 |
5995 independent reflections | l = −11→11 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.455P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.114 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.19 e Å−3 |
5995 reflections | Δρmin = −0.15 e Å−3 |
289 parameters | Absolute structure: Flack x determined using 2241 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.1 (3) |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71074 8.313 9.985 13.418 68.212 88.424 85.648 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2822 (2) | 0.52900 (7) | 0.1628 (3) | 0.0715 (6) | |
O2 | 0.0014 (2) | 0.71634 (9) | −0.3674 (2) | 0.0685 (5) | |
O3 | 0.1029 (2) | 0.77955 (9) | −0.2279 (3) | 0.0681 (5) | |
N1 | 0.7901 (2) | 0.62943 (8) | 0.9806 (2) | 0.0491 (4) | |
N2 | 0.0790 (2) | 0.73213 (9) | −0.2556 (2) | 0.0514 (5) | |
C1 | 0.8488 (2) | 0.59669 (10) | 1.1043 (3) | 0.0494 (5) | |
C2 | 0.8433 (3) | 0.54134 (11) | 1.1238 (3) | 0.0640 (7) | |
H2A | 0.7917 | 0.5198 | 1.0514 | 0.077* | |
C3 | 0.9176 (4) | 0.51939 (13) | 1.2555 (4) | 0.0768 (9) | |
H3A | 0.9161 | 0.4824 | 1.2707 | 0.092* | |
C4 | 0.9943 (4) | 0.55101 (14) | 1.3656 (4) | 0.0748 (9) | |
H4A | 1.0435 | 0.5349 | 1.4522 | 0.090* | |
C5 | 0.9978 (3) | 0.60597 (13) | 1.3474 (3) | 0.0633 (7) | |
H5A | 1.0484 | 0.6272 | 1.4215 | 0.076* | |
C6 | 0.9240 (2) | 0.62937 (10) | 1.2159 (3) | 0.0482 (5) | |
C7 | 0.9091 (2) | 0.68404 (10) | 1.1603 (3) | 0.0462 (5) | |
C8 | 0.9545 (3) | 0.73328 (11) | 1.2227 (3) | 0.0574 (6) | |
H8A | 1.0090 | 0.7348 | 1.3185 | 0.069* | |
C9 | 0.9177 (3) | 0.77957 (11) | 1.1410 (4) | 0.0644 (7) | |
H9A | 0.9483 | 0.8126 | 1.1815 | 0.077* | |
C10 | 0.8351 (3) | 0.77768 (11) | 0.9983 (4) | 0.0615 (6) | |
H10A | 0.8106 | 0.8096 | 0.9459 | 0.074* | |
C11 | 0.7885 (3) | 0.72941 (10) | 0.9322 (3) | 0.0538 (6) | |
H11A | 0.7340 | 0.7284 | 0.8362 | 0.065* | |
C12 | 0.8262 (2) | 0.68269 (9) | 1.0148 (3) | 0.0447 (4) | |
C13 | 0.7077 (2) | 0.61190 (9) | 0.8430 (3) | 0.0467 (5) | |
C14 | 0.5978 (3) | 0.57950 (11) | 0.8617 (3) | 0.0565 (6) | |
H14A | 0.5780 | 0.5685 | 0.9643 | 0.068* | |
C15 | 0.5166 (3) | 0.56331 (11) | 0.7274 (3) | 0.0558 (6) | |
H15A | 0.4435 | 0.5410 | 0.7407 | 0.067* | |
C16 | 0.5429 (2) | 0.58002 (9) | 0.5731 (3) | 0.0481 (5) | |
C17 | 0.6564 (2) | 0.61148 (10) | 0.5552 (3) | 0.0511 (5) | |
H17A | 0.6774 | 0.6219 | 0.4525 | 0.061* | |
C18 | 0.7384 (2) | 0.62741 (10) | 0.6890 (3) | 0.0503 (5) | |
H18A | 0.8139 | 0.6485 | 0.6758 | 0.060* | |
C19 | 0.4473 (3) | 0.56599 (10) | 0.4358 (3) | 0.0528 (5) | |
H19A | 0.3907 | 0.5369 | 0.4499 | 0.063* | |
C20 | 0.4339 (3) | 0.59058 (10) | 0.2947 (3) | 0.0538 (6) | |
H20A | 0.4922 | 0.6184 | 0.2730 | 0.065* | |
C21 | 0.3268 (2) | 0.57442 (10) | 0.1701 (3) | 0.0511 (5) | |
C22 | 0.2696 (2) | 0.61668 (10) | 0.0544 (3) | 0.0458 (5) | |
C23 | 0.1803 (3) | 0.60042 (11) | −0.0741 (3) | 0.0568 (6) | |
H23A | 0.1623 | 0.5641 | −0.0904 | 0.068* | |
C24 | 0.1188 (2) | 0.63807 (11) | −0.1771 (3) | 0.0550 (6) | |
H24A | 0.0601 | 0.6275 | −0.2637 | 0.066* | |
C25 | 0.1462 (2) | 0.69147 (10) | −0.1489 (3) | 0.0452 (5) | |
C26 | 0.2350 (2) | 0.70923 (10) | −0.0246 (3) | 0.0510 (5) | |
H26A | 0.2522 | 0.7457 | −0.0089 | 0.061* | |
C27 | 0.2975 (3) | 0.67082 (10) | 0.0758 (3) | 0.0518 (5) | |
H27A | 0.3593 | 0.6816 | 0.1590 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0810 (13) | 0.0456 (9) | 0.0816 (13) | 0.0062 (9) | −0.0343 (10) | −0.0086 (9) |
O2 | 0.0650 (11) | 0.0839 (14) | 0.0528 (10) | 0.0021 (10) | −0.0193 (8) | 0.0097 (9) |
O3 | 0.0688 (12) | 0.0606 (11) | 0.0728 (12) | 0.0061 (9) | −0.0075 (9) | 0.0078 (9) |
N1 | 0.0542 (11) | 0.0498 (10) | 0.0410 (9) | −0.0063 (8) | −0.0105 (8) | −0.0006 (8) |
N2 | 0.0444 (10) | 0.0643 (13) | 0.0449 (9) | 0.0046 (9) | −0.0001 (8) | 0.0055 (8) |
C1 | 0.0538 (13) | 0.0540 (12) | 0.0393 (10) | −0.0010 (10) | −0.0041 (9) | 0.0003 (9) |
C2 | 0.0829 (19) | 0.0556 (14) | 0.0521 (14) | −0.0008 (13) | −0.0045 (13) | 0.0000 (11) |
C3 | 0.110 (3) | 0.0587 (16) | 0.0597 (16) | 0.0113 (16) | −0.0051 (16) | 0.0112 (13) |
C4 | 0.093 (2) | 0.0776 (19) | 0.0507 (14) | 0.0152 (17) | −0.0109 (14) | 0.0122 (13) |
C5 | 0.0670 (16) | 0.0815 (19) | 0.0394 (11) | 0.0020 (14) | −0.0092 (10) | −0.0001 (12) |
C6 | 0.0484 (11) | 0.0582 (13) | 0.0375 (10) | −0.0017 (10) | −0.0005 (8) | −0.0012 (9) |
C7 | 0.0419 (10) | 0.0578 (13) | 0.0386 (10) | −0.0064 (9) | 0.0017 (8) | −0.0025 (9) |
C8 | 0.0582 (14) | 0.0679 (15) | 0.0461 (12) | −0.0185 (12) | 0.0054 (10) | −0.0105 (11) |
C9 | 0.0772 (18) | 0.0560 (15) | 0.0621 (16) | −0.0218 (13) | 0.0188 (14) | −0.0103 (12) |
C10 | 0.0718 (17) | 0.0531 (13) | 0.0609 (15) | −0.0049 (12) | 0.0137 (13) | 0.0060 (11) |
C11 | 0.0555 (13) | 0.0565 (14) | 0.0491 (12) | 0.0000 (10) | 0.0014 (10) | 0.0046 (10) |
C12 | 0.0421 (10) | 0.0514 (12) | 0.0401 (10) | −0.0052 (8) | −0.0003 (8) | −0.0017 (8) |
C13 | 0.0477 (11) | 0.0486 (11) | 0.0417 (10) | −0.0030 (9) | −0.0096 (8) | −0.0028 (9) |
C14 | 0.0618 (14) | 0.0628 (15) | 0.0436 (11) | −0.0136 (11) | −0.0051 (10) | 0.0017 (10) |
C15 | 0.0591 (14) | 0.0527 (13) | 0.0536 (12) | −0.0166 (11) | −0.0089 (10) | 0.0029 (10) |
C16 | 0.0539 (12) | 0.0419 (10) | 0.0459 (10) | 0.0017 (9) | −0.0129 (9) | −0.0031 (8) |
C17 | 0.0518 (12) | 0.0587 (13) | 0.0413 (10) | 0.0008 (10) | −0.0064 (9) | 0.0017 (9) |
C18 | 0.0454 (11) | 0.0587 (13) | 0.0454 (11) | −0.0056 (10) | −0.0070 (9) | 0.0029 (9) |
C19 | 0.0589 (13) | 0.0424 (11) | 0.0541 (13) | −0.0001 (9) | −0.0154 (11) | −0.0054 (9) |
C20 | 0.0541 (13) | 0.0522 (13) | 0.0518 (12) | 0.0028 (10) | −0.0176 (10) | −0.0065 (10) |
C21 | 0.0525 (12) | 0.0490 (12) | 0.0490 (12) | 0.0100 (9) | −0.0150 (9) | −0.0099 (9) |
C22 | 0.0441 (11) | 0.0494 (11) | 0.0419 (10) | 0.0043 (9) | −0.0099 (8) | −0.0067 (8) |
C23 | 0.0559 (13) | 0.0528 (13) | 0.0579 (13) | 0.0003 (10) | −0.0212 (11) | −0.0102 (10) |
C24 | 0.0516 (13) | 0.0597 (14) | 0.0504 (12) | 0.0011 (10) | −0.0188 (10) | −0.0065 (10) |
C25 | 0.0398 (10) | 0.0572 (12) | 0.0380 (9) | 0.0029 (9) | −0.0022 (8) | 0.0008 (9) |
C26 | 0.0561 (13) | 0.0532 (12) | 0.0419 (11) | −0.0033 (10) | −0.0086 (9) | −0.0021 (9) |
C27 | 0.0566 (13) | 0.0550 (13) | 0.0412 (10) | −0.0018 (10) | −0.0131 (9) | −0.0071 (9) |
O1—C21 | 1.215 (3) | C11—H11A | 0.9300 |
O2—N2 | 1.227 (3) | C13—C14 | 1.378 (4) |
O3—N2 | 1.222 (3) | C13—C18 | 1.393 (3) |
N1—C12 | 1.397 (3) | C14—C15 | 1.387 (3) |
N1—C1 | 1.404 (3) | C14—H14A | 0.9300 |
N1—C13 | 1.425 (3) | C15—C16 | 1.391 (3) |
N2—C25 | 1.472 (3) | C15—H15A | 0.9300 |
C1—C2 | 1.388 (4) | C16—C17 | 1.394 (4) |
C1—C6 | 1.406 (3) | C16—C19 | 1.471 (3) |
C2—C3 | 1.386 (4) | C17—C18 | 1.386 (3) |
C2—H2A | 0.9300 | C17—H17A | 0.9300 |
C3—C4 | 1.390 (5) | C18—H18A | 0.9300 |
C3—H3A | 0.9300 | C19—C20 | 1.320 (3) |
C4—C5 | 1.377 (5) | C19—H19A | 0.9300 |
C4—H4A | 0.9300 | C20—C21 | 1.485 (3) |
C5—C6 | 1.396 (3) | C20—H20A | 0.9300 |
C5—H5A | 0.9300 | C21—C22 | 1.507 (3) |
C6—C7 | 1.441 (3) | C22—C27 | 1.384 (3) |
C7—C8 | 1.392 (3) | C22—C23 | 1.397 (3) |
C7—C12 | 1.412 (3) | C23—C24 | 1.381 (3) |
C8—C9 | 1.373 (4) | C23—H23A | 0.9300 |
C8—H8A | 0.9300 | C24—C25 | 1.373 (4) |
C9—C10 | 1.392 (4) | C24—H24A | 0.9300 |
C9—H9A | 0.9300 | C25—C26 | 1.380 (3) |
C10—C11 | 1.386 (4) | C26—C27 | 1.385 (3) |
C10—H10A | 0.9300 | C26—H26A | 0.9300 |
C11—C12 | 1.387 (3) | C27—H27A | 0.9300 |
C12—N1—C1 | 108.39 (18) | C18—C13—N1 | 119.9 (2) |
C12—N1—C13 | 125.30 (19) | C13—C14—C15 | 120.0 (2) |
C1—N1—C13 | 126.31 (19) | C13—C14—H14A | 120.0 |
O3—N2—O2 | 123.6 (2) | C15—C14—H14A | 120.0 |
O3—N2—C25 | 118.5 (2) | C14—C15—C16 | 121.0 (2) |
O2—N2—C25 | 117.9 (2) | C14—C15—H15A | 119.5 |
C2—C1—N1 | 130.1 (2) | C16—C15—H15A | 119.5 |
C2—C1—C6 | 121.4 (2) | C15—C16—C17 | 118.5 (2) |
N1—C1—C6 | 108.6 (2) | C15—C16—C19 | 119.1 (2) |
C3—C2—C1 | 117.4 (3) | C17—C16—C19 | 122.3 (2) |
C3—C2—H2A | 121.3 | C18—C17—C16 | 120.6 (2) |
C1—C2—H2A | 121.3 | C18—C17—H17A | 119.7 |
C2—C3—C4 | 122.0 (3) | C16—C17—H17A | 119.7 |
C2—C3—H3A | 119.0 | C17—C18—C13 | 120.0 (2) |
C4—C3—H3A | 119.0 | C17—C18—H18A | 120.0 |
C5—C4—C3 | 120.5 (3) | C13—C18—H18A | 120.0 |
C5—C4—H4A | 119.8 | C20—C19—C16 | 126.4 (2) |
C3—C4—H4A | 119.8 | C20—C19—H19A | 116.8 |
C4—C5—C6 | 118.9 (3) | C16—C19—H19A | 116.8 |
C4—C5—H5A | 120.5 | C19—C20—C21 | 120.8 (2) |
C6—C5—H5A | 120.5 | C19—C20—H20A | 119.6 |
C5—C6—C1 | 119.8 (2) | C21—C20—H20A | 119.6 |
C5—C6—C7 | 132.8 (2) | O1—C21—C20 | 121.9 (2) |
C1—C6—C7 | 107.34 (19) | O1—C21—C22 | 119.9 (2) |
C8—C7—C12 | 119.5 (2) | C20—C21—C22 | 118.2 (2) |
C8—C7—C6 | 133.6 (2) | C27—C22—C23 | 119.3 (2) |
C12—C7—C6 | 106.9 (2) | C27—C22—C21 | 122.34 (19) |
C9—C8—C7 | 119.2 (2) | C23—C22—C21 | 118.3 (2) |
C9—C8—H8A | 120.4 | C24—C23—C22 | 120.3 (2) |
C7—C8—H8A | 120.4 | C24—C23—H23A | 119.9 |
C8—C9—C10 | 120.7 (2) | C22—C23—H23A | 119.9 |
C8—C9—H9A | 119.6 | C25—C24—C23 | 118.5 (2) |
C10—C9—H9A | 119.6 | C25—C24—H24A | 120.7 |
C11—C10—C9 | 121.7 (3) | C23—C24—H24A | 120.7 |
C11—C10—H10A | 119.2 | C24—C25—C26 | 123.1 (2) |
C9—C10—H10A | 119.2 | C24—C25—N2 | 119.1 (2) |
C10—C11—C12 | 117.4 (2) | C26—C25—N2 | 117.8 (2) |
C10—C11—H11A | 121.3 | C25—C26—C27 | 117.6 (2) |
C12—C11—H11A | 121.3 | C25—C26—H26A | 121.2 |
C11—C12—N1 | 129.7 (2) | C27—C26—H26A | 121.2 |
C11—C12—C7 | 121.5 (2) | C22—C27—C26 | 121.2 (2) |
N1—C12—C7 | 108.8 (2) | C22—C27—H27A | 119.4 |
C14—C13—C18 | 119.8 (2) | C26—C27—H27A | 119.4 |
C14—C13—N1 | 120.3 (2) | ||
C12—N1—C1—C2 | −179.4 (3) | C12—N1—C13—C18 | 52.0 (3) |
C13—N1—C1—C2 | 0.6 (4) | C1—N1—C13—C18 | −128.0 (3) |
C12—N1—C1—C6 | −0.9 (3) | C18—C13—C14—C15 | −1.3 (4) |
C13—N1—C1—C6 | 179.1 (2) | N1—C13—C14—C15 | 178.9 (2) |
N1—C1—C2—C3 | 176.8 (3) | C13—C14—C15—C16 | −1.1 (4) |
C6—C1—C2—C3 | −1.6 (4) | C14—C15—C16—C17 | 2.9 (4) |
C1—C2—C3—C4 | 0.5 (5) | C14—C15—C16—C19 | −174.4 (2) |
C2—C3—C4—C5 | 0.5 (6) | C15—C16—C17—C18 | −2.4 (4) |
C3—C4—C5—C6 | −0.5 (5) | C19—C16—C17—C18 | 174.9 (2) |
C4—C5—C6—C1 | −0.5 (4) | C16—C17—C18—C13 | 0.1 (4) |
C4—C5—C6—C7 | −178.0 (3) | C14—C13—C18—C17 | 1.8 (4) |
C2—C1—C6—C5 | 1.5 (4) | N1—C13—C18—C17 | −178.4 (2) |
N1—C1—C6—C5 | −177.1 (2) | C15—C16—C19—C20 | 158.6 (3) |
C2—C1—C6—C7 | 179.7 (2) | C17—C16—C19—C20 | −18.7 (4) |
N1—C1—C6—C7 | 1.1 (3) | C16—C19—C20—C21 | −175.9 (2) |
C5—C6—C7—C8 | −5.4 (5) | C19—C20—C21—O1 | −27.7 (4) |
C1—C6—C7—C8 | 176.8 (3) | C19—C20—C21—C22 | 150.0 (2) |
C5—C6—C7—C12 | 177.0 (3) | O1—C21—C22—C27 | 167.4 (3) |
C1—C6—C7—C12 | −0.8 (2) | C20—C21—C22—C27 | −10.4 (3) |
C12—C7—C8—C9 | −0.1 (3) | O1—C21—C22—C23 | −9.5 (4) |
C6—C7—C8—C9 | −177.5 (3) | C20—C21—C22—C23 | 172.7 (2) |
C7—C8—C9—C10 | 0.6 (4) | C27—C22—C23—C24 | −1.1 (4) |
C8—C9—C10—C11 | −0.8 (4) | C21—C22—C23—C24 | 175.9 (2) |
C9—C10—C11—C12 | 0.6 (4) | C22—C23—C24—C25 | −0.8 (4) |
C10—C11—C12—N1 | 177.0 (2) | C23—C24—C25—C26 | 1.7 (4) |
C10—C11—C12—C7 | −0.1 (3) | C23—C24—C25—N2 | −178.7 (2) |
C1—N1—C12—C11 | −177.0 (2) | O3—N2—C25—C24 | 179.1 (2) |
C13—N1—C12—C11 | 3.0 (4) | O2—N2—C25—C24 | −0.6 (3) |
C1—N1—C12—C7 | 0.4 (2) | O3—N2—C25—C26 | −1.3 (3) |
C13—N1—C12—C7 | −179.6 (2) | O2—N2—C25—C26 | 179.0 (2) |
C8—C7—C12—C11 | −0.1 (3) | C24—C25—C26—C27 | −0.6 (4) |
C6—C7—C12—C11 | 177.9 (2) | N2—C25—C26—C27 | 179.7 (2) |
C8—C7—C12—N1 | −177.8 (2) | C23—C22—C27—C26 | 2.3 (4) |
C6—C7—C12—N1 | 0.2 (2) | C21—C22—C27—C26 | −174.6 (2) |
C12—N1—C13—C14 | −128.2 (3) | C25—C26—C27—C22 | −1.4 (4) |
C1—N1—C13—C14 | 51.8 (4) |
Cg4 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O1i | 0.93 | 2.42 | 3.291 (3) | 155 |
C18—H18A···O2ii | 0.93 | 2.56 | 3.490 (3) | 173 |
C9—H9A···Cg4iii | 0.93 | 2.89 | 3.758 (3) | 155 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities to conduct this work.
Funding information
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University (RUI) grant No. 1001.PFIZIK.8011081 and the Fundamental Research Grant Scheme (FRGS) No. 203.PFIZIK.6711606.
References
Arshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218–240. Web of Science CSD CrossRef CAS Google Scholar
Barakat, A., Al-Majid, A. M., Soliman, S. M., Mabkhot, Y. N., Ali, M., Ghabbour, H. A., Fun, H.-K. & Wadood, A. (2015). Chem. Cent. J. 9, 35. CSD CrossRef PubMed Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, Y., Ao, M., Hu, J. & Yu, L. (2008). Z. Naturforsch. C. 63, 361–365. CrossRef PubMed CAS Google Scholar
Custodio, J. M. F., Guimarães-Neto, J. J. A., Awad, R., Queiroz, J. E., Verde, G. M. V., Mottin, M., Neves, B. J., Andrade, C. H., Aquino, G. L. B., Valverde, C., Osório, F. A. P., Baseia, B. & Napolitano, H. B. (2020). Arab. J. Chem. 13, 3362–3371. CSD CrossRef Google Scholar
Davanagere, H., Jayarama, A., Patil, P. S. G., Maidur, S. R., Quah, C. K. & Kwong, H. C. (2019). Appl. Phys. A, 125, article No.309. CrossRef Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H. & Vreven, T. (2009). Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kim, B.-S., Kim, S.-H., Matsumoto, S. & Son, Y.-A. (2011). Z. Krist. New Cryst. Struct. 226, 177–178. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srinivasan, B., Johnson, T. E., Lad, R. & Xing, C. (2009). J. Med. Chem. 52, 7228–7235. CrossRef PubMed CAS Google Scholar
Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., Khairul, W. M. & Tay, M. G. (2017). J. Mol. Struct. 1143, 42–48. CrossRef CAS Google Scholar
Ternavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526. CrossRef PubMed Google Scholar
Wang, Z., Wang, N., Han, S., Wang, D., Mo, S., Yu, L., Huang, H., Tsui, K., Shen, J. & Chen, J. (2013). PLoS One, 8, e68566. CrossRef PubMed Google Scholar
Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. University of Western Australia. Google Scholar
Zaini, M. F., Arshad, S., Thanigaimani, K., Khalib, N. C., Zainuri, D. A., Abdullah, M. & Razak, I. A. (2019). J. Mol. Struct. 1195, 606–619. CSD CrossRef CAS Google Scholar
Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2019). Acta Cryst. E75, 685–689. CSD CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 1302–1308. CSD CrossRef IUCr Journals Google Scholar
Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810 CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.