research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis­­(3-carb­­oxy­prop­yl)tetra­methyl­disiloxane anions in different degrees of deprotonation

CROSSMARK_Color_square_no_text.svg

aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: shova@icmpp.ro

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 February 2020; accepted 19 February 2020; online 25 February 2020)

The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis­(3-carboxyl­ato­prop­yl)tetra­methyl­disiloxane-κ2O:O′], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2O:O′] per­chlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxyl­ate in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxyl­ate O atoms, thus forming a three-dimensional supra­molecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carb­oxy­lic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1[\overline{1}]1) plane.

1. Chemical context

Transition-metal complexes of polyaza­macrocyclic ligands, in particular of 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam), are characterized by a number of unique properties, such as exceptionally high thermodynamic stability, kinetic inertness and unusual redox characteristics (Melson, 1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.]; Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.)]), which have stimulated continuing inter­est in such systems for a number of decades. In conjunction with polycarboxyl­ate ligands as spacers, macrocyclic complexes have been employed successfully for the construction of metal–organic frameworks (MOFs) (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]), which are considered to be promising materials for applications in gas storage, separation, catalysis, etc. (Farrusseng, 2011[Farrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH.]; MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials, Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH.]).

In contrast to the widespread rigid aromatic carboxyl­ates, flexible spacers incorporating polymethyl­ene chains have rarely been used for the design of MOFs, although this could potentially lead to frameworks possessing unusual properties, the most intriguing of which is a `breathing' phenomenon (Elsaidi et al., 2018[Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. (2018). Coord. Chem. Rev. 358, 125-152.]; Lee et al., 2019[Lee, J. H., Jeoung, S., Chung, Y. G. & Moon, H. R. (2019). Coord. Chem. Rev. 389, 161-188.]). A representative example of such a highly flexible ligand is 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane – a member of a rather restricted family of silicon-containing carb­oxy­lic acids. However, no attempt has been made so far to combine this ligand with macrocyclic complexes in MOF synthesis.

Here, we report the syntheses and crystal structures of the two coordination polymers built of the nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetra­aza­cyclo­tetra­decane (L) and the di- or monoanion of 1,3-bis(3-carb­oxy­prop­yl)tetra­methyl­disiloxane (H2Cx), namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis­(3-carboxyl­atoprop­yl)tetra­methyl­disiloxane-κ2O:O′], [Ni(L)(Cx)]n, (I) and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2O:O′] perchlorate], {[Ni(L)(HCx)]ClO4}n (II).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds are shown in Figs. 1[link] and 2[link]. Both complexes are one-dimensional coordination polymers consisting of centrosymmetric macrocyclic [Ni(L)]2+ cations coordinated by the oxygen atoms of the carb­oxy­lic groups of the centrosymmetric acid, completely deprotonated (in I) and monoprotonated (in II), in the axial positions. In the latter case, there are two crystallographically independent cations and anions and the H2C and H5C acidic H atoms are distributed over two carb­oxy­lic groups with site occupancies of 50%.

[Figure 1]
Figure 1
View of the mol­ecular structure of I showing atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z); (iii) x − 1, y, z − 1].
[Figure 2]
Figure 2
View of the mol­ecular structure of II showing atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry codes: (i) −x, −y, −z; (ii) −x − 1, −y − 1, −z; (iii) −x, −y − 1, −z − 1; (iv) −x + 1, −y, −z − 1; (v) x − 1, y − 1, z; (vi) x + 1, y + 1, z.]

The macrocyclic ligands in the complex cations adopt the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]) with five-membered chelate rings in gauche and six-membered chelate rings in chair conformations. As a result of the presence of the inversion centres, all Ni(N4) fragments are strictly planar. The equatorial Ni—N bond lengths and bite angles fall in a range typical of high-spin 3d8 nickel(II) complexes with 14-membered tetra­amine ligands (Table 1[link]). The axial Ni—O bond lengths are slightly longer than the Ni—N ones, and the geometry of the nickel(II) polyhedra can be described as tetra­gonally distorted trans-N4O2 octa­hedra.

Table 1
Selected geometrical parameters of the complex cations (Å, °)

I II
Ni1—N1 2.071 (4) Ni1—N1 2.058 (3) Ni2—N3 2.043 (4)
Ni1—N2 2.060 (4) Ni1—N2 2.060 (4) Ni2—N4 2.054 (4)
Ni1—O1 2.113 (4) Ni1—O1 2.125 (2) Ni2—O4 2.131 (2)
           
N1—Ni1—N2i 85.21 (19) N1—Ni1—N2ii 85.82 (17) N3—Ni2—N4iii 85.7 (2)
N1—Ni1—N2 94.79 (19) N1—Ni1—N2 94.18 (17) N3—Ni2—N4 94.3 (2)
Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x, −y, −z; (iii) −x, −y − 1, −z − 1.

In two cases (Ni1 in I and Ni2 in II), a monodentate coordination of the carboxyl­ate to the complex cation is complemented by strong hydrogen bonding between the non-coordinated O atom of the carb­oxy­lic group and the NH group of the macrocycle, which is often observed in complexes of cyclam-like ligands. For the [Ni1(L)]2+ cation in II, the non-coordinated O2 atom is almost equidistant from the N1 and N2 centres [3.225 (5) and 3.143 (4) Å, respectively], so that two weak hydrogen bonds are formed in this case (Figs. 1[link] and 2[link], Tables 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.98 1.96 2.845 (6) 150
N2—H2⋯O2i 0.98 2.07 2.883 (6) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.98 2.51 3.225 (5) 130
N1—H1⋯O8 0.98 2.45 3.315 (6) 147
N2—H2⋯O2 0.98 2.38 3.143 (4) 134
N3—H3⋯O5 0.98 2.01 2.901 (5) 150
N4—H4⋯O7 0.98 2.18 3.012 (6) 142
O2—H2C⋯O5 0.82 1.84 2.456 (4) 131
O2—H2C⋯O8 0.82 2.65 3.260 (5) 133
O5—H5C⋯O2 0.82 1.70 2.456 (4) 151

The C—O bond lengths in the carb­oxy­lic group of the bridging ligand Cx2− in I are nearly identical [C6—O1 = 1.245 (7) and C6—O2 = 1.242 (7) Å], thus indicating essential electronic delocalization. At the same time, they differ significantly in II [C6—O1 = 1.232 (4) versus C6—O2 = 1.291 (5) Å; C17—O4 = 1.245 (4) versus C17—O5 = 1.280 (5) Å], so formally the Ni—O bonding in this compound can be treated as the inter­action of the metal ion with the carbonyl oxygen atom of the carb­oxy­lic group.

Because of the presence of flexible tri­methyl­ene fragments, the di­carboxyl­ate ligand can adopt various conformations, both symmetric and asymmetric. In the present cases the anions possess a transoid conformation of the siloxane linkages with the disordered O3 atoms [site occupancies 50%, Si1—O3—Si1 = 141.2 (7) and 137.4 (4)° in I and II, respectively], as well as with the 25% occupancy atoms O6 and O6X in II [the corresponding Si2—O6(6X)—Si2 angles are 153.1 (17) and 167 (3)°, respectively] (Figs. 1[link] and 2[link]). The geometries of the two crystallographically independent anions in complex II are actually very similar, but differ from that observed in complex I (Fig. 3[link]).

[Figure 3]
Figure 3
Comparison of the conformations of the dianion Cx2− in I (green) and of the monoanions HCx in II (red and blue).

3. Supra­molecular features

The crystals of both compounds are composed of parallel polymeric chains of [Ni(L)]2+ cations linked by carboxyl­ate bridging ligands. The identical chains in I with an intra-chain Ni⋯Ni separation of 14.325 Å propagate along the [101] direction (Fig. 4[link]). In II, two crystallographically independent chains formed by the Ni1 and Ni2 macrocyclic cations propagate along the [110] direction (Fig. 5[link]) and are characterized by a slightly larger (14.684 Å) intra-chain separation between the NiII ions.

[Figure 4]
Figure 4
The packing in I viewed down the [101] direction with polymeric chains cross-linked by N—H⋯O hydrogen bonds (dotted lines) to form a three-dimensional supra­molecular network. C-bound H atoms are omitted for clarity.
[Figure 5]
Figure 5
The packing in II viewed down the [110] direction with polymeric chains cross-linked by hydrogen bonds (dotted lines).

In the crystals, the inter­actions between the polymeric chains in I and II are characterized by markedly different features. In the first case, each chain is linked to four neighbouring ones as a result of hydrogen bonding between the N2—H2 groups of the macrocycles and carboxyl­ate O2 atoms (Table 2[link]), resulting in a three-dimensional supra­molecular network. On the other hand, in II each polymeric chain contacts with only two neighbours via paired O2—H2C⋯O5/O2⋯H5C—O5 hydrogen bonds. The bonding is reinforced by the perchlorate anions bridging macrocyclic units: N1—H1⋯O8—Cl1—O7⋯H4—N4 (plus an additional very weak O2—H2C⋯O8 contact) (Table 3[link]). As a result, a lamellar structure is formed with the layers lying parallel to the (1[\overline{1}]1) plane (Fig. 6[link]).

[Figure 6]
Figure 6
The hydrogen-bonded sheet in II parallel to the (1[\overline{1}]1) plane. C-bound H atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that seven compounds formed by 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane itself or its anions have been characterized structurally. Two of them are co-crystals of the acid with organic bases derived from pyridine [refcodes NERTOV (Vlad et al., 2013a[Vlad, A., Cazacu, M., Zaltariov, M.-F., Shova, S., Turta, C. & Airinei, A. (2013a). Polymer, 54, 43-53.]) and VIPZUR (Racles et al., 2013[Racles, C., Shova, S., Cazacu, M. & Timpu, D. (2013). Polymer, 54, 6096-6104.])]. Other complexes represent one- or two-dimensional coordination polymers formed by CuII (YIGXOD; Vlad et al., 2013b[Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G., Varganici, C.-D., Train, C. & Cazacu, M. (2013b). CrystEngComm, 15, 5368-5375.]), CoII (NERTIP; Vlad et al., 2013a[Vlad, A., Cazacu, M., Zaltariov, M.-F., Shova, S., Turta, C. & Airinei, A. (2013a). Polymer, 54, 43-53.]), ZnII [NERTUB (Vlad et al., 2013a[Vlad, A., Cazacu, M., Zaltariov, M.-F., Shova, S., Turta, C. & Airinei, A. (2013a). Polymer, 54, 43-53.]), GIWSAI (Vlad et al., 2014[Vlad, A., Cazacu, M., Zaltariov, M.-F., Bargan, A., Shova, S. & Turta, C. (2014). J. Mol. Struct. 1060, 94-101.]) and GAPKOA (Zaltariov et al., 2016[Zaltariov, M.-F., Cazacu, M., Sacarescu, L., Vlad, A., Novitchi, G., Train, C., Shova, S. & Arion, V. B. (2016). Macromolecules, 49, 6163-6172.])]. Except for the last complex, in which the secondary building unit is a hexa­metal oxocluster bridged by salicylaldoxime ligands, all of the other compounds contain additional heterocyclic co-ligands. No attempt was made to combine this carb­oxy­lic acid with macrocyclic cations in MOF synthesis, and thus the title compounds I and II are the first examples of such compounds described so far.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 (Barefield et al., 1976[Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220-224.]) and 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane (H2Cx) (Mulvaney & Marvel, 1961[Mulvaney, J. E. & Marvel, C. S. (1961). J. Polym. Sci. 50, 541-547.]) were prepared by the reported methods.

{Ni(L)(Cx)}n, (I). To a solution of 48 mg (0.24 mmol) of the ligand L in 4 ml of water, 30 mg of nickel(II) hydroxide (0.32 mmol) were added and the suspension stirred for 4 d at room temperature to give a yellow-coloured solution. The excess of Ni(OH)2 was filtered off and the filtrate was treated with the solution of 75 mg (0.24 mmol) of H2Cx in 2 ml of MeOH. This solution was rotary evaporated to give an oily material. The residue was dissolved in 2 ml of MeOH, and the product precipitated with aceto­nitrile. It was recrystallized in a similar fashion from a MeOH/MeCN (1:15 v/v) solvent mixture. Yield 54 mg (40%). Analysis calculated for C22H48N4NiO5Si2: C, 46.89; H, 8.59; N, 9.94%. Found: C, 46.76; H, 8.64; N, 9.85%.

Single crystals of I suitable for X-ray diffraction analysis were obtained analogously, except that precipitation was carried out using a diffusion regime (a methano­lic solution of complex was layered with MeCN).

{[Ni(L)(HCx)]ClO4}n (II). A solution of 100 mg (0.26 mmol) of K2Cx in 1 ml of water was added to a solution of 130 mg (0.28 mmol) of [Ni(L)](ClO4)2 in 3 ml of water and the mixture was left at room temperature. Potassium perchlorate crystals, which formed after ca two weeks, were removed by filtration and the filtrate was allowed to evaporate slowly at room temperature. The crystals of the product formed after about one month. Yield 59 mg (34%). Analysis calculated for C22H49N4ClNiO9Si2: C, 39.80; H, 7.44; N, 8.44%. Found: C, 39.67; H, 7.51; N, 8.36%.

Single crystals of II suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å, N—H = 0.98 Å and carboxyl­ate O—H = 0.82 Å, with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 4
Experimental details

  I II
Crystal data
Chemical formula [Ni(C10H24O5Si2)(C12H24N4)] [Ni(C10H25O5Si2)(C12H24N4)]ClO4
Mr 563.53 663.99
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 173 200
a, b, c (Å) 13.033 (5), 12.877 (10), 9.028 (3) 9.3815 (7), 12.9009 (8), 14.7604 (10)
α, β, γ (°) 90, 101.31 (3), 90 99.309 (5), 100.343 (6), 99.232 (6)
V3) 1485.7 (13) 1700.9 (2)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.77 0.77
Crystal size (mm) 0.25 × 0.25 × 0.05 0.45 × 0.35 × 0.30
 
Data collection
Diffractometer Agilent Xcalibur, Eos Agilent Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.694, 1.000 0.889, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3957, 3957, 2499 9606, 9606, 5769
Rint 0.040 0.063
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.143, 1.01 0.050, 0.115, 1.01
No. of reflections 3957 9606
No. of parameters 165 367
No. of restraints 6 7
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.61 0.51, −0.44
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SIR2008 (Burla et al., 2007) for (I); SHELXT (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) top
Crystal data top
[Ni(C10H24O5Si2)(C12H24N4)]F(000) = 608
Mr = 563.53Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.033 (5) ÅCell parameters from 468 reflections
b = 12.877 (10) Åθ = 2.2–23.0°
c = 9.028 (3) ŵ = 0.77 mm1
β = 101.31 (3)°T = 173 K
V = 1485.7 (13) Å3Plate, clear light colourless
Z = 20.25 × 0.25 × 0.05 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
3957 independent reflections
Radiation source: Enhance (Mo) X-ray Source2499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1515
Tmin = 0.694, Tmax = 1.000l = 109
3957 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3957 reflectionsΔρmax = 0.56 e Å3
165 parametersΔρmin = 0.61 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni11.0000000.5000000.5000000.0224 (3)
Si10.51530 (16)0.4465 (2)0.1590 (4)0.0810 (8)
O10.8723 (3)0.4020 (3)0.4131 (4)0.0278 (10)
O20.9375 (4)0.2757 (3)0.2920 (5)0.0546 (13)
O30.4991 (12)0.4662 (10)0.0400 (11)0.090 (4)0.5
N11.1059 (4)0.4111 (4)0.4113 (5)0.0313 (13)
H11.0689060.3484030.3683830.038*
N21.0173 (4)0.4173 (4)0.6987 (5)0.0302 (12)
H20.9748050.3542920.6775400.036*
C11.1301 (5)0.4718 (5)0.2850 (7)0.047 (2)
H1A1.1613360.4272430.2193190.057*
H1B1.1796200.5263090.3230160.057*
C20.9705 (5)0.4810 (5)0.8028 (7)0.050 (2)
H2A1.0186010.5354730.8457110.060*
H2B0.9555520.4383640.8846040.060*
C31.1239 (5)0.3849 (5)0.7630 (7)0.051 (2)
H3A1.1239290.3447480.8539310.061*
H3B1.1671990.4458110.7907580.061*
C41.1691 (6)0.3211 (6)0.6537 (9)0.056 (2)
H4A1.1186920.2675780.6141580.067*
H4B1.2308810.2863560.7090930.067*
C51.1991 (5)0.3767 (5)0.5216 (8)0.050 (2)
H5A1.2417880.4366260.5579670.061*
H5B1.2406230.3306620.4718420.061*
C60.8685 (5)0.3154 (5)0.3510 (7)0.0354 (16)
C70.7696 (5)0.2514 (5)0.3470 (8)0.0449 (18)
H7A0.7789860.2087180.4371870.054*
H7B0.7605440.2051560.2606040.054*
C80.6702 (5)0.3156 (5)0.3376 (7)0.0403 (18)
H8A0.6135220.2699780.3508860.048*
H8B0.6808610.3654960.4196800.048*
C90.6386 (4)0.3731 (5)0.1896 (8)0.0517 (19)
H9A0.6341540.3230190.1083490.062*
H9B0.6944020.4211660.1805780.062*
C10X0.4972 (14)0.5342 (14)0.313 (2)0.139 (5)0.5
H10A0.5045950.4956020.4055130.209*0.5
H10B0.4285900.5644430.2894550.209*0.5
H10C0.5489030.5881870.3243620.209*0.5
C110.3986 (16)0.369 (2)0.171 (7)0.139 (5)0.5
H11A0.3405880.4141110.1734860.209*0.5
H11B0.4122870.3273710.2612060.209*0.5
H11C0.3821820.3240190.0844040.209*0.5
C100.5355 (15)0.5612 (13)0.283 (2)0.139 (5)0.5
H10D0.5816260.6090010.2473710.209*0.5
H10E0.5658980.5399970.3842360.209*0.5
H10F0.4694600.5943670.2827390.209*0.5
C11X0.4087 (17)0.3521 (18)0.156 (7)0.139 (5)0.5
H11D0.3426130.3857300.1211760.209*0.5
H11E0.4114080.3254330.2558710.209*0.5
H11F0.4165370.2960060.0889760.209*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0285 (5)0.0157 (5)0.0236 (5)0.0026 (6)0.0068 (5)0.0002 (6)
Si10.0406 (13)0.0755 (19)0.119 (2)0.0021 (12)0.0034 (15)0.0400 (17)
O10.029 (2)0.019 (3)0.035 (3)0.003 (2)0.0052 (18)0.0074 (19)
O20.046 (3)0.031 (3)0.091 (4)0.006 (2)0.023 (3)0.033 (3)
O30.103 (8)0.105 (14)0.043 (9)0.010 (10)0.031 (9)0.010 (6)
N10.037 (3)0.014 (3)0.046 (3)0.002 (3)0.017 (3)0.012 (2)
N20.045 (3)0.025 (3)0.019 (3)0.013 (3)0.001 (2)0.005 (2)
C10.070 (5)0.028 (5)0.056 (5)0.014 (4)0.042 (4)0.013 (3)
C20.077 (6)0.039 (6)0.040 (4)0.013 (4)0.026 (4)0.003 (4)
C30.060 (5)0.046 (5)0.040 (4)0.002 (4)0.007 (4)0.023 (4)
C40.041 (4)0.029 (5)0.089 (6)0.009 (4)0.009 (4)0.018 (4)
C50.038 (4)0.029 (5)0.085 (6)0.006 (4)0.016 (4)0.008 (4)
C60.034 (4)0.025 (5)0.046 (4)0.002 (3)0.003 (3)0.003 (3)
C70.038 (4)0.022 (5)0.074 (5)0.001 (3)0.009 (3)0.008 (4)
C80.032 (4)0.039 (5)0.050 (4)0.002 (3)0.007 (3)0.001 (3)
C90.034 (4)0.067 (5)0.053 (4)0.009 (4)0.006 (4)0.011 (4)
C10X0.039 (6)0.077 (7)0.295 (14)0.005 (5)0.016 (7)0.004 (9)
C110.039 (6)0.077 (7)0.295 (14)0.005 (5)0.016 (7)0.004 (9)
C100.039 (6)0.077 (7)0.295 (14)0.005 (5)0.016 (7)0.004 (9)
C11X0.039 (6)0.077 (7)0.295 (14)0.005 (5)0.016 (7)0.004 (9)
Geometric parameters (Å, º) top
Ni1—O12.113 (4)C3—H3B0.9700
Ni1—O1i2.113 (4)C3—C41.491 (9)
Ni1—N12.071 (4)C4—H4A0.9700
Ni1—N1i2.071 (4)C4—H4B0.9700
Ni1—N22.060 (4)C4—C51.508 (9)
Ni1—N2i2.060 (4)C5—H5A0.9700
Si1—O31.785 (11)C5—H5B0.9700
Si1—O3ii1.541 (13)C6—C71.524 (9)
Si1—C91.838 (6)C7—H7A0.9700
Si1—C10X1.842 (7)C7—H7B0.9700
Si1—C111.842 (7)C7—C81.525 (8)
Si1—C101.842 (7)C8—H8A0.9700
Si1—C11X1.842 (7)C8—H8B0.9700
O1—C61.245 (7)C8—C91.512 (8)
O2—C61.242 (7)C9—H9A0.9700
O3—O3ii1.13 (2)C9—H9B0.9700
N1—H10.9800C10X—H10A0.9600
N1—C11.467 (7)C10X—H10B0.9600
N1—C51.479 (7)C10X—H10C0.9600
N2—H20.9800C11—H11A0.9600
N2—C21.467 (7)C11—H11B0.9600
N2—C31.459 (7)C11—H11C0.9600
C1—H1A0.9700C10—H10D0.9600
C1—H1B0.9700C10—H10E0.9600
C1—C2i1.519 (8)C10—H10F0.9600
C2—H2A0.9700C11X—H11D0.9600
C2—H2B0.9700C11X—H11E0.9600
C3—H3A0.9700C11X—H11F0.9600
O1i—Ni1—O1180.0N2—C3—C4111.3 (5)
N1—Ni1—O193.58 (17)H3A—C3—H3B108.0
N1i—Ni1—O186.42 (17)C4—C3—H3A109.4
N1—Ni1—O1i86.42 (17)C4—C3—H3B109.4
N1i—Ni1—O1i93.58 (17)C3—C4—H4A108.0
N1—Ni1—N1i180.0C3—C4—H4B108.0
N2i—Ni1—O192.40 (16)C3—C4—C5117.3 (6)
N2—Ni1—O1i92.40 (16)H4A—C4—H4B107.2
N2—Ni1—O187.60 (16)C5—C4—H4A108.0
N2i—Ni1—O1i87.60 (16)C5—C4—H4B108.0
N2—Ni1—N1i85.21 (19)N1—C5—C4111.6 (5)
N2i—Ni1—N1i94.79 (19)N1—C5—H5A109.3
N2—Ni1—N194.79 (19)N1—C5—H5B109.3
N2i—Ni1—N185.21 (19)C4—C5—H5A109.3
N2i—Ni1—N2180.0 (2)C4—C5—H5B109.3
O3ii—Si1—O338.8 (7)H5A—C5—H5B108.0
O3—Si1—C998.7 (5)O1—C6—C7117.0 (6)
O3ii—Si1—C9117.6 (6)O2—C6—O1126.5 (6)
O3ii—Si1—C10X93.6 (8)O2—C6—C7116.5 (6)
O3—Si1—C10X131.7 (9)C6—C7—H7A108.7
O3—Si1—C11102 (2)C6—C7—H7B108.7
O3ii—Si1—C11116.7 (16)C6—C7—C8114.4 (5)
O3—Si1—C10118.2 (9)H7A—C7—H7B107.6
O3ii—Si1—C1079.8 (9)C8—C7—H7A108.7
O3—Si1—C11X98 (2)C8—C7—H7B108.7
O3ii—Si1—C11X118.8 (18)C7—C8—H8A108.9
C9—Si1—C10X116.1 (7)C7—C8—H8B108.9
C9—Si1—C11114.8 (10)H8A—C8—H8B107.7
C9—Si1—C10107.7 (7)C9—C8—C7113.3 (5)
C9—Si1—C11X107.3 (9)C9—C8—H8A108.9
C11—Si1—C10X93.4 (18)C9—C8—H8B108.9
C11X—Si1—C10123.8 (18)Si1—C9—H9A107.9
C6—O1—Ni1131.4 (4)Si1—C9—H9B107.9
Si1ii—O3—Si1141.2 (7)C8—C9—Si1117.6 (4)
O3ii—O3—Si158.8 (11)C8—C9—H9A107.9
O3ii—O3—Si1ii82.4 (14)C8—C9—H9B107.9
Ni1—N1—H1107.2H9A—C9—H9B107.2
C1—N1—Ni1105.5 (4)Si1—C10X—H10A109.5
C1—N1—H1107.2Si1—C10X—H10B109.5
C1—N1—C5114.1 (5)Si1—C10X—H10C109.5
C5—N1—Ni1115.3 (4)H10A—C10X—H10B109.5
C5—N1—H1107.2H10A—C10X—H10C109.5
Ni1—N2—H2107.3H10B—C10X—H10C109.5
C2—N2—Ni1106.3 (4)Si1—C11—H11A109.5
C2—N2—H2107.3Si1—C11—H11B109.5
C3—N2—Ni1115.3 (4)Si1—C11—H11C109.5
C3—N2—H2107.3H11A—C11—H11B109.5
C3—N2—C2112.9 (5)H11A—C11—H11C109.5
N1—C1—H1A109.9H11B—C11—H11C109.5
N1—C1—H1B109.9Si1—C10—H10D109.5
N1—C1—C2i108.9 (5)Si1—C10—H10E109.5
H1A—C1—H1B108.3Si1—C10—H10F109.5
C2i—C1—H1A109.9H10D—C10—H10E109.5
C2i—C1—H1B109.9H10D—C10—H10F109.5
N2—C2—C1i108.3 (5)H10E—C10—H10F109.5
N2—C2—H2A110.0Si1—C11X—H11D109.5
N2—C2—H2B110.0Si1—C11X—H11E109.5
C1i—C2—H2A110.0Si1—C11X—H11F109.5
C1i—C2—H2B110.0H11D—C11X—H11E109.5
H2A—C2—H2B108.4H11D—C11X—H11F109.5
N2—C3—H3A109.4H11E—C11X—H11F109.5
N2—C3—H3B109.4
Ni1—O1—C6—O218.8 (10)C6—C7—C8—C967.1 (7)
Ni1—O1—C6—C7161.1 (4)C7—C8—C9—Si1176.0 (4)
Ni1—N1—C1—C2i41.9 (5)C9—Si1—O3—Si1ii123.8 (15)
Ni1—N1—C5—C453.8 (7)C9—Si1—O3—O3ii123.8 (15)
Ni1—N2—C2—C1i41.2 (5)C10X—Si1—O3—Si1ii13 (2)
Ni1—N2—C3—C457.1 (7)C10X—Si1—O3—O3ii13 (2)
O1—C6—C7—C831.8 (8)C10X—Si1—C9—C849.5 (9)
O2—C6—C7—C8148.4 (6)C11—Si1—O3—Si1ii118.5 (18)
O3ii—Si1—O3—Si1ii0.003 (1)C11—Si1—O3—O3ii118.5 (18)
O3—Si1—C9—C8165.0 (7)C11—Si1—C9—C858 (2)
O3ii—Si1—C9—C8159.0 (6)C10—Si1—O3—Si1ii8.3 (19)
N2—C3—C4—C572.9 (8)C10—Si1—O3—O3ii8.3 (19)
C1—N1—C5—C4176.2 (5)C10—Si1—C9—C871.5 (10)
C2—N2—C3—C4179.6 (5)C11X—Si1—O3—Si1ii127.1 (18)
C3—N2—C2—C1i168.6 (5)C11X—Si1—O3—O3ii127.1 (18)
C3—C4—C5—N171.1 (8)C11X—Si1—C9—C864 (2)
C5—N1—C1—C2i169.5 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.981.962.845 (6)150
N2—H2···O2iii0.982.072.883 (6)139
Symmetry code: (iii) x, y+1/2, z+1/2.
catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) top
Crystal data top
[Ni(C10H25O5Si2)(C12H24N4)]ClO4Z = 2
Mr = 663.99F(000) = 708
Triclinic, P1Dx = 1.296 Mg m3
a = 9.3815 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9009 (8) ÅCell parameters from 2033 reflections
c = 14.7604 (10) Åθ = 1.7–24.6°
α = 99.309 (5)°µ = 0.77 mm1
β = 100.343 (6)°T = 200 K
γ = 99.232 (6)°Block, clear light colourless
V = 1700.9 (2) Å30.45 × 0.35 × 0.30 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
9606 independent reflections
Radiation source: Enhance (Mo) X-ray Source5769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1515
Tmin = 0.889, Tmax = 1.000l = 1717
9606 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
9606 reflectionsΔρmax = 0.51 e Å3
367 parametersΔρmin = 0.44 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.0000000.0000000.0000000.0241 (2)
Si10.3977 (2)0.55987 (11)0.05469 (15)0.0729 (6)
O10.1184 (3)0.1542 (2)0.0727 (2)0.0310 (8)
O20.0826 (3)0.1583 (2)0.2165 (2)0.0339 (8)
H2C0.0349500.1966530.2433670.051*0.5
O30.5535 (8)0.5084 (6)0.0332 (5)0.061 (3)0.5
N10.1859 (4)0.0236 (3)0.0499 (3)0.0408 (11)
H10.1571260.0876840.0998640.049*
N20.0809 (4)0.0725 (3)0.1075 (3)0.0390 (11)
H20.1280110.0149550.1616390.047*
C10.2858 (6)0.0494 (5)0.0295 (4)0.065 (2)
H1A0.3353370.0159690.0737020.078*
H1B0.3604800.0838400.0063360.078*
C20.1992 (7)0.1219 (4)0.0773 (4)0.0649 (19)
H2A0.1569440.1897710.0346190.078*
H2B0.2636740.1356050.1313690.078*
C30.0282 (7)0.1448 (4)0.1388 (4)0.0634 (18)
H3A0.0714510.2061810.0884460.076*
H3B0.0208550.1707240.1918010.076*
C40.1501 (7)0.0909 (4)0.1671 (4)0.068 (2)
H4A0.1044050.0251150.2119110.081*
H4B0.2059700.1371980.1994620.081*
C50.2570 (6)0.0641 (4)0.0893 (4)0.0608 (18)
H5A0.3399870.0432880.1134870.073*
H5B0.2947110.1271960.0399650.073*
C60.1332 (4)0.2035 (3)0.1537 (3)0.0254 (11)
C70.2146 (5)0.3171 (3)0.1832 (3)0.0378 (13)
H7A0.3033790.3194480.2293840.045*
H7B0.1533200.3588660.2140360.045*
C80.2580 (5)0.3700 (3)0.1066 (3)0.0363 (12)
H8A0.3166580.3277040.0738690.044*
H8B0.1695080.3717820.0617030.044*
C90.3463 (5)0.4842 (3)0.1431 (3)0.0477 (14)
H9A0.2891820.5241860.1792020.057*
H9B0.4362490.4808980.1858400.057*
C100.2275 (11)0.5710 (6)0.0258 (5)0.168 (4)
H10A0.1918650.5056350.0714070.252*
H10B0.1533860.5837860.0095800.252*
H10C0.2488720.6294170.0572380.252*
C110.5003 (7)0.6957 (4)0.1124 (5)0.102 (3)
H11A0.4425420.7302990.1509110.153*
H11B0.5921870.6909550.1508290.153*
H11C0.5194600.7365390.0654950.153*
Ni20.0000000.5000000.5000000.0281 (2)
Si20.35316 (15)0.04647 (10)0.52679 (11)0.0404 (4)
O40.0305 (3)0.3297 (2)0.47284 (19)0.0333 (8)
O50.0840 (3)0.2890 (2)0.3576 (2)0.0376 (9)
H5C0.0959500.2352760.3241180.056*0.5
N30.1442 (6)0.5206 (3)0.4129 (4)0.0621 (15)
H30.1438420.4494520.3774160.075*
N40.1844 (5)0.4870 (3)0.3968 (4)0.0675 (16)
H40.2078150.4128790.3619740.081*
C120.2937 (7)0.5585 (5)0.4771 (6)0.094 (3)
H12A0.3701620.5456050.4426640.113*
H12B0.3090770.6348090.5014740.113*
C130.3020 (7)0.5012 (5)0.4435 (7)0.111 (4)
H13A0.2951150.5768200.4675920.133*
H13B0.3959950.4747370.3995170.133*
C140.1635 (10)0.5587 (5)0.3256 (6)0.112 (3)
H14A0.1512660.6328810.3564240.134*
H14B0.2518650.5423540.2761300.134*
C150.0318 (15)0.5454 (6)0.2821 (5)0.136 (4)
H15A0.0353280.5829990.2301290.163*
H15B0.0401020.4700130.2565700.163*
C160.1145 (11)0.5851 (5)0.3474 (6)0.116 (4)
H16A0.1177740.6570980.3804210.139*
H16B0.1911320.5886320.3111030.139*
C170.0036 (5)0.2625 (3)0.4108 (3)0.0278 (11)
C180.0724 (5)0.1463 (3)0.3978 (3)0.0287 (12)
H18A0.1329970.1238120.3348280.034*
H18B0.0061930.1056100.4015450.034*
C190.1664 (5)0.1164 (3)0.4662 (3)0.0359 (12)
H19A0.1080870.1408130.5296650.043*
H19B0.2490450.1531880.4603480.043*
C200.2255 (5)0.0035 (3)0.4507 (3)0.0373 (13)
H20A0.2767180.0281120.3856480.045*
H20B0.1420640.0390910.4605460.045*
C210.2725 (6)0.0094 (4)0.6529 (4)0.0706 (18)
H21A0.1807660.0135400.6704840.106*
H21B0.2551620.0861530.6633820.106*
H21C0.3398760.0156530.6901110.106*
C220.3997 (6)0.1939 (4)0.5079 (5)0.084 (2)
H22A0.4454380.2224610.4431220.126*
H22B0.3112130.2213700.5239120.126*
H22C0.4667090.2146500.5467890.126*
O6X0.493 (3)0.013 (5)0.497 (6)0.037 (3)*0.25
O60.510 (3)0.021 (4)0.4772 (12)0.037 (3)*0.25
Cl10.38292 (17)0.21590 (12)0.21055 (12)0.0683 (5)
O70.3941 (6)0.2883 (5)0.2826 (4)0.194 (3)
O80.2362 (5)0.2323 (4)0.1955 (4)0.1227 (19)
O90.4112 (6)0.1102 (4)0.2279 (4)0.147 (2)
O100.4768 (6)0.2161 (4)0.1271 (4)0.137 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0254 (4)0.0202 (4)0.0226 (5)0.0021 (4)0.0072 (4)0.0040 (3)
Si10.1134 (15)0.0274 (8)0.0967 (15)0.0056 (9)0.0774 (14)0.0135 (8)
O10.0404 (19)0.0256 (16)0.0206 (19)0.0064 (14)0.0113 (15)0.0065 (14)
O20.051 (2)0.0206 (16)0.030 (2)0.0038 (14)0.0228 (17)0.0013 (14)
O30.085 (7)0.051 (4)0.069 (8)0.020 (5)0.056 (5)0.020 (5)
N10.033 (2)0.038 (2)0.041 (3)0.005 (2)0.016 (2)0.017 (2)
N20.052 (3)0.026 (2)0.031 (3)0.006 (2)0.001 (2)0.0044 (18)
C10.028 (3)0.065 (4)0.081 (5)0.019 (3)0.006 (3)0.032 (4)
C20.072 (4)0.048 (3)0.058 (4)0.024 (3)0.022 (4)0.009 (3)
C30.119 (5)0.027 (3)0.032 (3)0.010 (3)0.006 (4)0.003 (2)
C40.106 (5)0.045 (3)0.036 (4)0.041 (3)0.039 (4)0.009 (3)
C50.059 (4)0.060 (4)0.051 (4)0.023 (3)0.036 (3)0.018 (3)
C60.026 (3)0.025 (2)0.023 (3)0.000 (2)0.008 (2)0.002 (2)
C70.053 (3)0.027 (3)0.027 (3)0.010 (2)0.018 (3)0.004 (2)
C80.048 (3)0.025 (2)0.033 (3)0.001 (2)0.016 (3)0.002 (2)
C90.056 (3)0.028 (3)0.053 (4)0.010 (2)0.022 (3)0.004 (2)
C100.274 (12)0.096 (6)0.091 (7)0.042 (7)0.030 (7)0.047 (5)
C110.075 (5)0.042 (4)0.192 (8)0.006 (3)0.039 (5)0.034 (4)
Ni20.0285 (5)0.0228 (4)0.0292 (5)0.0009 (4)0.0125 (4)0.0067 (4)
Si20.0330 (8)0.0396 (8)0.0503 (10)0.0047 (7)0.0090 (7)0.0156 (7)
O40.0421 (19)0.0242 (16)0.0334 (19)0.0031 (14)0.0212 (16)0.0061 (14)
O50.053 (2)0.0263 (17)0.033 (2)0.0013 (15)0.0258 (18)0.0061 (14)
N30.099 (4)0.026 (2)0.073 (4)0.007 (3)0.064 (3)0.002 (3)
N40.056 (3)0.043 (3)0.080 (4)0.016 (3)0.019 (3)0.027 (3)
C120.049 (4)0.056 (4)0.167 (7)0.010 (3)0.066 (5)0.033 (4)
C130.039 (4)0.062 (5)0.188 (10)0.014 (4)0.027 (5)0.048 (5)
C140.164 (8)0.055 (4)0.088 (6)0.040 (5)0.055 (6)0.004 (4)
C150.313 (15)0.067 (5)0.049 (5)0.084 (8)0.047 (8)0.019 (4)
C160.238 (11)0.045 (4)0.088 (7)0.012 (6)0.122 (7)0.001 (4)
C170.028 (3)0.028 (2)0.024 (3)0.005 (2)0.003 (2)0.000 (2)
C180.033 (3)0.018 (2)0.036 (3)0.003 (2)0.014 (2)0.001 (2)
C190.038 (3)0.031 (3)0.041 (3)0.004 (2)0.017 (3)0.003 (2)
C200.034 (3)0.035 (3)0.041 (3)0.003 (2)0.011 (3)0.002 (2)
C210.079 (4)0.088 (4)0.045 (4)0.017 (4)0.011 (3)0.017 (3)
C220.082 (5)0.048 (3)0.116 (6)0.012 (3)0.023 (4)0.021 (4)
Cl10.0571 (10)0.0599 (10)0.0695 (12)0.0139 (8)0.0151 (10)0.0111 (9)
O70.137 (5)0.163 (5)0.202 (6)0.019 (4)0.037 (4)0.146 (5)
O80.077 (3)0.154 (5)0.144 (5)0.026 (3)0.017 (3)0.050 (4)
O90.176 (6)0.079 (4)0.158 (5)0.006 (4)0.005 (5)0.016 (3)
O100.117 (4)0.143 (4)0.115 (4)0.037 (3)0.050 (4)0.006 (4)
Geometric parameters (Å, º) top
Ni1—O12.125 (2)Ni2—N42.054 (4)
Ni1—O1i2.125 (2)Ni2—N4iii2.054 (4)
Ni1—N1i2.058 (3)Si2—C201.864 (5)
Ni1—N12.058 (3)Si2—C211.855 (5)
Ni1—N2i2.060 (4)Si2—C221.845 (5)
Ni1—N22.060 (4)Si2—O6Xiv1.570 (19)
Si1—O31.757 (8)Si2—O6X1.651 (19)
Si1—O3ii1.626 (7)Si2—O6iv1.66 (2)
Si1—C91.837 (5)Si2—O61.632 (16)
Si1—C101.852 (9)O4—C171.245 (4)
Si1—C111.845 (5)O5—H5C0.8199
O1—C61.232 (4)O5—C171.280 (5)
O2—H2C0.8200N3—H30.9800
O2—C61.291 (5)N3—C121.502 (8)
O3—O3ii1.234 (13)N3—C161.393 (9)
N1—H10.9800N4—H40.9800
N1—C11.481 (6)N4—C131.422 (8)
N1—C51.475 (6)N4—C141.527 (9)
N2—H20.9800C12—H12A0.9700
N2—C21.467 (6)C12—H12B0.9700
N2—C31.461 (6)C12—C13iii1.502 (10)
C1—H1A0.9700C13—H13A0.9700
C1—H1B0.9700C13—H13B0.9700
C1—C2i1.486 (7)C14—H14A0.9700
C2—H2B0.9700C14—H14B0.9700
C2—H2A0.9700C14—C151.512 (11)
C3—H3A0.9700C15—H15A0.9700
C3—H3B0.9700C15—H15B0.9700
C3—C41.516 (7)C15—C161.488 (11)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C4—C51.507 (7)C20—H20A0.9700
C5—H5A0.9700C20—H20B0.9700
C5—H5B0.9700C20—C191.521 (5)
C6—C71.496 (5)C19—H19A0.9700
C7—H7A0.9700C19—H19B0.9700
C7—H7B0.9700C19—C181.512 (6)
C7—C81.496 (6)C18—H18A0.9700
C8—H8A0.9700C18—H18B0.9700
C8—H8B0.9700C18—C171.501 (5)
C8—C91.529 (5)C21—H21A0.9600
C9—H9A0.9700C21—H21B0.9600
C9—H9B0.9700C21—H21C0.9600
C10—H10A0.9600C22—H22A0.9600
C10—H10B0.9600C22—H22B0.9600
C10—H10C0.9600C22—H22C0.9600
C11—H11A0.9600O6X—O6Xiv0.38 (7)
C11—H11B0.9600O6—O6iv0.77 (5)
C11—H11C0.9600Cl1—O71.329 (4)
Ni2—O4iii2.131 (2)Cl1—O81.421 (5)
Ni2—O42.131 (2)Cl1—O91.420 (5)
Ni2—N3iii2.043 (4)Cl1—O101.380 (5)
Ni2—N32.043 (4)
O1—Ni1—O1i180.0N3iii—Ni2—N485.7 (2)
N1i—Ni1—O188.17 (12)N4—Ni2—O4iii91.33 (14)
N1i—Ni1—O1i91.83 (12)N4—Ni2—O488.67 (14)
N1—Ni1—O1i88.17 (12)N4iii—Ni2—O491.33 (14)
N1—Ni1—O191.83 (12)N4iii—Ni2—O4iii88.67 (14)
N1i—Ni1—N1180.0N4—Ni2—N4iii180.0
N1i—Ni1—N285.82 (17)C21—Si2—C20111.6 (2)
N1—Ni1—N2i85.82 (17)C22—Si2—C20110.6 (2)
N1i—Ni1—N2i94.18 (17)C22—Si2—C21109.6 (3)
N1—Ni1—N294.18 (17)O6Xiv—Si2—C20113.4 (14)
N2—Ni1—O1i87.38 (12)O6X—Si2—C20102.5 (13)
N2i—Ni1—O187.38 (12)O6X—Si2—C21107 (3)
N2—Ni1—O192.62 (12)O6Xiv—Si2—C21107 (3)
N2i—Ni1—O1i92.62 (12)O6X—Si2—C22116 (2)
N2—Ni1—N2i180.0O6Xiv—Si2—C22104 (2)
O3ii—Si1—O342.6 (4)O6Xiv—Si2—O6X13 (3)
O3ii—Si1—C9115.6 (3)O6X—Si2—O6iv13 (3)
O3—Si1—C9100.2 (3)O6Xiv—Si2—O6iv17 (2)
O3—Si1—C10131.5 (4)O6iv—Si2—C20111.2 (17)
O3ii—Si1—C1089.4 (4)O6—Si2—C20103.5 (15)
O3ii—Si1—C11121.3 (4)O6—Si2—C21120.4 (6)
O3—Si1—C1195.7 (3)O6iv—Si2—C2194.3 (5)
C9—Si1—C10109.0 (3)O6—Si2—C22100.3 (19)
C9—Si1—C11110.1 (3)O6iv—Si2—C22118.5 (19)
C11—Si1—C10108.8 (3)O6—Si2—O6iv26.9 (17)
C6—O1—Ni1132.9 (3)C17—O4—Ni2133.8 (3)
C6—O2—H2C109.8C17—O5—H5C109.9
Si1ii—O3—Si1137.4 (4)Ni2—N3—H3106.9
O3ii—O3—Si163.0 (6)C12—N3—Ni2105.1 (4)
O3ii—O3—Si1ii74.4 (7)C12—N3—H3106.9
Ni1—N1—H1107.4C16—N3—Ni2117.3 (4)
C1—N1—Ni1105.0 (3)C16—N3—H3106.9
C1—N1—H1107.4C16—N3—C12113.2 (6)
C5—N1—Ni1116.2 (3)Ni2—N4—H4106.8
C5—N1—H1107.4C13—N4—Ni2106.5 (4)
C5—N1—C1113.1 (4)C13—N4—H4106.8
Ni1—N2—H2106.7C13—N4—C14115.0 (6)
C2—N2—Ni1105.7 (3)C14—N4—Ni2114.4 (4)
C2—N2—H2106.7C14—N4—H4106.8
C3—N2—Ni1116.1 (3)N3—C12—H12A109.9
C3—N2—H2106.7N3—C12—H12B109.9
C3—N2—C2114.2 (4)N3—C12—C13iii108.8 (5)
N1—C1—H1A109.7H12A—C12—H12B108.3
N1—C1—H1B109.7C13iii—C12—H12A109.9
N1—C1—C2i109.7 (4)C13iii—C12—H12B109.9
H1A—C1—H1B108.2N4—C13—C12iii109.6 (6)
C2i—C1—H1A109.7N4—C13—H13A109.8
C2i—C1—H1B109.7N4—C13—H13B109.8
N2—C2—C1i109.8 (4)C12iii—C13—H13A109.8
N2—C2—H2B109.7C12iii—C13—H13B109.8
N2—C2—H2A109.7H13A—C13—H13B108.2
C1i—C2—H2B109.7N4—C14—H14A109.0
C1i—C2—H2A109.7N4—C14—H14B109.0
H2B—C2—H2A108.2H14A—C14—H14B107.8
N2—C3—H3A109.1C15—C14—N4113.0 (6)
N2—C3—H3B109.1C15—C14—H14A109.0
N2—C3—C4112.3 (4)C15—C14—H14B109.0
H3A—C3—H3B107.9C14—C15—H15A108.5
C4—C3—H3A109.1C14—C15—H15B108.5
C4—C3—H3B109.1H15A—C15—H15B107.5
C3—C4—H4A108.1C16—C15—C14115.0 (6)
C3—C4—H4B108.1C16—C15—H15A108.5
H4A—C4—H4B107.3C16—C15—H15B108.5
C5—C4—C3116.7 (4)N3—C16—C15113.1 (7)
C5—C4—H4A108.1N3—C16—H16A109.0
C5—C4—H4B108.1N3—C16—H16B109.0
N1—C5—C4111.4 (4)C15—C16—H16A109.0
N1—C5—H5A109.4C15—C16—H16B109.0
N1—C5—H5B109.4H16A—C16—H16B107.8
C4—C5—H5A109.4Si2—C20—H20A108.3
C4—C5—H5B109.4Si2—C20—H20B108.3
H5A—C5—H5B108.0H20A—C20—H20B107.4
O1—C6—O2121.4 (4)C19—C20—Si2115.9 (3)
O1—C6—C7120.8 (4)C19—C20—H20A108.3
O2—C6—C7117.7 (4)C19—C20—H20B108.3
C6—C7—H7A108.3C20—C19—H19A109.0
C6—C7—H7B108.3C20—C19—H19B109.0
H7A—C7—H7B107.4H19A—C19—H19B107.8
C8—C7—C6116.0 (4)C18—C19—C20113.1 (3)
C8—C7—H7A108.3C18—C19—H19A109.0
C8—C7—H7B108.3C18—C19—H19B109.0
C7—C8—H8A109.0C19—C18—H18A108.1
C7—C8—H8B109.0C19—C18—H18B108.1
C7—C8—C9112.8 (4)H18A—C18—H18B107.3
H8A—C8—H8B107.8C17—C18—C19116.7 (3)
C9—C8—H8A109.0C17—C18—H18A108.1
C9—C8—H8B109.0C17—C18—H18B108.1
Si1—C9—H9A108.1O4—C17—O5121.9 (4)
Si1—C9—H9B108.1O4—C17—C18120.1 (4)
C8—C9—Si1116.8 (3)O5—C17—C18118.0 (3)
C8—C9—H9A108.1Si2—C21—H21A109.5
C8—C9—H9B108.1Si2—C21—H21B109.5
H9A—C9—H9B107.3Si2—C21—H21C109.5
Si1—C10—H10A109.5H21A—C21—H21B109.5
Si1—C10—H10B109.5H21A—C21—H21C109.5
Si1—C10—H10C109.5H21B—C21—H21C109.5
H10A—C10—H10B109.5Si2—C22—H22A109.5
H10A—C10—H10C109.5Si2—C22—H22B109.5
H10B—C10—H10C109.5Si2—C22—H22C109.5
Si1—C11—H11A109.5H22A—C22—H22B109.5
Si1—C11—H11B109.5H22A—C22—H22C109.5
Si1—C11—H11C109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5Si2iv—O6X—Si2167 (3)
H11A—C11—H11C109.5O6Xiv—O6X—Si2iv96 (6)
H11B—C11—H11C109.5O6Xiv—O6X—Si271 (6)
O4—Ni2—O4iii180.00 (3)Si2—O6—Si2iv153.1 (17)
N3iii—Ni2—O4iii94.96 (13)O6iv—O6—Si278 (2)
N3—Ni2—O494.96 (13)O7—Cl1—O8110.3 (3)
N3iii—Ni2—O485.04 (13)O7—Cl1—O9112.0 (4)
N3—Ni2—O4iii85.04 (13)O7—Cl1—O10114.2 (4)
N3iii—Ni2—N3180.0O9—Cl1—O8105.3 (3)
N3iii—Ni2—N4iii94.3 (2)O10—Cl1—O8107.7 (4)
N3—Ni2—N494.3 (2)O10—Cl1—O9106.8 (3)
N3—Ni2—N4iii85.7 (2)
Ni1—O1—C6—O27.2 (6)Ni2—N4—C14—C1552.9 (7)
Ni1—O1—C6—C7174.5 (3)Si2—C20—C19—C18176.0 (3)
Ni1—N1—C1—C2i40.9 (4)N4—C14—C15—C1668.4 (9)
Ni1—N1—C5—C456.2 (5)C12—N3—C16—C15178.2 (6)
Ni1—N2—C2—C1i39.8 (4)C13—N4—C14—C15176.6 (6)
Ni1—N2—C3—C455.3 (5)C14—N4—C13—C12iii169.9 (5)
O1—C6—C7—C87.7 (6)C14—C15—C16—N371.7 (8)
O2—C6—C7—C8174.0 (4)C16—N3—C12—C13iii168.2 (5)
O3ii—Si1—O3—Si1ii0.001 (2)C20—Si2—O6X—Si2iv148 (28)
O3—Si1—C9—C881.0 (4)C20—Si2—O6X—O6Xiv148 (28)
O3ii—Si1—C9—C839.0 (5)C20—Si2—O6—Si2iv110 (7)
N2—C3—C4—C570.0 (6)C20—Si2—O6—O6iv110 (7)
C1—N1—C5—C4177.7 (4)C20—C19—C18—C17177.2 (4)
C2—N2—C3—C4178.7 (4)C19—C18—C17—O43.3 (6)
C3—N2—C2—C1i168.7 (4)C19—C18—C17—O5175.7 (4)
C3—C4—C5—N170.1 (5)C21—Si2—C20—C1952.0 (4)
C5—N1—C1—C2i168.6 (4)C21—Si2—O6X—Si2iv95 (29)
C6—C7—C8—C9177.5 (4)C21—Si2—O6X—O6Xiv95 (29)
C7—C8—C9—Si1176.9 (4)C21—Si2—O6—Si2iv15 (9)
C9—Si1—O3—Si1ii116.9 (7)C21—Si2—O6—O6iv15 (9)
C9—Si1—O3—O3ii116.9 (7)C22—Si2—C20—C19174.3 (4)
C10—Si1—O3—Si1ii10.0 (10)C22—Si2—O6X—Si2iv27 (30)
C10—Si1—O3—O3ii10.0 (10)C22—Si2—O6X—O6Xiv27 (30)
C10—Si1—C9—C859.7 (5)C22—Si2—O6—Si2iv135 (8)
C11—Si1—O3—Si1ii131.5 (8)C22—Si2—O6—O6iv135 (8)
C11—Si1—O3—O3ii131.5 (8)O6Xiv—Si2—C20—C1970 (4)
C11—Si1—C9—C8179.0 (4)O6X—Si2—C20—C1962 (3)
Ni2—O4—C17—O516.3 (6)O6Xiv—Si2—O6X—Si2iv0.01 (14)
Ni2—O4—C17—C18164.8 (3)O6iv—Si2—C20—C1951.9 (12)
Ni2—N3—C12—C13iii39.0 (6)O6—Si2—C20—C1979.0 (15)
Ni2—N3—C16—C1559.1 (7)O6iv—Si2—O6—Si2iv0.006 (14)
Ni2—N4—C13—C12iii42.1 (6)
Symmetry codes: (i) x, y, z; (ii) x1, y1, z; (iii) x, y1, z1; (iv) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.982.513.225 (5)130
N1—H1···O80.982.453.315 (6)147
N2—H2···O20.982.383.143 (4)134
N3—H3···O50.982.012.901 (5)150
N4—H4···O70.982.183.012 (6)142
O2—H2C···O50.821.842.456 (4)131
O2—H2C···O80.822.653.260 (5)133
O5—H5C···O20.821.702.456 (4)151
Selected geometrical parameters of the complex cations (Å, °) top
III
Ni1—N12.071 (4)Ni1—N12.058 (3)Ni2—N32.043 (4)
Ni1—N22.060 (4)Ni1—N22.060 (4)Ni2—N42.054 (4)
Ni1—O12.113 (4)Ni1—O12.125 (2)Ni2—O42.131 (2)
N1—Ni1—N2i85.21 (19)N1—Ni1—N2ii85.82 (17)N3—Ni2—N4iii85.7 (2)
N1—Ni1—N294.79 (19)N1—Ni1—N294.18 (17)N3—Ni2—N494.3 (2)
Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y, -z; (iii) -x, -y - 1, -z -1.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBarefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224.  CAS Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. (2018). Coord. Chem. Rev. 358, 125–152.  CrossRef CAS Google Scholar
First citationFarrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLee, J. H., Jeoung, S., Chung, Y. G. & Moon, H. R. (2019). Coord. Chem. Rev. 389, 161–188.  CrossRef CAS Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.  Google Scholar
First citationMulvaney, J. E. & Marvel, C. S. (1961). J. Polym. Sci. 50, 541–547.  CrossRef CAS Google Scholar
First citationRacles, C., Shova, S., Cazacu, M. & Timpu, D. (2013). Polymer, 54, 6096–6104.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVlad, A., Cazacu, M., Zaltariov, M.-F., Bargan, A., Shova, S. & Turta, C. (2014). J. Mol. Struct. 1060, 94–101.  CSD CrossRef CAS Google Scholar
First citationVlad, A., Cazacu, M., Zaltariov, M.-F., Shova, S., Turta, C. & Airinei, A. (2013a). Polymer, 54, 43–53.  CSD CrossRef CAS Google Scholar
First citationVlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G., Varganici, C.-D., Train, C. & Cazacu, M. (2013b). CrystEngComm, 15, 5368–5375.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.)  Google Scholar
First citationZaltariov, M.-F., Cazacu, M., Sacarescu, L., Vlad, A., Novitchi, G., Train, C., Shova, S. & Arion, V. B. (2016). Macromolecules, 49, 6163–6172.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds