research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 January 2020; accepted 3 February 2020; online 6 February 2020)

The title compound, C20H36O2·CH3OH [systematic name: (3S)-4-[(S)-3-hy­droxy-3-methyl­pent-4-en-1-yl]-3,4a,8,8-tetra­methyl­deca­hydro­naphthalen-3-ol methanol monosolvate], is a methanol solvate of sclareol, a diterpene oil isolated from the medicinally important medicinal herb Salvia sclarea, commonly known as clary sage. It crystallizes in space group P1 (No. 1) with Z′ = 2. The sclareol mol­ecule comprises two trans-fused cyclo­hexane rings, each having an equatorially oriented hydroxyl group, and a 3-methyl­pent-1-en-3-ol side chain. In the crystal, Os—H⋯Os, Os—H⋯Om, Om—H⋯Os and Om—H⋯Om (s = sclareol, m = methanol) hydrogen bonds connect neighboring mol­ecules into infinite [010] chains. The title compound exhibits weak anti-leishmanial activity (IC50 = 66.4 ± 1.0 µM ml−1) against standard miltefosine (IC50 = 25.8 ± 0.2 µM ml−1).

1. Chemical context

Sclareol, a labdane diterpene, is an important component of Salvia sclarea L., commonly known as clary sage, a medicinal herb mostly found in Mediterranean countries and southern Europe (Kouzi & McChesney, 1990[Kouzi, S. A. & McChesney, J. D. (1990). Helv. Chim. Acta, 73, 2157-2164.]; Acimovic et al., 2018[Acimovic, M., Kiprovski, B., Rat, M., Sikora, V., Popovic, V., Koren, A. & Brdar- Jokanovic, M. (2018). J. Agronomy, Technol. Engineering Management, 1, 18-28.]). Sclareol is also reported from Cleome spinose B, Cistus creticus C, and Nicotiana glutinosa S (Caniard et al., 2012[Caniard, A., Zerbe, P., Legrand, S., Cohade, A., Valot, N., Magnard, J.-L., Bohlmann, J. & Legendre, L. (2012). BMC Plant Biol. 12, 119.]). Labdanes show various biological and pharmacological activities (Singh et al., 1999[Singh, M., Pal, M. & Sharma, R. (1999). Planta Med. 65, 002-008.]), including anti­fungal, anti­bacterial, growth-regulating activity, and cytostatic and cytotoxic effects against HL60 human leukemic cell lines (Kouzi et al., 1993[Kouzi, S., McChesney, J. & Walker, L. (1993). Xenobiotica, 23, 621-632.]; Dimas et al., 2001[Dimas, K., Demetzos, C., Vaos, V., Ioannidis, P. & Trangas, T. (2001). Leuk. Res. 25, 449-454.]). Sclareol is also used commercially as a fixative in perfumery and as a flavouring agent in the tobacco industry (Kouzi & McChesney, 1990[Kouzi, S. A. & McChesney, J. D. (1990). Helv. Chim. Acta, 73, 2157-2164.]).

[Scheme 1]

The presence of solvent mol­ecules of crystallization (Aitipamula et al., 2012[Aitipamula, S., Chow, P. S. & Tan, R. B. (2012). CrystEngComm, 14, 691-699.]) can significantly influence the geometry of the respective pharmaceutical mol­ecule (Chen et al., 2017[Chen, P.-Y., Zhang, L., Zhu, S.-G. & Cheng, G.-B. (2017). J. Mol. Struct. 1131, 250-257.]). The crystal structure of sclareol (ortho­rhom­bic, space group P212121) has been described (Nagashima et al., 1997[Nagashima, F., Tanaka, H., Takaoka, S. & Asakawa, Y. (1997). Phytochemistry, 45, 353-363.]). We now describe the crystal structure of the methanol solvate of sclareol (1), which results in a change of space group to triclinic P1. Leishmaniasis is a major infectious disease caused by various species of the genus Leishmania. Currently there is no effective drug or vaccine against leishmanicidal disease commercially available (Tavares et al., 2018[Tavares, G. S. V., Mendonça, D. V. C., Lage, D. P., Granato, J. D. T., Ottoni, F. M., Ludolf, F., Chávez-Fumagalli, M. A., Duarte, M. C., Tavares, C. A. P., Alves, R. J., Coimbra, E. S. & Coelho, E. A. F. (2018). Basic Clin. Pharmacol. Toxicol. 123, 236-246.]). In the current study, the anti-leishmanial activity of 1 was also investigated.

2. Structural commentary

The asymmetric unit (and unit cell) of 1 consists of two independent sclareol mol­ecules and two methanol solvent mol­ecules (Fig. 1[link]). The sclareol skeleton comprises two trans-fused cyclo­hexane rings, A (C1–C5/C10) and B (C5–C10), which exist in chair conformations, having puckering parameters Q = 0.556 (3) Å, θ = 3.4 (3)°, φ = 26 (4)°, and Q = 0.589 (3) Å, θ = 7.1 (3)°, φ = 347 (2)°, respectively. Ring A bears an axially oriented methyl group at C10 while ring B has an equatorially oriented hydroxyl group and 3-methyl­pent-1-en-3-ol side chain attached at C8 and C9, respectively. The C11—C9—C8—C17 and C11′—C9′—C8′—C17′ torsion angles of 58.7 (3) and 57.4 (3)°, respectively, indicate that the methyl group and the 3-methyl­pent-1-en-3-ol side chain are anti to each other in both mol­ecules. The configurations of the stereogenic centres are as follows: C5 S, C8 R, C9 R, C10 S and C13 R; C5′ S, C8′ R, C9′ R, C10′ S and C13′ R.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The insertion of the methanol solvent into the crystal alters the previously reported ortho­rhom­bic P212121 crystal symmetry of sclareol (Nagashima et al., 1997[Nagashima, F., Tanaka, H., Takaoka, S. & Asakawa, Y. (1997). Phytochemistry, 45, 353-363.]) to triclinic P1. The O—H⋯O hydrogen-bonding inter­actions (Table 1[link]) including O1—H1⋯O2′, O2—H2⋯O1′ and O1′—H1′⋯O1 with H⋯A distances of 1.97 (4), 1.96 (5) and 1.87 (5) Å, respectively, generate R22(10) ring motifs (Fig. 2[link]). The O3 methanol solvent mol­ecule links to a sclareol host via an O—H⋯O hydrogen bond and the O3′ methanol mol­ecule links to the O3 methanol mol­ecule (Fig. 3[link]). Taken together, the hydrogen bonds generate infinite [010] chains in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2′ 0.87 (4) 1.97 (4) 2.816 (2) 163 (4)
O2—H2⋯O1′ 0.81 (5) 1.96 (5) 2.762 (2) 167 (4)
O3—H3⋯O2 0.88 (4) 1.89 (5) 2.744 (3) 164 (4)
O1′—H1′⋯O1 0.88 (5) 1.87 (5) 2.744 (2) 170 (4)
O2′—H2′⋯O3′i 0.76 (5) 2.08 (5) 2.833 (3) 169 (5)
O3′—H3′⋯O3 0.90 (5) 1.89 (5) 2.753 (3) 160 (4)
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
Fragment of 1 showing O—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Packing diagram of 1 showing the formation of a [010] chain of mol­ecules linked by O—H⋯O hydrogen bonds (dotted lines).

The Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Capozzi et al., 2019[Capozzi, M. A. M., Terraneo, G. & Cardellicchio, C. (2019). Acta Cryst. C75, 189-195.]) mapped over dnorm for 1 is shown in Fig. 4[link]; red spots indicate the areas of the mol­ecular surfaces where strong inter­actions occur. The two-dimensional fingerprint plots (Fig. 5[link]) indicate a dominant contribution from H⋯H contacts (89.7%) to the Hirshfeld surface; distinct spikes denote the O⋯H/H⋯O inter­actions (10.7%) while C⋯H/H⋯C contacts contribute a negligible percentage (1.5%) towards the total generated Hirshfeld surface. Views of the Hirshfeld surface mapped over shape-index and curvature are shown in the supporting information.

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm of 1 with neighboring mol­ecules linked via O—H⋯O hydrogen bonds (dashed lines).
[Figure 5]
Figure 5
Two-dimensional Hirshfeld fingerprint plots for 1.

4. In vitro anti-leishmanial activity

An in vitro anti-leishmanial assay of compound 1 was evaluated against L. major promastigoates. The title compound has a relatively weak anti-leishmanial activity [(IC50 = 66.4 ± 1.0 µM ml−1) against the standard miltefosine drug (IC50 = 25.8 ± 0.2 µM ml−1); however, no activity was observed against tested standard penta­midine (IC50 = 9.24 ± 0.005 µM ml−1) and amphotericin B (IC50 = 0.42 ± 0.005 µM ml−1).

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave five hits for similar diterpenoids having two trans-fused cyclo­hexane rings along with an equatorially oriented 3-methyl­pent-1-en-3-ol side chain, viz. refcodes JOBLUH (Aranda et al., 1991[Aranda, G., El Kortbi, M. S., Lallemand, J.-Y., Neuman, A., Hammoumi, A., Facon, I. & Azerad, R. (1991). Tetrahedron, 47, 8339-8350.]), RULHAH (Nagashima et al., 1997[Nagashima, F., Tanaka, H., Takaoka, S. & Asakawa, Y. (1997). Phytochemistry, 45, 353-363.]), KADLIK (Rodríguez et al., 1989[Rodríguez, M. L., Martín, J. D. & Estrada, D. (1989). Acta Cryst. C45, 306-308.]), MIFWED (Kooijman et al., 2002[Kooijman, H. & Spek, A. L. (2002). Acta Cryst. E58, o172-o174.]) and MIDNIZ (Häfner et al., 2018[Häfner, S., Burg, F., Kannler, M., Urban, N., Mayer, P., Dietrich, A., Trauner, D., Broichhagen, J. & Schaefer, M. (2018). ChemMedChem, 13, 1028-1035.]). RULHAH {systematic name: (3S)-4-(S)-3-hy­droxy-3-methyl­pent-4-en-1-yl)-3,4a,8,8-tetra­methyl­deca­hydro­naphthalen-3-ol} is the unsolvated crystal structure of sclareol. The other four compounds belong to the same class of diterpene with different substituents.

6. Crystallization

Purified sclareol was taken from the mol­ecular bank facility of the Dr Panjwani Center for Mol­ecular Medicine and Drug Research, ICCBS, University of Karachi, Pakistan. The procedure for isolation and purification has already been described (Shawl et al., 1999[Shawl, A. S., Singh, J., Srivastava, S. K., Tripathi, S., Raina, V. K. & Kumar, S. (1999). Journal of Medicinal and Aromatic Plant Sciences, 21, 11-16.]). Crystallization was carried out in a 1:1 solvent mixture of aceto­nitrile and methanol. Colourless blocks of 1 were obtained by slow evaporation at 277 K after two weeks

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the C-bound H atoms were located with idealized geometry and refined with C—H = 0.95–1.00 Å, having Uiso(H) = 1.5Ueq(CH3) and 1.2Ueq (CH2, CH). The O-bound H atoms were found in difference-Fourier maps and their positions freely refined with Uiso(H) = 1.2Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C20H36O2·CH4O
Mr 340.53
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 6.1728 (3), 12.3721 (6), 13.6788 (7)
α, β, γ (°) 84.302 (2), 80.846 (2), 80.909 (2)
V3) 1015.45 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.56
Crystal size (mm) 0.38 × 0.23 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 28545, 7074, 7020
Rint 0.028
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.01
No. of reflections 7074
No. of parameters 464
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.21
Absolute structure parameter 0.16 (18)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b).

(3S)-4-[(S)-3-Hydroxy-3-methylpent-4-en-1-yl]-3,4a,8,8-tetramethyldecahydronaphthalen-3-ol methanol monosolvate top
Crystal data top
C20H36O2·CH4OZ = 2
Mr = 340.53F(000) = 378
Triclinic, P1Dx = 1.110 Mg m3
a = 6.1728 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.3721 (6) ÅCell parameters from 9050 reflections
c = 13.6788 (7) Åθ = 7.8–68.3°
α = 84.302 (2)°µ = 0.56 mm1
β = 80.846 (2)°T = 100 K
γ = 80.909 (2)°Block, colourless
V = 1015.45 (9) Å30.38 × 0.23 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.028
φ and ω scansθmax = 68.2°, θmin = 5.1°
28545 measured reflectionsh = 77
7074 independent reflectionsk = 1414
7020 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.081P)2 + 0.2189P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
7074 reflectionsΔρmax = 0.50 e Å3
464 parametersΔρmin = 0.21 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4784 (3)0.64520 (15)0.53573 (12)0.0254 (4)
O20.5887 (3)0.29578 (14)0.62956 (12)0.0168 (3)
O30.5603 (4)0.08465 (17)0.59341 (16)0.0356 (5)
C10.3517 (4)0.6326 (2)0.89758 (17)0.0193 (5)
H1A0.3187780.5562260.9100760.023*
H1B0.5145990.6293950.8816280.023*
C20.2703 (4)0.6926 (2)0.99203 (17)0.0229 (5)
H2A0.1091760.6912751.0113610.027*
H2B0.3469270.6544941.0468150.027*
C30.3150 (4)0.8116 (2)0.97588 (18)0.0242 (5)
H3A0.4773160.8120190.9634760.029*
H3B0.2558300.8487341.0374760.029*
C40.2117 (4)0.8776 (2)0.88881 (17)0.0197 (5)
C50.2829 (4)0.81065 (18)0.79513 (16)0.0165 (5)
H5A0.4476520.8075180.7805920.020*
C60.1973 (4)0.86853 (19)0.70123 (17)0.0204 (5)
H6A0.0367280.8651820.7061010.025*
H6B0.2179510.9467530.6957650.025*
C70.3208 (4)0.8145 (2)0.60876 (17)0.0217 (5)
H7A0.2589070.8521360.5498160.026*
H7B0.4786880.8245440.6010160.026*
C80.3068 (4)0.69224 (19)0.61166 (16)0.0195 (5)
C90.3730 (4)0.63500 (18)0.71134 (16)0.0153 (4)
H9A0.5299080.6471460.7098850.018*
C100.2437 (4)0.68813 (18)0.80690 (16)0.0152 (5)
C110.3847 (4)0.50884 (18)0.71485 (17)0.0165 (5)
H11A0.2822560.4839130.7729880.020*
H11B0.3356330.4891480.6542970.020*
C120.6188 (4)0.45017 (19)0.72185 (16)0.0167 (5)
H12A0.6627240.4678440.7842800.020*
H12B0.7209540.4800760.6661450.020*
C130.6511 (4)0.32450 (19)0.71953 (16)0.0168 (5)
C140.8933 (4)0.2823 (2)0.7242 (2)0.0250 (5)
H14A0.9457730.2865120.7851700.030*
C151.0374 (5)0.2403 (2)0.6516 (2)0.0323 (6)
H15A0.9923580.2344970.5892970.039*
H15B1.1868200.2158220.6612950.039*
C160.5052 (4)0.2701 (2)0.80480 (17)0.0230 (5)
H16A0.3488260.2937990.7979240.035*
H16B0.5339000.2914230.8681290.035*
H16C0.5390680.1901520.8031250.035*
C170.0848 (5)0.6728 (2)0.58652 (19)0.0266 (5)
H17A0.0739830.6984940.5171200.040*
H17B0.0360620.7132070.6299840.040*
H17C0.0739360.5941830.5963000.040*
C180.0400 (4)0.9065 (2)0.91730 (19)0.0261 (5)
H18A0.0713810.9528060.9734380.039*
H18B0.1055490.8389080.9361580.039*
H18C0.1038150.9462060.8605200.039*
C190.3108 (5)0.9856 (2)0.86890 (19)0.0273 (6)
H19A0.2317111.0347860.8213540.041*
H19B0.4681060.9700190.8414260.041*
H19C0.2957431.0207280.9312370.041*
C200.0030 (4)0.6716 (2)0.82343 (17)0.0195 (5)
H20A0.0163270.6010570.7998610.029*
H20B0.0880500.7311230.7865190.029*
H20C0.0610230.6723120.8943850.029*
C210.7310 (5)0.0149 (2)0.6296 (2)0.0316 (6)
H21A0.7874440.0508370.6790710.047*
H21B0.8505720.0033420.5749250.047*
H21C0.6765960.0524750.6606160.047*
H10.527 (7)0.698 (4)0.496 (3)0.047*
H20.620 (7)0.344 (4)0.587 (3)0.047*
H30.593 (7)0.150 (4)0.598 (3)0.047*
O1'0.6603 (3)0.44467 (15)0.46767 (12)0.0212 (4)
O2'0.5847 (3)0.80229 (15)0.37901 (13)0.0233 (4)
O3'0.4431 (4)0.02360 (15)0.42307 (15)0.0315 (4)
C1'0.8272 (4)0.4748 (2)0.10293 (16)0.0178 (5)
H1'C0.7467110.5491930.0892780.021*
H1'D0.9695760.4831800.1239170.021*
C2'0.8752 (4)0.4148 (2)0.00713 (17)0.0225 (5)
H2'C0.7338490.4111600.0170750.027*
H2'D0.9670420.4563660.0446700.027*
C3'0.9966 (4)0.2986 (2)0.02478 (17)0.0221 (5)
H3'C1.1440750.3032610.0424230.027*
H3'D1.0204010.2616360.0378150.027*
C4'0.8720 (4)0.2281 (2)0.10727 (16)0.0175 (5)
C5'0.8070 (4)0.29321 (19)0.20155 (15)0.0156 (5)
H5'B0.9518680.3005360.2223110.019*
C6'0.6868 (4)0.23040 (19)0.29028 (16)0.0188 (5)
H6'C0.7606890.1534340.2957960.023*
H6'D0.5317440.2297590.2800800.023*
C7'0.6883 (4)0.28425 (19)0.38620 (16)0.0195 (5)
H7'C0.6056650.2435160.4421550.023*
H7'D0.8433350.2780280.3989730.023*
C8'0.5866 (4)0.40447 (19)0.38362 (15)0.0173 (5)
C9'0.6913 (4)0.46712 (18)0.28773 (16)0.0153 (5)
H9'B0.8521320.4602760.2941460.018*
C10'0.6878 (4)0.41355 (19)0.18894 (15)0.0149 (5)
C11'0.6089 (4)0.59222 (19)0.28424 (16)0.0171 (5)
H11C0.5423790.6151740.2228390.021*
H11D0.4922390.6082860.3416180.021*
C12'0.7963 (4)0.65792 (19)0.28669 (18)0.0203 (5)
H12C0.9084180.6432630.2274090.024*
H12D0.8681650.6301190.3458280.024*
C13'0.7316 (4)0.78318 (19)0.28935 (17)0.0198 (5)
C14'0.9418 (5)0.8313 (2)0.2854 (2)0.0339 (6)
H14B1.0402940.8290020.2244620.041*
C15'1.0016 (6)0.8753 (3)0.3560 (3)0.0428 (7)
H15C0.9088530.8795980.4183330.051*
H15D1.1385370.9034980.3458560.051*
C16'0.6126 (5)0.8343 (2)0.2011 (2)0.0326 (6)
H16D0.4791660.8003580.2017770.049*
H16E0.7122660.8214990.1387780.049*
H16F0.5706330.9134100.2068310.049*
C17'0.3332 (4)0.4173 (2)0.40188 (17)0.0229 (5)
H17D0.2835510.3864450.4690070.034*
H17E0.2814170.3782180.3531520.034*
H17F0.2724080.4952910.3951700.034*
C18'1.0347 (4)0.1241 (2)0.13027 (18)0.0242 (5)
H18D1.0967050.0894490.0685450.036*
H18E0.9559050.0726010.1763290.036*
H18F1.1549370.1441530.1605490.036*
C19'0.6731 (4)0.1913 (2)0.07099 (18)0.0236 (5)
H19D0.5765230.2558710.0471170.035*
H19E0.5893500.1513200.1259860.035*
H19F0.7269120.1431750.0168030.035*
C20'0.4479 (4)0.4233 (2)0.16401 (17)0.0190 (5)
H20D0.3607540.4913710.1877340.028*
H20E0.3789870.3603910.1966120.028*
H20F0.4529260.4241460.0919690.028*
C21'0.2414 (5)0.0939 (3)0.4111 (2)0.0349 (6)
H21D0.1189650.0667230.4565380.052*
H21E0.2131180.0948280.3424640.052*
H21F0.2534220.1683870.4259070.052*
H1'0.586 (7)0.507 (4)0.488 (3)0.052*
H2'0.564 (7)0.862 (4)0.391 (3)0.052*
H3'0.514 (7)0.038 (4)0.472 (3)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0414 (10)0.0174 (9)0.0142 (8)0.0050 (8)0.0070 (7)0.0023 (7)
O20.0235 (8)0.0160 (8)0.0129 (7)0.0058 (6)0.0050 (6)0.0015 (6)
O30.0511 (12)0.0199 (10)0.0393 (11)0.0047 (9)0.0177 (9)0.0021 (8)
C10.0202 (11)0.0184 (12)0.0194 (11)0.0038 (9)0.0013 (9)0.0024 (9)
C20.0288 (12)0.0249 (14)0.0149 (11)0.0047 (10)0.0032 (9)0.0002 (9)
C30.0304 (13)0.0267 (14)0.0166 (11)0.0072 (10)0.0002 (9)0.0074 (9)
C40.0237 (12)0.0162 (12)0.0183 (11)0.0054 (9)0.0045 (9)0.0047 (9)
C50.0170 (10)0.0150 (12)0.0170 (11)0.0036 (9)0.0021 (8)0.0041 (9)
C60.0277 (12)0.0134 (11)0.0185 (11)0.0026 (9)0.0016 (9)0.0011 (9)
C70.0321 (13)0.0165 (12)0.0150 (10)0.0047 (10)0.0014 (9)0.0000 (8)
C80.0280 (12)0.0151 (12)0.0146 (10)0.0040 (9)0.0007 (9)0.0026 (8)
C90.0163 (10)0.0135 (11)0.0162 (11)0.0042 (8)0.0002 (8)0.0021 (8)
C100.0160 (10)0.0150 (12)0.0141 (10)0.0040 (9)0.0009 (8)0.0009 (8)
C110.0197 (11)0.0129 (12)0.0175 (10)0.0055 (9)0.0008 (8)0.0016 (8)
C120.0181 (11)0.0169 (12)0.0165 (10)0.0055 (9)0.0032 (8)0.0032 (8)
C130.0208 (11)0.0186 (12)0.0127 (10)0.0033 (9)0.0058 (8)0.0035 (8)
C140.0249 (12)0.0241 (13)0.0284 (12)0.0012 (10)0.0124 (10)0.0036 (10)
C150.0232 (12)0.0369 (16)0.0384 (15)0.0015 (11)0.0074 (11)0.0102 (12)
C160.0341 (13)0.0200 (12)0.0158 (11)0.0074 (10)0.0037 (9)0.0004 (9)
C170.0359 (14)0.0229 (14)0.0224 (12)0.0025 (11)0.0118 (10)0.0001 (10)
C180.0260 (12)0.0245 (13)0.0254 (12)0.0019 (10)0.0056 (10)0.0075 (10)
C190.0369 (14)0.0220 (13)0.0238 (12)0.0124 (11)0.0061 (10)0.0094 (10)
C200.0186 (11)0.0190 (12)0.0209 (11)0.0044 (9)0.0004 (8)0.0021 (9)
C210.0343 (14)0.0283 (15)0.0334 (14)0.0091 (12)0.0052 (11)0.0009 (11)
O1'0.0340 (9)0.0178 (9)0.0120 (7)0.0034 (7)0.0026 (6)0.0038 (6)
O2'0.0325 (10)0.0171 (9)0.0199 (8)0.0084 (7)0.0044 (7)0.0043 (7)
O3'0.0474 (12)0.0188 (10)0.0290 (10)0.0037 (8)0.0078 (9)0.0034 (7)
C1'0.0219 (11)0.0194 (12)0.0127 (10)0.0077 (9)0.0011 (8)0.0017 (8)
C2'0.0290 (12)0.0247 (13)0.0133 (10)0.0086 (10)0.0013 (9)0.0012 (9)
C3'0.0279 (12)0.0261 (14)0.0119 (10)0.0066 (10)0.0025 (9)0.0029 (9)
C4'0.0222 (11)0.0189 (12)0.0113 (10)0.0049 (9)0.0003 (8)0.0025 (8)
C5'0.0198 (11)0.0185 (12)0.0097 (10)0.0058 (9)0.0019 (8)0.0020 (8)
C6'0.0277 (12)0.0146 (12)0.0142 (10)0.0062 (9)0.0001 (9)0.0023 (8)
C7'0.0316 (13)0.0161 (12)0.0109 (10)0.0060 (10)0.0007 (9)0.0008 (8)
C8'0.0235 (11)0.0190 (12)0.0100 (10)0.0072 (9)0.0008 (8)0.0031 (8)
C9'0.0180 (10)0.0158 (12)0.0121 (10)0.0042 (9)0.0010 (8)0.0009 (8)
C10'0.0167 (10)0.0177 (12)0.0117 (10)0.0070 (9)0.0012 (8)0.0016 (8)
C11'0.0219 (11)0.0162 (12)0.0130 (10)0.0039 (9)0.0001 (8)0.0022 (8)
C12'0.0200 (11)0.0162 (12)0.0242 (12)0.0058 (9)0.0005 (9)0.0010 (9)
C13'0.0236 (11)0.0172 (12)0.0178 (11)0.0076 (9)0.0029 (9)0.0002 (8)
C14'0.0295 (14)0.0215 (14)0.0508 (18)0.0123 (11)0.0013 (12)0.0012 (12)
C15'0.0358 (15)0.0369 (18)0.060 (2)0.0106 (13)0.0124 (14)0.0064 (14)
C16'0.0524 (17)0.0225 (14)0.0240 (13)0.0079 (12)0.0074 (12)0.0005 (10)
C17'0.0238 (12)0.0243 (13)0.0194 (11)0.0081 (10)0.0059 (9)0.0030 (9)
C18'0.0302 (13)0.0223 (13)0.0184 (11)0.0011 (10)0.0011 (9)0.0053 (9)
C19'0.0327 (13)0.0238 (13)0.0173 (11)0.0101 (11)0.0038 (10)0.0057 (9)
C20'0.0189 (11)0.0206 (12)0.0187 (10)0.0053 (9)0.0035 (8)0.0026 (8)
C21'0.0336 (14)0.0345 (17)0.0362 (15)0.0092 (12)0.0007 (12)0.0013 (12)
Geometric parameters (Å, º) top
O1—C81.454 (3)O1'—C8'1.458 (3)
O1—H10.87 (4)O1'—H1'0.88 (5)
O2—C131.439 (3)O2'—C13'1.421 (3)
O2—H20.81 (5)O2'—H2'0.76 (5)
O3—C211.376 (4)O3'—C21'1.424 (4)
O3—H30.88 (4)O3'—H3'0.90 (5)
C1—C21.530 (3)C1'—C2'1.535 (3)
C1—C101.551 (3)C1'—C10'1.551 (3)
C1—H1A0.9900C1'—H1'C0.9900
C1—H1B0.9900C1'—H1'D0.9900
C2—C31.528 (4)C2'—C3'1.528 (4)
C2—H2A0.9900C2'—H2'C0.9900
C2—H2B0.9900C2'—H2'D0.9900
C3—C41.542 (4)C3'—C4'1.538 (3)
C3—H3A0.9900C3'—H3'C0.9900
C3—H3B0.9900C3'—H3'D0.9900
C4—C181.534 (3)C4'—C18'1.541 (4)
C4—C191.538 (3)C4'—C19'1.542 (3)
C4—C51.562 (3)C4'—C5'1.553 (3)
C5—C61.535 (3)C5'—C6'1.528 (3)
C5—C101.561 (3)C5'—C10'1.559 (3)
C5—H5A1.0000C5'—H5'B1.0000
C6—C71.526 (3)C6'—C7'1.531 (3)
C6—H6A0.9900C6'—H6'C0.9900
C6—H6B0.9900C6'—H6'D0.9900
C7—C81.524 (3)C7'—C8'1.519 (3)
C7—H7A0.9900C7'—H7'C0.9900
C7—H7B0.9900C7'—H7'D0.9900
C8—C171.524 (4)C8'—C17'1.529 (3)
C8—C91.556 (3)C8'—C9'1.557 (3)
C9—C111.547 (3)C9'—C11'1.550 (3)
C9—C101.565 (3)C9'—C10'1.568 (3)
C9—H9A1.0000C9'—H9'B1.0000
C10—C201.546 (3)C10'—C20'1.555 (3)
C11—C121.524 (3)C11'—C12'1.522 (3)
C11—H11A0.9900C11'—H11C0.9900
C11—H11B0.9900C11'—H11D0.9900
C12—C131.539 (3)C12'—C13'1.541 (3)
C12—H12A0.9900C12'—H12C0.9900
C12—H12B0.9900C12'—H12D0.9900
C13—C141.513 (3)C13'—C14'1.502 (3)
C13—C161.525 (3)C13'—C16'1.543 (4)
C14—C151.313 (4)C14'—C15'1.283 (5)
C14—H14A0.9500C14'—H14B0.9500
C15—H15A0.9500C15'—H15C0.9500
C15—H15B0.9500C15'—H15D0.9500
C16—H16A0.9800C16'—H16D0.9800
C16—H16B0.9800C16'—H16E0.9800
C16—H16C0.9800C16'—H16F0.9800
C17—H17A0.9800C17'—H17D0.9800
C17—H17B0.9800C17'—H17E0.9800
C17—H17C0.9800C17'—H17F0.9800
C18—H18A0.9800C18'—H18D0.9800
C18—H18B0.9800C18'—H18E0.9800
C18—H18C0.9800C18'—H18F0.9800
C19—H19A0.9800C19'—H19D0.9800
C19—H19B0.9800C19'—H19E0.9800
C19—H19C0.9800C19'—H19F0.9800
C20—H20A0.9800C20'—H20D0.9800
C20—H20B0.9800C20'—H20E0.9800
C20—H20C0.9800C20'—H20F0.9800
C21—H21A0.9800C21'—H21D0.9800
C21—H21B0.9800C21'—H21E0.9800
C21—H21C0.9800C21'—H21F0.9800
C8—O1—H1109 (3)C8'—O1'—H1'116 (3)
C13—O2—H2106 (3)C13'—O2'—H2'113 (3)
C21—O3—H3104 (3)C21'—O3'—H3'116 (3)
C2—C1—C10113.11 (19)C2'—C1'—C10'112.77 (19)
C2—C1—H1A109.0C2'—C1'—H1'C109.0
C10—C1—H1A109.0C10'—C1'—H1'C109.0
C2—C1—H1B109.0C2'—C1'—H1'D109.0
C10—C1—H1B109.0C10'—C1'—H1'D109.0
H1A—C1—H1B107.8H1'C—C1'—H1'D107.8
C3—C2—C1110.86 (19)C3'—C2'—C1'111.04 (19)
C3—C2—H2A109.5C3'—C2'—H2'C109.4
C1—C2—H2A109.5C1'—C2'—H2'C109.4
C3—C2—H2B109.5C3'—C2'—H2'D109.4
C1—C2—H2B109.5C1'—C2'—H2'D109.4
H2A—C2—H2B108.1H2'C—C2'—H2'D108.0
C2—C3—C4113.9 (2)C2'—C3'—C4'113.7 (2)
C2—C3—H3A108.8C2'—C3'—H3'C108.8
C4—C3—H3A108.8C4'—C3'—H3'C108.8
C2—C3—H3B108.8C2'—C3'—H3'D108.8
C4—C3—H3B108.8C4'—C3'—H3'D108.8
H3A—C3—H3B107.7H3'C—C3'—H3'D107.7
C18—C4—C19107.9 (2)C3'—C4'—C18'107.01 (19)
C18—C4—C3110.5 (2)C3'—C4'—C19'110.70 (18)
C19—C4—C3107.2 (2)C18'—C4'—C19'107.6 (2)
C18—C4—C5114.3 (2)C3'—C4'—C5'108.73 (18)
C19—C4—C5108.63 (18)C18'—C4'—C5'108.96 (18)
C3—C4—C5108.15 (19)C19'—C4'—C5'113.63 (19)
C6—C5—C10110.12 (18)C6'—C5'—C4'113.84 (18)
C6—C5—C4113.92 (19)C6'—C5'—C10'110.47 (18)
C10—C5—C4117.09 (17)C4'—C5'—C10'117.57 (17)
C6—C5—H5A104.8C6'—C5'—H5'B104.5
C10—C5—H5A104.8C4'—C5'—H5'B104.5
C4—C5—H5A104.8C10'—C5'—H5'B104.5
C7—C6—C5110.79 (19)C5'—C6'—C7'110.36 (18)
C7—C6—H6A109.5C5'—C6'—H6'C109.6
C5—C6—H6A109.5C7'—C6'—H6'C109.6
C7—C6—H6B109.5C5'—C6'—H6'D109.6
C5—C6—H6B109.5C7'—C6'—H6'D109.6
H6A—C6—H6B108.1H6'C—C6'—H6'D108.1
C8—C7—C6113.62 (18)C8'—C7'—C6'113.70 (19)
C8—C7—H7A108.8C8'—C7'—H7'C108.8
C6—C7—H7A108.8C6'—C7'—H7'C108.8
C8—C7—H7B108.8C8'—C7'—H7'D108.8
C6—C7—H7B108.8C6'—C7'—H7'D108.8
H7A—C7—H7B107.7H7'C—C7'—H7'D107.7
O1—C8—C17107.19 (19)O1'—C8'—C7'103.63 (18)
O1—C8—C7107.78 (18)O1'—C8'—C17'108.14 (18)
C17—C8—C7111.3 (2)C7'—C8'—C17'111.31 (19)
O1—C8—C9104.60 (18)O1'—C8'—C9'107.29 (17)
C17—C8—C9116.24 (19)C7'—C8'—C9'109.75 (18)
C7—C8—C9109.14 (19)C17'—C8'—C9'115.90 (19)
C11—C9—C8111.82 (18)C11'—C9'—C8'112.55 (18)
C11—C9—C10114.56 (18)C11'—C9'—C10'114.24 (17)
C8—C9—C10115.04 (18)C8'—C9'—C10'114.75 (17)
C11—C9—H9A104.7C11'—C9'—H9'B104.6
C8—C9—H9A104.7C8'—C9'—H9'B104.6
C10—C9—H9A104.7C10'—C9'—H9'B104.6
C20—C10—C1108.67 (17)C1'—C10'—C20'108.17 (18)
C20—C10—C5114.51 (18)C1'—C10'—C5'107.80 (18)
C1—C10—C5107.27 (17)C20'—C10'—C5'114.18 (18)
C20—C10—C9111.51 (18)C1'—C10'—C9'108.48 (17)
C1—C10—C9108.40 (18)C20'—C10'—C9'111.51 (18)
C5—C10—C9106.25 (16)C5'—C10'—C9'106.53 (16)
C12—C11—C9111.66 (18)C12'—C11'—C9'111.79 (19)
C12—C11—H11A109.3C12'—C11'—H11C109.3
C9—C11—H11A109.3C9'—C11'—H11C109.3
C12—C11—H11B109.3C12'—C11'—H11D109.3
C9—C11—H11B109.3C9'—C11'—H11D109.3
H11A—C11—H11B107.9H11C—C11'—H11D107.9
C11—C12—C13115.76 (18)C11'—C12'—C13'116.4 (2)
C11—C12—H12A108.3C11'—C12'—H12C108.2
C13—C12—H12A108.3C13'—C12'—H12C108.2
C11—C12—H12B108.3C11'—C12'—H12D108.2
C13—C12—H12B108.3C13'—C12'—H12D108.2
H12A—C12—H12B107.4H12C—C12'—H12D107.3
O2—C13—C14110.35 (19)O2'—C13'—C14'112.2 (2)
O2—C13—C16106.17 (17)O2'—C13'—C12'107.08 (18)
C14—C13—C16110.3 (2)C14'—C13'—C12'107.3 (2)
O2—C13—C12109.85 (17)O2'—C13'—C16'108.7 (2)
C14—C13—C12107.79 (19)C14'—C13'—C16'109.4 (2)
C16—C13—C12112.37 (19)C12'—C13'—C16'112.2 (2)
C15—C14—C13125.8 (2)C15'—C14'—C13'126.5 (3)
C15—C14—H14A117.1C15'—C14'—H14B116.7
C13—C14—H14A117.1C13'—C14'—H14B116.7
C14—C15—H15A120.0C14'—C15'—H15C120.0
C14—C15—H15B120.0C14'—C15'—H15D120.0
H15A—C15—H15B120.0H15C—C15'—H15D120.0
C13—C16—H16A109.5C13'—C16'—H16D109.5
C13—C16—H16B109.5C13'—C16'—H16E109.5
H16A—C16—H16B109.5H16D—C16'—H16E109.5
C13—C16—H16C109.5C13'—C16'—H16F109.5
H16A—C16—H16C109.5H16D—C16'—H16F109.5
H16B—C16—H16C109.5H16E—C16'—H16F109.5
C8—C17—H17A109.5C8'—C17'—H17D109.5
C8—C17—H17B109.5C8'—C17'—H17E109.5
H17A—C17—H17B109.5H17D—C17'—H17E109.5
C8—C17—H17C109.5C8'—C17'—H17F109.5
H17A—C17—H17C109.5H17D—C17'—H17F109.5
H17B—C17—H17C109.5H17E—C17'—H17F109.5
C4—C18—H18A109.5C4'—C18'—H18D109.5
C4—C18—H18B109.5C4'—C18'—H18E109.5
H18A—C18—H18B109.5H18D—C18'—H18E109.5
C4—C18—H18C109.5C4'—C18'—H18F109.5
H18A—C18—H18C109.5H18D—C18'—H18F109.5
H18B—C18—H18C109.5H18E—C18'—H18F109.5
C4—C19—H19A109.5C4'—C19'—H19D109.5
C4—C19—H19B109.5C4'—C19'—H19E109.5
H19A—C19—H19B109.5H19D—C19'—H19E109.5
C4—C19—H19C109.5C4'—C19'—H19F109.5
H19A—C19—H19C109.5H19D—C19'—H19F109.5
H19B—C19—H19C109.5H19E—C19'—H19F109.5
C10—C20—H20A109.5C10'—C20'—H20D109.5
C10—C20—H20B109.5C10'—C20'—H20E109.5
H20A—C20—H20B109.5H20D—C20'—H20E109.5
C10—C20—H20C109.5C10'—C20'—H20F109.5
H20A—C20—H20C109.5H20D—C20'—H20F109.5
H20B—C20—H20C109.5H20E—C20'—H20F109.5
O3—C21—H21A109.5O3'—C21'—H21D109.5
O3—C21—H21B109.5O3'—C21'—H21E109.5
H21A—C21—H21B109.5H21D—C21'—H21E109.5
O3—C21—H21C109.5O3'—C21'—H21F109.5
H21A—C21—H21C109.5H21D—C21'—H21F109.5
H21B—C21—H21C109.5H21E—C21'—H21F109.5
C10—C1—C2—C358.0 (3)C10'—C1'—C2'—C3'57.9 (3)
C1—C2—C3—C456.6 (3)C1'—C2'—C3'—C4'56.7 (3)
C2—C3—C4—C1874.2 (3)C2'—C3'—C4'—C18'168.60 (19)
C2—C3—C4—C19168.4 (2)C2'—C3'—C4'—C19'74.4 (3)
C2—C3—C4—C551.5 (3)C2'—C3'—C4'—C5'51.0 (3)
C18—C4—C5—C658.4 (3)C3'—C4'—C5'—C6'178.50 (19)
C19—C4—C5—C662.2 (3)C18'—C4'—C5'—C6'62.2 (2)
C3—C4—C5—C6178.2 (2)C19'—C4'—C5'—C6'57.7 (3)
C18—C4—C5—C1072.1 (3)C3'—C4'—C5'—C10'50.1 (2)
C19—C4—C5—C10167.3 (2)C18'—C4'—C5'—C10'166.36 (19)
C3—C4—C5—C1051.3 (3)C19'—C4'—C5'—C10'73.7 (3)
C10—C5—C6—C761.2 (2)C4'—C5'—C6'—C7'163.7 (2)
C4—C5—C6—C7164.94 (19)C10'—C5'—C6'—C7'61.4 (2)
C5—C6—C7—C856.9 (3)C5'—C6'—C7'—C8'56.8 (3)
C6—C7—C8—O1163.9 (2)C6'—C7'—C8'—O1'164.87 (18)
C6—C7—C8—C1778.8 (3)C6'—C7'—C8'—C17'79.1 (2)
C6—C7—C8—C950.8 (3)C6'—C7'—C8'—C9'50.5 (3)
O1—C8—C9—C1159.3 (2)O1'—C8'—C9'—C11'63.5 (2)
C17—C8—C9—C1158.7 (3)C7'—C8'—C9'—C11'175.43 (19)
C7—C8—C9—C11174.42 (19)C17'—C8'—C9'—C11'57.4 (3)
O1—C8—C9—C10167.77 (17)O1'—C8'—C9'—C10'163.62 (18)
C17—C8—C9—C1074.3 (3)C7'—C8'—C9'—C10'51.7 (2)
C7—C8—C9—C1052.6 (2)C17'—C8'—C9'—C10'75.5 (3)
C2—C1—C10—C2070.2 (2)C2'—C1'—C10'—C20'70.8 (2)
C2—C1—C10—C554.1 (2)C2'—C1'—C10'—C5'53.2 (2)
C2—C1—C10—C9168.48 (18)C2'—C1'—C10'—C9'168.13 (19)
C6—C5—C10—C2064.1 (2)C6'—C5'—C10'—C1'175.93 (17)
C4—C5—C10—C2068.2 (3)C4'—C5'—C10'—C1'51.1 (2)
C6—C5—C10—C1175.24 (18)C6'—C5'—C10'—C20'63.9 (2)
C4—C5—C10—C152.5 (2)C4'—C5'—C10'—C20'69.1 (2)
C6—C5—C10—C959.5 (2)C6'—C5'—C10'—C9'59.7 (2)
C4—C5—C10—C9168.29 (18)C4'—C5'—C10'—C9'167.37 (17)
C11—C9—C10—C2063.2 (2)C11'—C9'—C10'—C1'56.2 (2)
C8—C9—C10—C2068.4 (2)C8'—C9'—C10'—C1'171.73 (19)
C11—C9—C10—C156.4 (2)C11'—C9'—C10'—C20'62.9 (2)
C8—C9—C10—C1171.97 (18)C8'—C9'—C10'—C20'69.2 (2)
C11—C9—C10—C5171.39 (18)C11'—C9'—C10'—C5'171.96 (17)
C8—C9—C10—C557.0 (2)C8'—C9'—C10'—C5'55.9 (2)
C8—C9—C11—C12116.6 (2)C8'—C9'—C11'—C12'115.7 (2)
C10—C9—C11—C12110.2 (2)C10'—C9'—C11'—C12'111.2 (2)
C9—C11—C12—C13176.52 (17)C9'—C11'—C12'—C13'176.76 (18)
C11—C12—C13—O258.1 (2)C11'—C12'—C13'—O2'62.6 (3)
C11—C12—C13—C14178.38 (19)C11'—C12'—C13'—C14'176.7 (2)
C11—C12—C13—C1659.8 (2)C11'—C12'—C13'—C16'56.6 (3)
O2—C13—C14—C159.7 (4)O2'—C13'—C14'—C15'7.0 (4)
C16—C13—C14—C15126.8 (3)C12'—C13'—C14'—C15'110.4 (3)
C12—C13—C14—C15110.2 (3)C16'—C13'—C14'—C15'127.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.87 (4)1.97 (4)2.816 (2)163 (4)
O2—H2···O10.81 (5)1.96 (5)2.762 (2)167 (4)
O3—H3···O20.88 (4)1.89 (5)2.744 (3)164 (4)
O1—H1···O10.88 (5)1.87 (5)2.744 (2)170 (4)
O2—H2···O3i0.76 (5)2.08 (5)2.833 (3)169 (5)
O3—H3···O30.90 (5)1.89 (5)2.753 (3)160 (4)
Symmetry code: (i) x, y+1, z.
 

Funding information

The research leading to these results has, in part, received funding from UK Research and Innovation via the Global Challenges Research Fund under grant agreement `A Global Network for Neglected Tropical Diseases', grant No. MR/P027989/1.

References

First citationAcimovic, M., Kiprovski, B., Rat, M., Sikora, V., Popovic, V., Koren, A. & Brdar- Jokanovic, M. (2018). J. Agronomy, Technol. Engineering Management, 1, 18–28.  Google Scholar
First citationAitipamula, S., Chow, P. S. & Tan, R. B. (2012). CrystEngComm, 14, 691–699.  Web of Science CSD CrossRef CAS Google Scholar
First citationAranda, G., El Kortbi, M. S., Lallemand, J.-Y., Neuman, A., Hammoumi, A., Facon, I. & Azerad, R. (1991). Tetrahedron, 47, 8339–8350.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaniard, A., Zerbe, P., Legrand, S., Cohade, A., Valot, N., Magnard, J.-L., Bohlmann, J. & Legendre, L. (2012). BMC Plant Biol. 12, 119.  Google Scholar
First citationCapozzi, M. A. M., Terraneo, G. & Cardellicchio, C. (2019). Acta Cryst. C75, 189–195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, P.-Y., Zhang, L., Zhu, S.-G. & Cheng, G.-B. (2017). J. Mol. Struct. 1131, 250–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationDimas, K., Demetzos, C., Vaos, V., Ioannidis, P. & Trangas, T. (2001). Leuk. Res. 25, 449–454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHäfner, S., Burg, F., Kannler, M., Urban, N., Mayer, P., Dietrich, A., Trauner, D., Broichhagen, J. & Schaefer, M. (2018). ChemMedChem, 13, 1028–1035.  Web of Science PubMed Google Scholar
First citationKooijman, H. & Spek, A. L. (2002). Acta Cryst. E58, o172–o174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKouzi, S. A. & McChesney, J. D. (1990). Helv. Chim. Acta, 73, 2157–2164.  CrossRef CAS Web of Science Google Scholar
First citationKouzi, S., McChesney, J. & Walker, L. (1993). Xenobiotica, 23, 621–632.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNagashima, F., Tanaka, H., Takaoka, S. & Asakawa, Y. (1997). Phytochemistry, 45, 353–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationRodríguez, M. L., Martín, J. D. & Estrada, D. (1989). Acta Cryst. C45, 306–308.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationShawl, A. S., Singh, J., Srivastava, S. K., Tripathi, S., Raina, V. K. & Kumar, S. (1999). Journal of Medicinal and Aromatic Plant Sciences, 21, 11–16.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M., Pal, M. & Sharma, R. (1999). Planta Med. 65, 002–008.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTavares, G. S. V., Mendonça, D. V. C., Lage, D. P., Granato, J. D. T., Ottoni, F. M., Ludolf, F., Chávez-Fumagalli, M. A., Duarte, M. C., Tavares, C. A. P., Alves, R. J., Coimbra, E. S. & Coelho, E. A. F. (2018). Basic Clin. Pharmacol. Toxicol. 123, 236–246.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds