research communications
Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation
aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: shova@icmpp.ro
The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O′], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O′] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (11) plane.
Keywords: crystal structure; macrocyclic ligand; cyclam; nickel; coordination polymers; hydrogen bonds.
1. Chemical context
Transition-metal complexes of polyazamacrocyclic ligands, in particular of 1,4,8,11-tetraazacyclotetradecane (cyclam), are characterized by a number of unique properties, such as exceptionally high thermodynamic stability, kinetic inertness and unusual redox characteristics (Melson, 1979; Yatsimirskii & Lampeka, 1985), which have stimulated continuing interest in such systems for a number of decades. In conjunction with polycarboxylate ligands as spacers, macrocyclic complexes have been employed successfully for the construction of metal–organic frameworks (MOFs) (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018), which are considered to be promising materials for applications in gas storage, separation, catalysis, etc. (Farrusseng, 2011; MacGillivray & Lukehart, 2014; Kaskel, 2016).
In contrast to the widespread rigid aromatic carboxylates, flexible spacers incorporating polymethylene chains have rarely been used for the design of MOFs, although this could potentially lead to frameworks possessing unusual properties, the most intriguing of which is a `breathing' phenomenon (Elsaidi et al., 2018; Lee et al., 2019). A representative example of such a highly flexible ligand is 1,3-bis(3-carboxypropyl)tetramethyldisiloxane – a member of a rather restricted family of silicon-containing carboxylic acids. However, no attempt has been made so far to combine this ligand with macrocyclic complexes in MOF synthesis.
Here, we report the syntheses and crystal structures of the two coordination polymers built of the nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane (L) and the di- or monoanion of 1,3-bis(3-carboxypropyl)tetramethyldisiloxane (H2Cx), namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O′], [Ni(L)(Cx)]n, (I) and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O′] perchlorate], {[Ni(L)(HCx)]ClO4}n (II).
2. Structural commentary
The molecular structures of the title compounds are shown in Figs. 1 and 2. Both complexes are one-dimensional coordination polymers consisting of centrosymmetric macrocyclic [Ni(L)]2+ cations coordinated by the oxygen atoms of the carboxylic groups of the centrosymmetric acid, completely deprotonated (in I) and monoprotonated (in II), in the axial positions. In the latter case, there are two crystallographically independent cations and anions and the H2C and H5C acidic H atoms are distributed over two carboxylic groups with site occupancies of 50%.
The macrocyclic ligands in the complex cations adopt the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965) with five-membered chelate rings in gauche and six-membered chelate rings in chair conformations. As a result of the presence of the inversion centres, all Ni(N4) fragments are strictly planar. The equatorial Ni—N bond lengths and bite angles fall in a range typical of high-spin 3d8 nickel(II) complexes with 14-membered tetraamine ligands (Table 1). The axial Ni—O bond lengths are slightly longer than the Ni—N ones, and the geometry of the nickel(II) polyhedra can be described as tetragonally distorted trans-N4O2 octahedra.
In two cases (Ni1 in I and Ni2 in II), a monodentate coordination of the carboxylate to the complex cation is complemented by strong hydrogen bonding between the non-coordinated O atom of the carboxylic group and the NH group of the macrocycle, which is often observed in complexes of cyclam-like ligands. For the [Ni1(L)]2+ cation in II, the non-coordinated O2 atom is almost equidistant from the N1 and N2 centres [3.225 (5) and 3.143 (4) Å, respectively], so that two weak hydrogen bonds are formed in this case (Figs. 1 and 2, Tables 2 and 3).
|
|
The C—O bond lengths in the carboxylic group of the bridging ligand Cx2− in I are nearly identical [C6—O1 = 1.245 (7) and C6—O2 = 1.242 (7) Å], thus indicating essential electronic delocalization. At the same time, they differ significantly in II [C6—O1 = 1.232 (4) versus C6—O2 = 1.291 (5) Å; C17—O4 = 1.245 (4) versus C17—O5 = 1.280 (5) Å], so formally the Ni—O bonding in this compound can be treated as the interaction of the metal ion with the carbonyl oxygen atom of the carboxylic group.
Because of the presence of flexible trimethylene fragments, the dicarboxylate ligand can adopt various conformations, both symmetric and asymmetric. In the present cases the anions possess a I and II, respectively], as well as with the 25% occupancy atoms O6 and O6X in II [the corresponding Si2—O6(6X)—Si2 angles are 153.1 (17) and 167 (3)°, respectively] (Figs. 1 and 2). The geometries of the two crystallographically independent anions in complex II are actually very similar, but differ from that observed in complex I (Fig. 3).
of the siloxane linkages with the disordered O3 atoms [site occupancies 50%, Si1—O3—Si1 = 141.2 (7) and 137.4 (4)° in3. Supramolecular features
The crystals of both compounds are composed of parallel polymeric chains of [Ni(L)]2+ cations linked by carboxylate bridging ligands. The identical chains in I with an intra-chain Ni⋯Ni separation of 14.325 Å propagate along the [101] direction (Fig. 4). In II, two crystallographically independent chains formed by the Ni1 and Ni2 macrocyclic cations propagate along the [110] direction (Fig. 5) and are characterized by a slightly larger (14.684 Å) intra-chain separation between the NiII ions.
In the crystals, the interactions between the polymeric chains in I and II are characterized by markedly different features. In the first case, each chain is linked to four neighbouring ones as a result of hydrogen bonding between the N2—H2 groups of the macrocycles and carboxylate O2 atoms (Table 2), resulting in a three-dimensional supramolecular network. On the other hand, in II each polymeric chain contacts with only two neighbours via paired O2—H2C⋯O5/O2⋯H5C—O5 hydrogen bonds. The bonding is reinforced by the perchlorate anions bridging macrocyclic units: N1—H1⋯O8—Cl1—O7⋯H4—N4 (plus an additional very weak O2—H2C⋯O8 contact) (Table 3). As a result, a lamellar structure is formed with the layers lying parallel to the (11) plane (Fig. 6).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, last update February 2019; Groom et al., 2016) indicated that seven compounds formed by 1,3-bis(3-carboxypropyl)tetramethyldisiloxane itself or its anions have been characterized structurally. Two of them are co-crystals of the acid with organic bases derived from pyridine [refcodes NERTOV (Vlad et al., 2013a) and VIPZUR (Racles et al., 2013)]. Other complexes represent one- or two-dimensional coordination polymers formed by CuII (YIGXOD; Vlad et al., 2013b), CoII (NERTIP; Vlad et al., 2013a), ZnII [NERTUB (Vlad et al., 2013a), GIWSAI (Vlad et al., 2014) and GAPKOA (Zaltariov et al., 2016)]. Except for the last complex, in which the secondary building unit is a hexametal oxocluster bridged by salicylaldoxime ligands, all of the other compounds contain additional heterocyclic co-ligands. No attempt was made to combine this carboxylic acid with macrocyclic cations in MOF synthesis, and thus the title compounds I and II are the first examples of such compounds described so far.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 (Barefield et al., 1976) and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane (H2Cx) (Mulvaney & Marvel, 1961) were prepared by the reported methods.
{Ni(L)(Cx)}n, (I). To a solution of 48 mg (0.24 mmol) of the ligand L in 4 ml of water, 30 mg of nickel(II) hydroxide (0.32 mmol) were added and the suspension stirred for 4 d at room temperature to give a yellow-coloured solution. The excess of Ni(OH)2 was filtered off and the filtrate was treated with the solution of 75 mg (0.24 mmol) of H2Cx in 2 ml of MeOH. This solution was rotary evaporated to give an oily material. The residue was dissolved in 2 ml of MeOH, and the product precipitated with acetonitrile. It was recrystallized in a similar fashion from a MeOH/MeCN (1:15 v/v) solvent mixture. Yield 54 mg (40%). Analysis calculated for C22H48N4NiO5Si2: C, 46.89; H, 8.59; N, 9.94%. Found: C, 46.76; H, 8.64; N, 9.85%.
Single crystals of I suitable for X-ray were obtained analogously, except that precipitation was carried out using a diffusion regime (a methanolic solution of complex was layered with MeCN).
{[Ni(L)(HCx)]ClO4}n (II). A solution of 100 mg (0.26 mmol) of K2Cx in 1 ml of water was added to a solution of 130 mg (0.28 mmol) of [Ni(L)](ClO4)2 in 3 ml of water and the mixture was left at room temperature. Potassium perchlorate crystals, which formed after ca two weeks, were removed by filtration and the filtrate was allowed to evaporate slowly at room temperature. The crystals of the product formed after about one month. Yield 59 mg (34%). Analysis calculated for C22H49N4ClNiO9Si2: C, 39.80; H, 7.44; N, 8.44%. Found: C, 39.67; H, 7.51; N, 8.36%.
Single crystals of II suitable for X-ray were selected from the sample resulting from the synthesis.
Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . All H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å, N—H = 0.98 Å and carboxylate O—H = 0.82 Å, with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989020002327/hb7892sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002327/hb7892Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020002327/hb7892IIsup3.hkl
For both structures, data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SIR2008 (Burla et al., 2007) for (I); SHELXT (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C10H24O5Si2)(C12H24N4)] | F(000) = 608 |
Mr = 563.53 | Dx = 1.260 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.033 (5) Å | Cell parameters from 468 reflections |
b = 12.877 (10) Å | θ = 2.2–23.0° |
c = 9.028 (3) Å | µ = 0.77 mm−1 |
β = 101.31 (3)° | T = 173 K |
V = 1485.7 (13) Å3 | Plate, clear light colourless |
Z = 2 | 0.25 × 0.25 × 0.05 mm |
Agilent Xcalibur, Eos diffractometer | 3957 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2499 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 2.3° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −15→15 |
Tmin = 0.694, Tmax = 1.000 | l = −10→9 |
3957 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
3957 reflections | Δρmax = 0.56 e Å−3 |
165 parameters | Δρmin = −0.61 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 1.000000 | 0.500000 | 0.500000 | 0.0224 (3) | |
Si1 | 0.51530 (16) | 0.4465 (2) | 0.1590 (4) | 0.0810 (8) | |
O1 | 0.8723 (3) | 0.4020 (3) | 0.4131 (4) | 0.0278 (10) | |
O2 | 0.9375 (4) | 0.2757 (3) | 0.2920 (5) | 0.0546 (13) | |
O3 | 0.4991 (12) | 0.4662 (10) | −0.0400 (11) | 0.090 (4) | 0.5 |
N1 | 1.1059 (4) | 0.4111 (4) | 0.4113 (5) | 0.0313 (13) | |
H1 | 1.068906 | 0.348403 | 0.368383 | 0.038* | |
N2 | 1.0173 (4) | 0.4173 (4) | 0.6987 (5) | 0.0302 (12) | |
H2 | 0.974805 | 0.354292 | 0.677540 | 0.036* | |
C1 | 1.1301 (5) | 0.4718 (5) | 0.2850 (7) | 0.047 (2) | |
H1A | 1.161336 | 0.427243 | 0.219319 | 0.057* | |
H1B | 1.179620 | 0.526309 | 0.323016 | 0.057* | |
C2 | 0.9705 (5) | 0.4810 (5) | 0.8028 (7) | 0.050 (2) | |
H2A | 1.018601 | 0.535473 | 0.845711 | 0.060* | |
H2B | 0.955552 | 0.438364 | 0.884604 | 0.060* | |
C3 | 1.1239 (5) | 0.3849 (5) | 0.7630 (7) | 0.051 (2) | |
H3A | 1.123929 | 0.344748 | 0.853931 | 0.061* | |
H3B | 1.167199 | 0.445811 | 0.790758 | 0.061* | |
C4 | 1.1691 (6) | 0.3211 (6) | 0.6537 (9) | 0.056 (2) | |
H4A | 1.118692 | 0.267578 | 0.614158 | 0.067* | |
H4B | 1.230881 | 0.286356 | 0.709093 | 0.067* | |
C5 | 1.1991 (5) | 0.3767 (5) | 0.5216 (8) | 0.050 (2) | |
H5A | 1.241788 | 0.436626 | 0.557967 | 0.061* | |
H5B | 1.240623 | 0.330662 | 0.471842 | 0.061* | |
C6 | 0.8685 (5) | 0.3154 (5) | 0.3510 (7) | 0.0354 (16) | |
C7 | 0.7696 (5) | 0.2514 (5) | 0.3470 (8) | 0.0449 (18) | |
H7A | 0.778986 | 0.208718 | 0.437187 | 0.054* | |
H7B | 0.760544 | 0.205156 | 0.260604 | 0.054* | |
C8 | 0.6702 (5) | 0.3156 (5) | 0.3376 (7) | 0.0403 (18) | |
H8A | 0.613522 | 0.269978 | 0.350886 | 0.048* | |
H8B | 0.680861 | 0.365496 | 0.419680 | 0.048* | |
C9 | 0.6386 (4) | 0.3731 (5) | 0.1896 (8) | 0.0517 (19) | |
H9A | 0.634154 | 0.323019 | 0.108349 | 0.062* | |
H9B | 0.694402 | 0.421166 | 0.180578 | 0.062* | |
C10X | 0.4972 (14) | 0.5342 (14) | 0.313 (2) | 0.139 (5) | 0.5 |
H10A | 0.504595 | 0.495602 | 0.405513 | 0.209* | 0.5 |
H10B | 0.428590 | 0.564443 | 0.289455 | 0.209* | 0.5 |
H10C | 0.548903 | 0.588187 | 0.324362 | 0.209* | 0.5 |
C11 | 0.3986 (16) | 0.369 (2) | 0.171 (7) | 0.139 (5) | 0.5 |
H11A | 0.340588 | 0.414111 | 0.173486 | 0.209* | 0.5 |
H11B | 0.412287 | 0.327371 | 0.261206 | 0.209* | 0.5 |
H11C | 0.382182 | 0.324019 | 0.084404 | 0.209* | 0.5 |
C10 | 0.5355 (15) | 0.5612 (13) | 0.283 (2) | 0.139 (5) | 0.5 |
H10D | 0.581626 | 0.609001 | 0.247371 | 0.209* | 0.5 |
H10E | 0.565898 | 0.539997 | 0.384236 | 0.209* | 0.5 |
H10F | 0.469460 | 0.594367 | 0.282739 | 0.209* | 0.5 |
C11X | 0.4087 (17) | 0.3521 (18) | 0.156 (7) | 0.139 (5) | 0.5 |
H11D | 0.342613 | 0.385730 | 0.121176 | 0.209* | 0.5 |
H11E | 0.411408 | 0.325433 | 0.255871 | 0.209* | 0.5 |
H11F | 0.416537 | 0.296006 | 0.088976 | 0.209* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0285 (5) | 0.0157 (5) | 0.0236 (5) | 0.0026 (6) | 0.0068 (5) | 0.0002 (6) |
Si1 | 0.0406 (13) | 0.0755 (19) | 0.119 (2) | −0.0021 (12) | −0.0034 (15) | 0.0400 (17) |
O1 | 0.029 (2) | 0.019 (3) | 0.035 (3) | 0.003 (2) | 0.0052 (18) | −0.0074 (19) |
O2 | 0.046 (3) | 0.031 (3) | 0.091 (4) | −0.006 (2) | 0.023 (3) | −0.033 (3) |
O3 | 0.103 (8) | 0.105 (14) | 0.043 (9) | 0.010 (10) | −0.031 (9) | 0.010 (6) |
N1 | 0.037 (3) | 0.014 (3) | 0.046 (3) | −0.002 (3) | 0.017 (3) | −0.012 (2) |
N2 | 0.045 (3) | 0.025 (3) | 0.019 (3) | −0.013 (3) | 0.001 (2) | 0.005 (2) |
C1 | 0.070 (5) | 0.028 (5) | 0.056 (5) | −0.014 (4) | 0.042 (4) | −0.013 (3) |
C2 | 0.077 (6) | 0.039 (6) | 0.040 (4) | −0.013 (4) | 0.026 (4) | 0.003 (4) |
C3 | 0.060 (5) | 0.046 (5) | 0.040 (4) | −0.002 (4) | −0.007 (4) | 0.023 (4) |
C4 | 0.041 (4) | 0.029 (5) | 0.089 (6) | 0.009 (4) | −0.009 (4) | 0.018 (4) |
C5 | 0.038 (4) | 0.029 (5) | 0.085 (6) | 0.006 (4) | 0.016 (4) | −0.008 (4) |
C6 | 0.034 (4) | 0.025 (5) | 0.046 (4) | −0.002 (3) | 0.003 (3) | −0.003 (3) |
C7 | 0.038 (4) | 0.022 (5) | 0.074 (5) | −0.001 (3) | 0.009 (3) | −0.008 (4) |
C8 | 0.032 (4) | 0.039 (5) | 0.050 (4) | −0.002 (3) | 0.007 (3) | −0.001 (3) |
C9 | 0.034 (4) | 0.067 (5) | 0.053 (4) | −0.009 (4) | 0.006 (4) | 0.011 (4) |
C10X | 0.039 (6) | 0.077 (7) | 0.295 (14) | 0.005 (5) | 0.016 (7) | 0.004 (9) |
C11 | 0.039 (6) | 0.077 (7) | 0.295 (14) | 0.005 (5) | 0.016 (7) | 0.004 (9) |
C10 | 0.039 (6) | 0.077 (7) | 0.295 (14) | 0.005 (5) | 0.016 (7) | 0.004 (9) |
C11X | 0.039 (6) | 0.077 (7) | 0.295 (14) | 0.005 (5) | 0.016 (7) | 0.004 (9) |
Ni1—O1 | 2.113 (4) | C3—H3B | 0.9700 |
Ni1—O1i | 2.113 (4) | C3—C4 | 1.491 (9) |
Ni1—N1 | 2.071 (4) | C4—H4A | 0.9700 |
Ni1—N1i | 2.071 (4) | C4—H4B | 0.9700 |
Ni1—N2 | 2.060 (4) | C4—C5 | 1.508 (9) |
Ni1—N2i | 2.060 (4) | C5—H5A | 0.9700 |
Si1—O3 | 1.785 (11) | C5—H5B | 0.9700 |
Si1—O3ii | 1.541 (13) | C6—C7 | 1.524 (9) |
Si1—C9 | 1.838 (6) | C7—H7A | 0.9700 |
Si1—C10X | 1.842 (7) | C7—H7B | 0.9700 |
Si1—C11 | 1.842 (7) | C7—C8 | 1.525 (8) |
Si1—C10 | 1.842 (7) | C8—H8A | 0.9700 |
Si1—C11X | 1.842 (7) | C8—H8B | 0.9700 |
O1—C6 | 1.245 (7) | C8—C9 | 1.512 (8) |
O2—C6 | 1.242 (7) | C9—H9A | 0.9700 |
O3—O3ii | 1.13 (2) | C9—H9B | 0.9700 |
N1—H1 | 0.9800 | C10X—H10A | 0.9600 |
N1—C1 | 1.467 (7) | C10X—H10B | 0.9600 |
N1—C5 | 1.479 (7) | C10X—H10C | 0.9600 |
N2—H2 | 0.9800 | C11—H11A | 0.9600 |
N2—C2 | 1.467 (7) | C11—H11B | 0.9600 |
N2—C3 | 1.459 (7) | C11—H11C | 0.9600 |
C1—H1A | 0.9700 | C10—H10D | 0.9600 |
C1—H1B | 0.9700 | C10—H10E | 0.9600 |
C1—C2i | 1.519 (8) | C10—H10F | 0.9600 |
C2—H2A | 0.9700 | C11X—H11D | 0.9600 |
C2—H2B | 0.9700 | C11X—H11E | 0.9600 |
C3—H3A | 0.9700 | C11X—H11F | 0.9600 |
O1i—Ni1—O1 | 180.0 | N2—C3—C4 | 111.3 (5) |
N1—Ni1—O1 | 93.58 (17) | H3A—C3—H3B | 108.0 |
N1i—Ni1—O1 | 86.42 (17) | C4—C3—H3A | 109.4 |
N1—Ni1—O1i | 86.42 (17) | C4—C3—H3B | 109.4 |
N1i—Ni1—O1i | 93.58 (17) | C3—C4—H4A | 108.0 |
N1—Ni1—N1i | 180.0 | C3—C4—H4B | 108.0 |
N2i—Ni1—O1 | 92.40 (16) | C3—C4—C5 | 117.3 (6) |
N2—Ni1—O1i | 92.40 (16) | H4A—C4—H4B | 107.2 |
N2—Ni1—O1 | 87.60 (16) | C5—C4—H4A | 108.0 |
N2i—Ni1—O1i | 87.60 (16) | C5—C4—H4B | 108.0 |
N2—Ni1—N1i | 85.21 (19) | N1—C5—C4 | 111.6 (5) |
N2i—Ni1—N1i | 94.79 (19) | N1—C5—H5A | 109.3 |
N2—Ni1—N1 | 94.79 (19) | N1—C5—H5B | 109.3 |
N2i—Ni1—N1 | 85.21 (19) | C4—C5—H5A | 109.3 |
N2i—Ni1—N2 | 180.0 (2) | C4—C5—H5B | 109.3 |
O3ii—Si1—O3 | 38.8 (7) | H5A—C5—H5B | 108.0 |
O3—Si1—C9 | 98.7 (5) | O1—C6—C7 | 117.0 (6) |
O3ii—Si1—C9 | 117.6 (6) | O2—C6—O1 | 126.5 (6) |
O3ii—Si1—C10X | 93.6 (8) | O2—C6—C7 | 116.5 (6) |
O3—Si1—C10X | 131.7 (9) | C6—C7—H7A | 108.7 |
O3—Si1—C11 | 102 (2) | C6—C7—H7B | 108.7 |
O3ii—Si1—C11 | 116.7 (16) | C6—C7—C8 | 114.4 (5) |
O3—Si1—C10 | 118.2 (9) | H7A—C7—H7B | 107.6 |
O3ii—Si1—C10 | 79.8 (9) | C8—C7—H7A | 108.7 |
O3—Si1—C11X | 98 (2) | C8—C7—H7B | 108.7 |
O3ii—Si1—C11X | 118.8 (18) | C7—C8—H8A | 108.9 |
C9—Si1—C10X | 116.1 (7) | C7—C8—H8B | 108.9 |
C9—Si1—C11 | 114.8 (10) | H8A—C8—H8B | 107.7 |
C9—Si1—C10 | 107.7 (7) | C9—C8—C7 | 113.3 (5) |
C9—Si1—C11X | 107.3 (9) | C9—C8—H8A | 108.9 |
C11—Si1—C10X | 93.4 (18) | C9—C8—H8B | 108.9 |
C11X—Si1—C10 | 123.8 (18) | Si1—C9—H9A | 107.9 |
C6—O1—Ni1 | 131.4 (4) | Si1—C9—H9B | 107.9 |
Si1ii—O3—Si1 | 141.2 (7) | C8—C9—Si1 | 117.6 (4) |
O3ii—O3—Si1 | 58.8 (11) | C8—C9—H9A | 107.9 |
O3ii—O3—Si1ii | 82.4 (14) | C8—C9—H9B | 107.9 |
Ni1—N1—H1 | 107.2 | H9A—C9—H9B | 107.2 |
C1—N1—Ni1 | 105.5 (4) | Si1—C10X—H10A | 109.5 |
C1—N1—H1 | 107.2 | Si1—C10X—H10B | 109.5 |
C1—N1—C5 | 114.1 (5) | Si1—C10X—H10C | 109.5 |
C5—N1—Ni1 | 115.3 (4) | H10A—C10X—H10B | 109.5 |
C5—N1—H1 | 107.2 | H10A—C10X—H10C | 109.5 |
Ni1—N2—H2 | 107.3 | H10B—C10X—H10C | 109.5 |
C2—N2—Ni1 | 106.3 (4) | Si1—C11—H11A | 109.5 |
C2—N2—H2 | 107.3 | Si1—C11—H11B | 109.5 |
C3—N2—Ni1 | 115.3 (4) | Si1—C11—H11C | 109.5 |
C3—N2—H2 | 107.3 | H11A—C11—H11B | 109.5 |
C3—N2—C2 | 112.9 (5) | H11A—C11—H11C | 109.5 |
N1—C1—H1A | 109.9 | H11B—C11—H11C | 109.5 |
N1—C1—H1B | 109.9 | Si1—C10—H10D | 109.5 |
N1—C1—C2i | 108.9 (5) | Si1—C10—H10E | 109.5 |
H1A—C1—H1B | 108.3 | Si1—C10—H10F | 109.5 |
C2i—C1—H1A | 109.9 | H10D—C10—H10E | 109.5 |
C2i—C1—H1B | 109.9 | H10D—C10—H10F | 109.5 |
N2—C2—C1i | 108.3 (5) | H10E—C10—H10F | 109.5 |
N2—C2—H2A | 110.0 | Si1—C11X—H11D | 109.5 |
N2—C2—H2B | 110.0 | Si1—C11X—H11E | 109.5 |
C1i—C2—H2A | 110.0 | Si1—C11X—H11F | 109.5 |
C1i—C2—H2B | 110.0 | H11D—C11X—H11E | 109.5 |
H2A—C2—H2B | 108.4 | H11D—C11X—H11F | 109.5 |
N2—C3—H3A | 109.4 | H11E—C11X—H11F | 109.5 |
N2—C3—H3B | 109.4 | ||
Ni1—O1—C6—O2 | −18.8 (10) | C6—C7—C8—C9 | 67.1 (7) |
Ni1—O1—C6—C7 | 161.1 (4) | C7—C8—C9—Si1 | 176.0 (4) |
Ni1—N1—C1—C2i | −41.9 (5) | C9—Si1—O3—Si1ii | −123.8 (15) |
Ni1—N1—C5—C4 | 53.8 (7) | C9—Si1—O3—O3ii | −123.8 (15) |
Ni1—N2—C2—C1i | 41.2 (5) | C10X—Si1—O3—Si1ii | 13 (2) |
Ni1—N2—C3—C4 | −57.1 (7) | C10X—Si1—O3—O3ii | 13 (2) |
O1—C6—C7—C8 | 31.8 (8) | C10X—Si1—C9—C8 | 49.5 (9) |
O2—C6—C7—C8 | −148.4 (6) | C11—Si1—O3—Si1ii | 118.5 (18) |
O3ii—Si1—O3—Si1ii | 0.003 (1) | C11—Si1—O3—O3ii | 118.5 (18) |
O3—Si1—C9—C8 | −165.0 (7) | C11—Si1—C9—C8 | −58 (2) |
O3ii—Si1—C9—C8 | 159.0 (6) | C10—Si1—O3—Si1ii | −8.3 (19) |
N2—C3—C4—C5 | 72.9 (8) | C10—Si1—O3—O3ii | −8.3 (19) |
C1—N1—C5—C4 | 176.2 (5) | C10—Si1—C9—C8 | 71.5 (10) |
C2—N2—C3—C4 | −179.6 (5) | C11X—Si1—O3—Si1ii | 127.1 (18) |
C3—N2—C2—C1i | 168.6 (5) | C11X—Si1—O3—O3ii | 127.1 (18) |
C3—C4—C5—N1 | −71.1 (8) | C11X—Si1—C9—C8 | −64 (2) |
C5—N1—C1—C2i | −169.5 (5) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.98 | 1.96 | 2.845 (6) | 150 |
N2—H2···O2iii | 0.98 | 2.07 | 2.883 (6) | 139 |
Symmetry code: (iii) x, −y+1/2, z+1/2. |
[Ni(C10H25O5Si2)(C12H24N4)]ClO4 | Z = 2 |
Mr = 663.99 | F(000) = 708 |
Triclinic, P1 | Dx = 1.296 Mg m−3 |
a = 9.3815 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.9009 (8) Å | Cell parameters from 2033 reflections |
c = 14.7604 (10) Å | θ = 1.7–24.6° |
α = 99.309 (5)° | µ = 0.77 mm−1 |
β = 100.343 (6)° | T = 200 K |
γ = 99.232 (6)° | Block, clear light colourless |
V = 1700.9 (2) Å3 | 0.45 × 0.35 × 0.30 mm |
Agilent Xcalibur, Eos diffractometer | 9606 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5769 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −15→15 |
Tmin = 0.889, Tmax = 1.000 | l = −17→17 |
9606 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
9606 reflections | Δρmax = 0.51 e Å−3 |
367 parameters | Δρmin = −0.44 e Å−3 |
7 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.000000 | 0.000000 | 0.000000 | 0.0241 (2) | |
Si1 | −0.3977 (2) | −0.55987 (11) | −0.05469 (15) | 0.0729 (6) | |
O1 | −0.1184 (3) | −0.1542 (2) | −0.0727 (2) | 0.0310 (8) | |
O2 | −0.0826 (3) | −0.1583 (2) | −0.2165 (2) | 0.0339 (8) | |
H2C | −0.034950 | −0.196653 | −0.243367 | 0.051* | 0.5 |
O3 | −0.5535 (8) | −0.5084 (6) | −0.0332 (5) | 0.061 (3) | 0.5 |
N1 | 0.1859 (4) | −0.0236 (3) | −0.0499 (3) | 0.0408 (11) | |
H1 | 0.157126 | −0.087684 | −0.099864 | 0.049* | |
N2 | −0.0809 (4) | 0.0725 (3) | −0.1075 (3) | 0.0390 (11) | |
H2 | −0.128011 | 0.014955 | −0.161639 | 0.047* | |
C1 | 0.2858 (6) | −0.0494 (5) | 0.0295 (4) | 0.065 (2) | |
H1A | 0.335337 | 0.015969 | 0.073702 | 0.078* | |
H1B | 0.360480 | −0.083840 | 0.006336 | 0.078* | |
C2 | −0.1992 (7) | 0.1219 (4) | −0.0773 (4) | 0.0649 (19) | |
H2A | −0.156944 | 0.189771 | −0.034619 | 0.078* | |
H2B | −0.263674 | 0.135605 | −0.131369 | 0.078* | |
C3 | 0.0282 (7) | 0.1448 (4) | −0.1388 (4) | 0.0634 (18) | |
H3A | 0.071451 | 0.206181 | −0.088446 | 0.076* | |
H3B | −0.020855 | 0.170724 | −0.191801 | 0.076* | |
C4 | 0.1501 (7) | 0.0909 (4) | −0.1671 (4) | 0.068 (2) | |
H4A | 0.104405 | 0.025115 | −0.211911 | 0.081* | |
H4B | 0.205970 | 0.137198 | −0.199462 | 0.081* | |
C5 | 0.2570 (6) | 0.0641 (4) | −0.0893 (4) | 0.0608 (18) | |
H5A | 0.339987 | 0.043288 | −0.113487 | 0.073* | |
H5B | 0.294711 | 0.127196 | −0.039965 | 0.073* | |
C6 | −0.1332 (4) | −0.2035 (3) | −0.1537 (3) | 0.0254 (11) | |
C7 | −0.2146 (5) | −0.3171 (3) | −0.1832 (3) | 0.0378 (13) | |
H7A | −0.303379 | −0.319448 | −0.229384 | 0.045* | |
H7B | −0.153320 | −0.358866 | −0.214036 | 0.045* | |
C8 | −0.2580 (5) | −0.3700 (3) | −0.1066 (3) | 0.0363 (12) | |
H8A | −0.316658 | −0.327704 | −0.073869 | 0.044* | |
H8B | −0.169508 | −0.371782 | −0.061703 | 0.044* | |
C9 | −0.3463 (5) | −0.4842 (3) | −0.1431 (3) | 0.0477 (14) | |
H9A | −0.289182 | −0.524186 | −0.179202 | 0.057* | |
H9B | −0.436249 | −0.480898 | −0.185840 | 0.057* | |
C10 | −0.2275 (11) | −0.5710 (6) | 0.0258 (5) | 0.168 (4) | |
H10A | −0.191865 | −0.505635 | 0.071407 | 0.252* | |
H10B | −0.153386 | −0.583786 | −0.009580 | 0.252* | |
H10C | −0.248872 | −0.629417 | 0.057238 | 0.252* | |
C11 | −0.5003 (7) | −0.6957 (4) | −0.1124 (5) | 0.102 (3) | |
H11A | −0.442542 | −0.730299 | −0.150911 | 0.153* | |
H11B | −0.592187 | −0.690955 | −0.150829 | 0.153* | |
H11C | −0.519460 | −0.736539 | −0.065495 | 0.153* | |
Ni2 | 0.000000 | −0.500000 | −0.500000 | 0.0281 (2) | |
Si2 | 0.35316 (15) | 0.04647 (10) | −0.52679 (11) | 0.0404 (4) | |
O4 | 0.0305 (3) | −0.3297 (2) | −0.47284 (19) | 0.0333 (8) | |
O5 | −0.0840 (3) | −0.2890 (2) | −0.3576 (2) | 0.0376 (9) | |
H5C | −0.095950 | −0.235276 | −0.324118 | 0.056* | 0.5 |
N3 | −0.1442 (6) | −0.5206 (3) | −0.4129 (4) | 0.0621 (15) | |
H3 | −0.143842 | −0.449452 | −0.377416 | 0.075* | |
N4 | 0.1844 (5) | −0.4870 (3) | −0.3968 (4) | 0.0675 (16) | |
H4 | 0.207815 | −0.412879 | −0.361974 | 0.081* | |
C12 | −0.2937 (7) | −0.5585 (5) | −0.4771 (6) | 0.094 (3) | |
H12A | −0.370162 | −0.545605 | −0.442664 | 0.113* | |
H12B | −0.309077 | −0.634809 | −0.501474 | 0.113* | |
C13 | 0.3020 (7) | −0.5012 (5) | −0.4435 (7) | 0.111 (4) | |
H13A | 0.295115 | −0.576820 | −0.467592 | 0.133* | |
H13B | 0.395995 | −0.474737 | −0.399517 | 0.133* | |
C14 | 0.1635 (10) | −0.5587 (5) | −0.3256 (6) | 0.112 (3) | |
H14A | 0.151266 | −0.632881 | −0.356424 | 0.134* | |
H14B | 0.251865 | −0.542354 | −0.276130 | 0.134* | |
C15 | 0.0318 (15) | −0.5454 (6) | −0.2821 (5) | 0.136 (4) | |
H15A | 0.035328 | −0.582999 | −0.230129 | 0.163* | |
H15B | 0.040102 | −0.470013 | −0.256570 | 0.163* | |
C16 | −0.1145 (11) | −0.5851 (5) | −0.3474 (6) | 0.116 (4) | |
H16A | −0.117774 | −0.657098 | −0.380421 | 0.139* | |
H16B | −0.191132 | −0.588632 | −0.311103 | 0.139* | |
C17 | 0.0036 (5) | −0.2625 (3) | −0.4108 (3) | 0.0278 (11) | |
C18 | 0.0724 (5) | −0.1463 (3) | −0.3978 (3) | 0.0287 (12) | |
H18A | 0.132997 | −0.123812 | −0.334828 | 0.034* | |
H18B | −0.006193 | −0.105610 | −0.401545 | 0.034* | |
C19 | 0.1664 (5) | −0.1164 (3) | −0.4662 (3) | 0.0359 (12) | |
H19A | 0.108087 | −0.140813 | −0.529665 | 0.043* | |
H19B | 0.249045 | −0.153188 | −0.460348 | 0.043* | |
C20 | 0.2255 (5) | 0.0035 (3) | −0.4507 (3) | 0.0373 (13) | |
H20A | 0.276718 | 0.028112 | −0.385648 | 0.045* | |
H20B | 0.142064 | 0.039091 | −0.460546 | 0.045* | |
C21 | 0.2725 (6) | −0.0094 (4) | −0.6529 (4) | 0.0706 (18) | |
H21A | 0.180766 | 0.013540 | −0.670484 | 0.106* | |
H21B | 0.255162 | −0.086153 | −0.663382 | 0.106* | |
H21C | 0.339876 | 0.015653 | −0.690111 | 0.106* | |
C22 | 0.3997 (6) | 0.1939 (4) | −0.5079 (5) | 0.084 (2) | |
H22A | 0.445438 | 0.222461 | −0.443122 | 0.126* | |
H22B | 0.311213 | 0.221370 | −0.523912 | 0.126* | |
H22C | 0.466709 | 0.214650 | −0.546789 | 0.126* | |
O6X | 0.493 (3) | −0.013 (5) | −0.497 (6) | 0.037 (3)* | 0.25 |
O6 | 0.510 (3) | 0.021 (4) | −0.4772 (12) | 0.037 (3)* | 0.25 |
Cl1 | 0.38292 (17) | −0.21590 (12) | −0.21055 (12) | 0.0683 (5) | |
O7 | 0.3941 (6) | −0.2883 (5) | −0.2826 (4) | 0.194 (3) | |
O8 | 0.2362 (5) | −0.2323 (4) | −0.1955 (4) | 0.1227 (19) | |
O9 | 0.4112 (6) | −0.1102 (4) | −0.2279 (4) | 0.147 (2) | |
O10 | 0.4768 (6) | −0.2161 (4) | −0.1271 (4) | 0.137 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0254 (4) | 0.0202 (4) | 0.0226 (5) | −0.0021 (4) | 0.0072 (4) | −0.0040 (3) |
Si1 | 0.1134 (15) | 0.0274 (8) | 0.0967 (15) | 0.0056 (9) | 0.0774 (14) | 0.0135 (8) |
O1 | 0.0404 (19) | 0.0256 (16) | 0.0206 (19) | −0.0064 (14) | 0.0113 (15) | −0.0065 (14) |
O2 | 0.051 (2) | 0.0206 (16) | 0.030 (2) | −0.0038 (14) | 0.0228 (17) | −0.0013 (14) |
O3 | 0.085 (7) | 0.051 (4) | 0.069 (8) | 0.020 (5) | 0.056 (5) | 0.020 (5) |
N1 | 0.033 (2) | 0.038 (2) | 0.041 (3) | −0.005 (2) | 0.016 (2) | −0.017 (2) |
N2 | 0.052 (3) | 0.026 (2) | 0.031 (3) | 0.006 (2) | −0.001 (2) | −0.0044 (18) |
C1 | 0.028 (3) | 0.065 (4) | 0.081 (5) | 0.019 (3) | −0.006 (3) | −0.032 (4) |
C2 | 0.072 (4) | 0.048 (3) | 0.058 (4) | 0.024 (3) | −0.022 (4) | −0.009 (3) |
C3 | 0.119 (5) | 0.027 (3) | 0.032 (3) | −0.010 (3) | 0.006 (4) | 0.003 (2) |
C4 | 0.106 (5) | 0.045 (3) | 0.036 (4) | −0.041 (3) | 0.039 (4) | −0.009 (3) |
C5 | 0.059 (4) | 0.060 (4) | 0.051 (4) | −0.023 (3) | 0.036 (3) | −0.018 (3) |
C6 | 0.026 (3) | 0.025 (2) | 0.023 (3) | 0.000 (2) | 0.008 (2) | −0.002 (2) |
C7 | 0.053 (3) | 0.027 (3) | 0.027 (3) | −0.010 (2) | 0.018 (3) | −0.004 (2) |
C8 | 0.048 (3) | 0.025 (2) | 0.033 (3) | −0.001 (2) | 0.016 (3) | −0.002 (2) |
C9 | 0.056 (3) | 0.028 (3) | 0.053 (4) | −0.010 (2) | 0.022 (3) | −0.004 (2) |
C10 | 0.274 (12) | 0.096 (6) | 0.091 (7) | −0.042 (7) | −0.030 (7) | 0.047 (5) |
C11 | 0.075 (5) | 0.042 (4) | 0.192 (8) | −0.006 (3) | 0.039 (5) | 0.034 (4) |
Ni2 | 0.0285 (5) | 0.0228 (4) | 0.0292 (5) | −0.0009 (4) | 0.0125 (4) | −0.0067 (4) |
Si2 | 0.0330 (8) | 0.0396 (8) | 0.0503 (10) | 0.0047 (7) | 0.0090 (7) | 0.0156 (7) |
O4 | 0.0421 (19) | 0.0242 (16) | 0.0334 (19) | 0.0031 (14) | 0.0212 (16) | −0.0061 (14) |
O5 | 0.053 (2) | 0.0263 (17) | 0.033 (2) | −0.0013 (15) | 0.0258 (18) | −0.0061 (14) |
N3 | 0.099 (4) | 0.026 (2) | 0.073 (4) | 0.007 (3) | 0.064 (3) | −0.002 (3) |
N4 | 0.056 (3) | 0.043 (3) | 0.080 (4) | 0.016 (3) | −0.019 (3) | −0.027 (3) |
C12 | 0.049 (4) | 0.056 (4) | 0.167 (7) | −0.010 (3) | 0.066 (5) | −0.033 (4) |
C13 | 0.039 (4) | 0.062 (5) | 0.188 (10) | 0.014 (4) | −0.027 (5) | −0.048 (5) |
C14 | 0.164 (8) | 0.055 (4) | 0.088 (6) | 0.040 (5) | −0.055 (6) | 0.004 (4) |
C15 | 0.313 (15) | 0.067 (5) | 0.049 (5) | 0.084 (8) | 0.047 (8) | 0.019 (4) |
C16 | 0.238 (11) | 0.045 (4) | 0.088 (7) | 0.012 (6) | 0.122 (7) | 0.001 (4) |
C17 | 0.028 (3) | 0.028 (2) | 0.024 (3) | 0.005 (2) | 0.003 (2) | 0.000 (2) |
C18 | 0.033 (3) | 0.018 (2) | 0.036 (3) | 0.003 (2) | 0.014 (2) | 0.001 (2) |
C19 | 0.038 (3) | 0.031 (3) | 0.041 (3) | 0.004 (2) | 0.017 (3) | 0.003 (2) |
C20 | 0.034 (3) | 0.035 (3) | 0.041 (3) | 0.003 (2) | 0.011 (3) | 0.002 (2) |
C21 | 0.079 (4) | 0.088 (4) | 0.045 (4) | 0.017 (4) | 0.011 (3) | 0.017 (3) |
C22 | 0.082 (5) | 0.048 (3) | 0.116 (6) | −0.012 (3) | 0.023 (4) | 0.021 (4) |
Cl1 | 0.0571 (10) | 0.0599 (10) | 0.0695 (12) | 0.0139 (8) | −0.0151 (10) | −0.0111 (9) |
O7 | 0.137 (5) | 0.163 (5) | 0.202 (6) | −0.019 (4) | 0.037 (4) | −0.146 (5) |
O8 | 0.077 (3) | 0.154 (5) | 0.144 (5) | 0.026 (3) | 0.017 (3) | 0.050 (4) |
O9 | 0.176 (6) | 0.079 (4) | 0.158 (5) | −0.006 (4) | −0.005 (5) | 0.016 (3) |
O10 | 0.117 (4) | 0.143 (4) | 0.115 (4) | 0.037 (3) | −0.050 (4) | −0.006 (4) |
Ni1—O1 | 2.125 (2) | Ni2—N4 | 2.054 (4) |
Ni1—O1i | 2.125 (2) | Ni2—N4iii | 2.054 (4) |
Ni1—N1i | 2.058 (3) | Si2—C20 | 1.864 (5) |
Ni1—N1 | 2.058 (3) | Si2—C21 | 1.855 (5) |
Ni1—N2i | 2.060 (4) | Si2—C22 | 1.845 (5) |
Ni1—N2 | 2.060 (4) | Si2—O6Xiv | 1.570 (19) |
Si1—O3 | 1.757 (8) | Si2—O6X | 1.651 (19) |
Si1—O3ii | 1.626 (7) | Si2—O6iv | 1.66 (2) |
Si1—C9 | 1.837 (5) | Si2—O6 | 1.632 (16) |
Si1—C10 | 1.852 (9) | O4—C17 | 1.245 (4) |
Si1—C11 | 1.845 (5) | O5—H5C | 0.8199 |
O1—C6 | 1.232 (4) | O5—C17 | 1.280 (5) |
O2—H2C | 0.8200 | N3—H3 | 0.9800 |
O2—C6 | 1.291 (5) | N3—C12 | 1.502 (8) |
O3—O3ii | 1.234 (13) | N3—C16 | 1.393 (9) |
N1—H1 | 0.9800 | N4—H4 | 0.9800 |
N1—C1 | 1.481 (6) | N4—C13 | 1.422 (8) |
N1—C5 | 1.475 (6) | N4—C14 | 1.527 (9) |
N2—H2 | 0.9800 | C12—H12A | 0.9700 |
N2—C2 | 1.467 (6) | C12—H12B | 0.9700 |
N2—C3 | 1.461 (6) | C12—C13iii | 1.502 (10) |
C1—H1A | 0.9700 | C13—H13A | 0.9700 |
C1—H1B | 0.9700 | C13—H13B | 0.9700 |
C1—C2i | 1.486 (7) | C14—H14A | 0.9700 |
C2—H2B | 0.9700 | C14—H14B | 0.9700 |
C2—H2A | 0.9700 | C14—C15 | 1.512 (11) |
C3—H3A | 0.9700 | C15—H15A | 0.9700 |
C3—H3B | 0.9700 | C15—H15B | 0.9700 |
C3—C4 | 1.516 (7) | C15—C16 | 1.488 (11) |
C4—H4A | 0.9700 | C16—H16A | 0.9700 |
C4—H4B | 0.9700 | C16—H16B | 0.9700 |
C4—C5 | 1.507 (7) | C20—H20A | 0.9700 |
C5—H5A | 0.9700 | C20—H20B | 0.9700 |
C5—H5B | 0.9700 | C20—C19 | 1.521 (5) |
C6—C7 | 1.496 (5) | C19—H19A | 0.9700 |
C7—H7A | 0.9700 | C19—H19B | 0.9700 |
C7—H7B | 0.9700 | C19—C18 | 1.512 (6) |
C7—C8 | 1.496 (6) | C18—H18A | 0.9700 |
C8—H8A | 0.9700 | C18—H18B | 0.9700 |
C8—H8B | 0.9700 | C18—C17 | 1.501 (5) |
C8—C9 | 1.529 (5) | C21—H21A | 0.9600 |
C9—H9A | 0.9700 | C21—H21B | 0.9600 |
C9—H9B | 0.9700 | C21—H21C | 0.9600 |
C10—H10A | 0.9600 | C22—H22A | 0.9600 |
C10—H10B | 0.9600 | C22—H22B | 0.9600 |
C10—H10C | 0.9600 | C22—H22C | 0.9600 |
C11—H11A | 0.9600 | O6X—O6Xiv | 0.38 (7) |
C11—H11B | 0.9600 | O6—O6iv | 0.77 (5) |
C11—H11C | 0.9600 | Cl1—O7 | 1.329 (4) |
Ni2—O4iii | 2.131 (2) | Cl1—O8 | 1.421 (5) |
Ni2—O4 | 2.131 (2) | Cl1—O9 | 1.420 (5) |
Ni2—N3iii | 2.043 (4) | Cl1—O10 | 1.380 (5) |
Ni2—N3 | 2.043 (4) | ||
O1—Ni1—O1i | 180.0 | N3iii—Ni2—N4 | 85.7 (2) |
N1i—Ni1—O1 | 88.17 (12) | N4—Ni2—O4iii | 91.33 (14) |
N1i—Ni1—O1i | 91.83 (12) | N4—Ni2—O4 | 88.67 (14) |
N1—Ni1—O1i | 88.17 (12) | N4iii—Ni2—O4 | 91.33 (14) |
N1—Ni1—O1 | 91.83 (12) | N4iii—Ni2—O4iii | 88.67 (14) |
N1i—Ni1—N1 | 180.0 | N4—Ni2—N4iii | 180.0 |
N1i—Ni1—N2 | 85.82 (17) | C21—Si2—C20 | 111.6 (2) |
N1—Ni1—N2i | 85.82 (17) | C22—Si2—C20 | 110.6 (2) |
N1i—Ni1—N2i | 94.18 (17) | C22—Si2—C21 | 109.6 (3) |
N1—Ni1—N2 | 94.18 (17) | O6Xiv—Si2—C20 | 113.4 (14) |
N2—Ni1—O1i | 87.38 (12) | O6X—Si2—C20 | 102.5 (13) |
N2i—Ni1—O1 | 87.38 (12) | O6X—Si2—C21 | 107 (3) |
N2—Ni1—O1 | 92.62 (12) | O6Xiv—Si2—C21 | 107 (3) |
N2i—Ni1—O1i | 92.62 (12) | O6X—Si2—C22 | 116 (2) |
N2—Ni1—N2i | 180.0 | O6Xiv—Si2—C22 | 104 (2) |
O3ii—Si1—O3 | 42.6 (4) | O6Xiv—Si2—O6X | 13 (3) |
O3ii—Si1—C9 | 115.6 (3) | O6X—Si2—O6iv | 13 (3) |
O3—Si1—C9 | 100.2 (3) | O6Xiv—Si2—O6iv | 17 (2) |
O3—Si1—C10 | 131.5 (4) | O6iv—Si2—C20 | 111.2 (17) |
O3ii—Si1—C10 | 89.4 (4) | O6—Si2—C20 | 103.5 (15) |
O3ii—Si1—C11 | 121.3 (4) | O6—Si2—C21 | 120.4 (6) |
O3—Si1—C11 | 95.7 (3) | O6iv—Si2—C21 | 94.3 (5) |
C9—Si1—C10 | 109.0 (3) | O6—Si2—C22 | 100.3 (19) |
C9—Si1—C11 | 110.1 (3) | O6iv—Si2—C22 | 118.5 (19) |
C11—Si1—C10 | 108.8 (3) | O6—Si2—O6iv | 26.9 (17) |
C6—O1—Ni1 | 132.9 (3) | C17—O4—Ni2 | 133.8 (3) |
C6—O2—H2C | 109.8 | C17—O5—H5C | 109.9 |
Si1ii—O3—Si1 | 137.4 (4) | Ni2—N3—H3 | 106.9 |
O3ii—O3—Si1 | 63.0 (6) | C12—N3—Ni2 | 105.1 (4) |
O3ii—O3—Si1ii | 74.4 (7) | C12—N3—H3 | 106.9 |
Ni1—N1—H1 | 107.4 | C16—N3—Ni2 | 117.3 (4) |
C1—N1—Ni1 | 105.0 (3) | C16—N3—H3 | 106.9 |
C1—N1—H1 | 107.4 | C16—N3—C12 | 113.2 (6) |
C5—N1—Ni1 | 116.2 (3) | Ni2—N4—H4 | 106.8 |
C5—N1—H1 | 107.4 | C13—N4—Ni2 | 106.5 (4) |
C5—N1—C1 | 113.1 (4) | C13—N4—H4 | 106.8 |
Ni1—N2—H2 | 106.7 | C13—N4—C14 | 115.0 (6) |
C2—N2—Ni1 | 105.7 (3) | C14—N4—Ni2 | 114.4 (4) |
C2—N2—H2 | 106.7 | C14—N4—H4 | 106.8 |
C3—N2—Ni1 | 116.1 (3) | N3—C12—H12A | 109.9 |
C3—N2—H2 | 106.7 | N3—C12—H12B | 109.9 |
C3—N2—C2 | 114.2 (4) | N3—C12—C13iii | 108.8 (5) |
N1—C1—H1A | 109.7 | H12A—C12—H12B | 108.3 |
N1—C1—H1B | 109.7 | C13iii—C12—H12A | 109.9 |
N1—C1—C2i | 109.7 (4) | C13iii—C12—H12B | 109.9 |
H1A—C1—H1B | 108.2 | N4—C13—C12iii | 109.6 (6) |
C2i—C1—H1A | 109.7 | N4—C13—H13A | 109.8 |
C2i—C1—H1B | 109.7 | N4—C13—H13B | 109.8 |
N2—C2—C1i | 109.8 (4) | C12iii—C13—H13A | 109.8 |
N2—C2—H2B | 109.7 | C12iii—C13—H13B | 109.8 |
N2—C2—H2A | 109.7 | H13A—C13—H13B | 108.2 |
C1i—C2—H2B | 109.7 | N4—C14—H14A | 109.0 |
C1i—C2—H2A | 109.7 | N4—C14—H14B | 109.0 |
H2B—C2—H2A | 108.2 | H14A—C14—H14B | 107.8 |
N2—C3—H3A | 109.1 | C15—C14—N4 | 113.0 (6) |
N2—C3—H3B | 109.1 | C15—C14—H14A | 109.0 |
N2—C3—C4 | 112.3 (4) | C15—C14—H14B | 109.0 |
H3A—C3—H3B | 107.9 | C14—C15—H15A | 108.5 |
C4—C3—H3A | 109.1 | C14—C15—H15B | 108.5 |
C4—C3—H3B | 109.1 | H15A—C15—H15B | 107.5 |
C3—C4—H4A | 108.1 | C16—C15—C14 | 115.0 (6) |
C3—C4—H4B | 108.1 | C16—C15—H15A | 108.5 |
H4A—C4—H4B | 107.3 | C16—C15—H15B | 108.5 |
C5—C4—C3 | 116.7 (4) | N3—C16—C15 | 113.1 (7) |
C5—C4—H4A | 108.1 | N3—C16—H16A | 109.0 |
C5—C4—H4B | 108.1 | N3—C16—H16B | 109.0 |
N1—C5—C4 | 111.4 (4) | C15—C16—H16A | 109.0 |
N1—C5—H5A | 109.4 | C15—C16—H16B | 109.0 |
N1—C5—H5B | 109.4 | H16A—C16—H16B | 107.8 |
C4—C5—H5A | 109.4 | Si2—C20—H20A | 108.3 |
C4—C5—H5B | 109.4 | Si2—C20—H20B | 108.3 |
H5A—C5—H5B | 108.0 | H20A—C20—H20B | 107.4 |
O1—C6—O2 | 121.4 (4) | C19—C20—Si2 | 115.9 (3) |
O1—C6—C7 | 120.8 (4) | C19—C20—H20A | 108.3 |
O2—C6—C7 | 117.7 (4) | C19—C20—H20B | 108.3 |
C6—C7—H7A | 108.3 | C20—C19—H19A | 109.0 |
C6—C7—H7B | 108.3 | C20—C19—H19B | 109.0 |
H7A—C7—H7B | 107.4 | H19A—C19—H19B | 107.8 |
C8—C7—C6 | 116.0 (4) | C18—C19—C20 | 113.1 (3) |
C8—C7—H7A | 108.3 | C18—C19—H19A | 109.0 |
C8—C7—H7B | 108.3 | C18—C19—H19B | 109.0 |
C7—C8—H8A | 109.0 | C19—C18—H18A | 108.1 |
C7—C8—H8B | 109.0 | C19—C18—H18B | 108.1 |
C7—C8—C9 | 112.8 (4) | H18A—C18—H18B | 107.3 |
H8A—C8—H8B | 107.8 | C17—C18—C19 | 116.7 (3) |
C9—C8—H8A | 109.0 | C17—C18—H18A | 108.1 |
C9—C8—H8B | 109.0 | C17—C18—H18B | 108.1 |
Si1—C9—H9A | 108.1 | O4—C17—O5 | 121.9 (4) |
Si1—C9—H9B | 108.1 | O4—C17—C18 | 120.1 (4) |
C8—C9—Si1 | 116.8 (3) | O5—C17—C18 | 118.0 (3) |
C8—C9—H9A | 108.1 | Si2—C21—H21A | 109.5 |
C8—C9—H9B | 108.1 | Si2—C21—H21B | 109.5 |
H9A—C9—H9B | 107.3 | Si2—C21—H21C | 109.5 |
Si1—C10—H10A | 109.5 | H21A—C21—H21B | 109.5 |
Si1—C10—H10B | 109.5 | H21A—C21—H21C | 109.5 |
Si1—C10—H10C | 109.5 | H21B—C21—H21C | 109.5 |
H10A—C10—H10B | 109.5 | Si2—C22—H22A | 109.5 |
H10A—C10—H10C | 109.5 | Si2—C22—H22B | 109.5 |
H10B—C10—H10C | 109.5 | Si2—C22—H22C | 109.5 |
Si1—C11—H11A | 109.5 | H22A—C22—H22B | 109.5 |
Si1—C11—H11B | 109.5 | H22A—C22—H22C | 109.5 |
Si1—C11—H11C | 109.5 | H22B—C22—H22C | 109.5 |
H11A—C11—H11B | 109.5 | Si2iv—O6X—Si2 | 167 (3) |
H11A—C11—H11C | 109.5 | O6Xiv—O6X—Si2iv | 96 (6) |
H11B—C11—H11C | 109.5 | O6Xiv—O6X—Si2 | 71 (6) |
O4—Ni2—O4iii | 180.00 (3) | Si2—O6—Si2iv | 153.1 (17) |
N3iii—Ni2—O4iii | 94.96 (13) | O6iv—O6—Si2 | 78 (2) |
N3—Ni2—O4 | 94.96 (13) | O7—Cl1—O8 | 110.3 (3) |
N3iii—Ni2—O4 | 85.04 (13) | O7—Cl1—O9 | 112.0 (4) |
N3—Ni2—O4iii | 85.04 (13) | O7—Cl1—O10 | 114.2 (4) |
N3iii—Ni2—N3 | 180.0 | O9—Cl1—O8 | 105.3 (3) |
N3iii—Ni2—N4iii | 94.3 (2) | O10—Cl1—O8 | 107.7 (4) |
N3—Ni2—N4 | 94.3 (2) | O10—Cl1—O9 | 106.8 (3) |
N3—Ni2—N4iii | 85.7 (2) | ||
Ni1—O1—C6—O2 | −7.2 (6) | Ni2—N4—C14—C15 | −52.9 (7) |
Ni1—O1—C6—C7 | 174.5 (3) | Si2—C20—C19—C18 | 176.0 (3) |
Ni1—N1—C1—C2i | 40.9 (4) | N4—C14—C15—C16 | 68.4 (9) |
Ni1—N1—C5—C4 | −56.2 (5) | C12—N3—C16—C15 | −178.2 (6) |
Ni1—N2—C2—C1i | −39.8 (4) | C13—N4—C14—C15 | −176.6 (6) |
Ni1—N2—C3—C4 | 55.3 (5) | C14—N4—C13—C12iii | 169.9 (5) |
O1—C6—C7—C8 | −7.7 (6) | C14—C15—C16—N3 | −71.7 (8) |
O2—C6—C7—C8 | 174.0 (4) | C16—N3—C12—C13iii | −168.2 (5) |
O3ii—Si1—O3—Si1ii | −0.001 (2) | C20—Si2—O6X—Si2iv | −148 (28) |
O3—Si1—C9—C8 | 81.0 (4) | C20—Si2—O6X—O6Xiv | −148 (28) |
O3ii—Si1—C9—C8 | 39.0 (5) | C20—Si2—O6—Si2iv | 110 (7) |
N2—C3—C4—C5 | −70.0 (6) | C20—Si2—O6—O6iv | 110 (7) |
C1—N1—C5—C4 | −177.7 (4) | C20—C19—C18—C17 | 177.2 (4) |
C2—N2—C3—C4 | 178.7 (4) | C19—C18—C17—O4 | 3.3 (6) |
C3—N2—C2—C1i | −168.7 (4) | C19—C18—C17—O5 | −175.7 (4) |
C3—C4—C5—N1 | 70.1 (5) | C21—Si2—C20—C19 | 52.0 (4) |
C5—N1—C1—C2i | 168.6 (4) | C21—Si2—O6X—Si2iv | 95 (29) |
C6—C7—C8—C9 | 177.5 (4) | C21—Si2—O6X—O6Xiv | 95 (29) |
C7—C8—C9—Si1 | 176.9 (4) | C21—Si2—O6—Si2iv | −15 (9) |
C9—Si1—O3—Si1ii | −116.9 (7) | C21—Si2—O6—O6iv | −15 (9) |
C9—Si1—O3—O3ii | −116.9 (7) | C22—Si2—C20—C19 | 174.3 (4) |
C10—Si1—O3—Si1ii | 10.0 (10) | C22—Si2—O6X—Si2iv | −27 (30) |
C10—Si1—O3—O3ii | 10.0 (10) | C22—Si2—O6X—O6Xiv | −27 (30) |
C10—Si1—C9—C8 | −59.7 (5) | C22—Si2—O6—Si2iv | −135 (8) |
C11—Si1—O3—Si1ii | 131.5 (8) | C22—Si2—O6—O6iv | −135 (8) |
C11—Si1—O3—O3ii | 131.5 (8) | O6Xiv—Si2—C20—C19 | −70 (4) |
C11—Si1—C9—C8 | −179.0 (4) | O6X—Si2—C20—C19 | −62 (3) |
Ni2—O4—C17—O5 | −16.3 (6) | O6Xiv—Si2—O6X—Si2iv | −0.01 (14) |
Ni2—O4—C17—C18 | 164.8 (3) | O6iv—Si2—C20—C19 | −51.9 (12) |
Ni2—N3—C12—C13iii | −39.0 (6) | O6—Si2—C20—C19 | −79.0 (15) |
Ni2—N3—C16—C15 | 59.1 (7) | O6iv—Si2—O6—Si2iv | 0.006 (14) |
Ni2—N4—C13—C12iii | 42.1 (6) |
Symmetry codes: (i) −x, −y, −z; (ii) −x−1, −y−1, −z; (iii) −x, −y−1, −z−1; (iv) −x+1, −y, −z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.98 | 2.51 | 3.225 (5) | 130 |
N1—H1···O8 | 0.98 | 2.45 | 3.315 (6) | 147 |
N2—H2···O2 | 0.98 | 2.38 | 3.143 (4) | 134 |
N3—H3···O5 | 0.98 | 2.01 | 2.901 (5) | 150 |
N4—H4···O7 | 0.98 | 2.18 | 3.012 (6) | 142 |
O2—H2C···O5 | 0.82 | 1.84 | 2.456 (4) | 131 |
O2—H2C···O8 | 0.82 | 2.65 | 3.260 (5) | 133 |
O5—H5C···O2 | 0.82 | 1.70 | 2.456 (4) | 151 |
I | II | ||||
Ni1—N1 | 2.071 (4) | Ni1—N1 | 2.058 (3) | Ni2—N3 | 2.043 (4) |
Ni1—N2 | 2.060 (4) | Ni1—N2 | 2.060 (4) | Ni2—N4 | 2.054 (4) |
Ni1—O1 | 2.113 (4) | Ni1—O1 | 2.125 (2) | Ni2—O4 | 2.131 (2) |
N1—Ni1—N2i | 85.21 (19) | N1—Ni1—N2ii | 85.82 (17) | N3—Ni2—N4iii | 85.7 (2) |
N1—Ni1—N2 | 94.79 (19) | N1—Ni1—N2 | 94.18 (17) | N3—Ni2—N4 | 94.3 (2) |
Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y, -z; (iii) -x, -y - 1, -z -1. |
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224. CAS Google Scholar
Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. (2018). Coord. Chem. Rev. 358, 125–152. CrossRef CAS Google Scholar
Farrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH. Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Lee, J. H., Jeoung, S., Chung, Y. G. & Moon, H. R. (2019). Coord. Chem. Rev. 389, 161–188. CrossRef CAS Google Scholar
MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press. Google Scholar
Mulvaney, J. E. & Marvel, C. S. (1961). J. Polym. Sci. 50, 541–547. CrossRef CAS Google Scholar
Racles, C., Shova, S., Cazacu, M. & Timpu, D. (2013). Polymer, 54, 6096–6104. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Vlad, A., Cazacu, M., Zaltariov, M.-F., Bargan, A., Shova, S. & Turta, C. (2014). J. Mol. Struct. 1060, 94–101. CSD CrossRef CAS Google Scholar
Vlad, A., Cazacu, M., Zaltariov, M.-F., Shova, S., Turta, C. & Airinei, A. (2013a). Polymer, 54, 43–53. CSD CrossRef CAS Google Scholar
Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G., Varganici, C.-D., Train, C. & Cazacu, M. (2013b). CrystEngComm, 15, 5368–5375. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.) Google Scholar
Zaltariov, M.-F., Cazacu, M., Sacarescu, L., Vlad, A., Novitchi, G., Train, C., Shova, S. & Arion, V. B. (2016). Macromolecules, 49, 6163–6172. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.