research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (R)-5-[(R)-3-(4-chloro­phen­yl)-5-methyl-4,5-di­hydro­isoxazol-5-yl]-2-methyl­cyclo­hex-2-enone

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Synthése Organique et de Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, bInstitut de Chimie Moléculaire de Reims, CNRS UMR 7312, Bat. Europol Agr, Moulin de la Housse, UFR Sciences, BP 1039, 51687 Reims Cédex 2, France, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: itto35@hotmail.com_or_aititto@uca.ma

Edited by H. Ishida, Okayama University, Japan (Received 15 January 2020; accepted 12 February 2020; online 18 February 2020)

The title compound, C17H18ClNO2, was prepared and isolated as a pure diastereoisomer, using column chromatography followed by a succession of fractional crystallizations. Its exact structure was fully identified via 1H NMR and confirmed by X-ray diffraction. It is built up from a central five-membered di­hydro­isoxazole ring to which a p-chloro­phenyl group and a cyclo­hex-2-enone ring are attached in the 3 and 5 positions. The cyclo­hex-2-one and isoxazoline rings each exhibit an envelope conformation. The crystal packing features C—H⋯O, C—H⋯N and C—H⋯π inter­actions, which generate a three-dimensional network.

1. Chemical context

In recent years, isoxazole and isoxazoline derivatives have been considered to be good drug candidates because of their broad spectrum of pharmaceutical activities, such as anti­tumoral (Kamal et al., 2010[Kamal, A., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Bharathi, E. V., Azhar, M. A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Juvekar, A., Sen, S. & Zingde, S. (2010). Eur. J. Med. Chem. 45, 3924-3937.]), anti­bacterial (Calí et al., 2004[Calí, P., Naerum, L., Mukhija, S. & Hjelmencrantz, A. (2004). Bioorg. Med. Chem. Lett. 14, 5997-6000.]), anti­viral (Deng et al., 2009[Deng, B. L., Zhao, Y. J., Hartman, T. L., Watson, K., Buckheit, R. W., Pannecouque, C., De Clercq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210-1214.]) and anti-inflammatory (Pedada et al., 2016[Pedada, S. R., Yarla, N. S., Tambade, P. J., Dhananjaya, B. L., Bishayee, A., Arunasree, K. M., Philip, G. H., Dharmapuri, G., Aliev, G., Putta, S. & Rangaiah, G. (2016). Eur. J. Med. Chem. 112, 289-297.]). Cyclo­addition and heterocyclization reactions have been widely used as synthetic methods for obtaining isoxazoles (Nieto et al., 2019[Nieto, C. I., Cornago, M. P., Cabildo, M. P., Sanz, D., Claramunt, R. M., Torralba, M. C. & Elguero, J. (2019). J. Fluor. Chem. 219, 39-49.]). In terms of selectivity, 1,3-dipolar cyclo­addition reactions of nitrilimines with dipolarophiles, such as C=C, C=S or C=N, give high stereoselectivity (Ait Itto et al., 2013[Ait Itto, M. Y., Feddouli, A., Boutalib, A., Riahi, A. & Daran, J.-C. (2013). J. Sulfur Chem. 34, 250-258.]), while nitrile oxides, which are less sterically hindered dipoles, lead to poor stereoselectivity (Feddouli et al., 2006[Feddouli, A., Ait Itto, Y. M., Ait Ali, M., Hasnaoui, A. & Riahi, A. (2006). Synth. Commun. 36, 3617-3624.]). This was confirmed in our recent work (Oubella et al., 2019[Oubella, A., Ait Itto, M. Y., Auhmani, A., Riahi, A., Robert, A., Daran, J.-C., Morjani, H., Parish, C. A. & Esseffar, M. (2019). J. Mol. Struct. 1198, 126924p.]) in which the 1,3-cyclo­addition reaction of di­aryl­nitrilimines with (R)-carvone gave the corresponding pyrazoles isolated as the unique (3aR,5R,7aR) diastereoisomer, while the isoxazoles prepared with nitrile oxides were isolated as (R,R)/(R,S) diastereoisomeric mixtures with a slight predominance of (R, R). In the present work, we report the separation, identification by 1H NMR spectroscopy, and X-ray structural analysis of the slightly major diastereoisomer of the isoxazole obtained by the 1,3-dipolar cyclo­addition of 4-chloro­benzo­nitrile oxide with (R)-carvone.

2. Structural commentary

The title compound is built up from a central five-membered di­hydro­isoxazol ring to which a p-chloro­phenyl group and a cyclo­hex-2-enone ring are attached to atoms C2 and C1 at the 3 and 5 positions, respectively (Fig. 1[link]). Atom C1 also bears a methyl group. The absolute configuration of R/R at atoms C1 and C11 were confirmed by the Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). This structure is closely related to the previously reported isoxazole derivative having a methyl group in place of atom Cl 3 (Oubella et al., 2019[Oubella, A., Ait Itto, M. Y., Auhmani, A., Riahi, A., Robert, A., Daran, J.-C., Morjani, H., Parish, C. A. & Esseffar, M. (2019). J. Mol. Struct. 1198, 126924p.]). The isoxazole ring has an envelope conformation on C1 as indicated by the puckering parameters of Q2 = 0.145 (3) Å and φ2 = 138.1 (11)°. The puckering parameters for the cyclo­hexene ring, Q = 0.449 (3) Å, θ = 126.0 (4)° and φ = 189.2 (5)°, agree with an envelope conformation on C11. The mean plane of the isoxazole ring makes a dihedral angle of 13.4 (2)° with the C21–C26 benzene ring, whereas it makes a dihedral angle of 66.2 (1)° with the mean plane of the C11–C16 ring.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.

3. Supra­molecular features

The packing of the structure features weak C—H⋯N and C—H⋯O inter­actions (C4—H42⋯N1i and C12—H12B⋯O13ii; symmetry codes as in Table 1[link]). The C—H⋯N inter­actions build up a linear chain along the a-axis direction, while the C—H⋯O inter­actions make a helical chain along the b-axis direction, forming a layer parallel to the ab plane (Fig. 2[link]). Between the layers, a C—H⋯π inter­action is observed (C23—H23⋯Cg1iii; Table 1[link]), where Cg1 is the centroid of the C21–C26 benzene ring.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H42⋯N1i 0.96 2.62 3.572 (4) 173
C12—H12B⋯O13ii 0.97 2.54 3.488 (4) 165
C23—H23⋯Cg1iii 0.93 2.71 3.554 (3) 151
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Partial packing diagram of the title compound, showing C—H⋯O, C—H⋯N and C—H⋯π inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic compounds with structures containing a 2-isoxazoline ring revealed 284 hits. Introducing a methyl group on position 5 reduced this number to 15 and searching for structures containing a phenyl ring attached to position 3 gave only seven hits. A comparison of related distances and angles within the 2-isoxazoline ring shows a good agreement between all these structures, with a systematically short C2—N1 bond with lengths ranging from 1.274 to 1.285 Å, corresponding to a C=N double bond. A larger discrepancy is observed for the dihedral angle between the isoxazol mean plane and the benzene ring in the (S)-3-(2,6-di­chloro­phen­yl)-5-[(2,5-di­phenyl­pyrrolidin-1-yl)carbon­yl]-5-methyl-4,5-di­hydro­isoxa­zole compound (Houk et al., 1984[Houk, K. N., Moses, S. R., Wu, Y.-D., Rondan, N. G., Jager, V., Schohe, R. & Fronczek, F. R. (1984). J. Am. Chem. Soc. 106, 3880-3882.]); at 66.8°, this is much larger than the value of 13.4 (2)° observed for the title compound. This larger dihedral angle is related to the occurrence of two Cl atoms in the 2 and 5 positions on the phenyl ring.

5. Synthesis and crystallization

As shown in Fig. 3[link], (R)-carvone, 1, was reacted with nitrile oxide, 2, generated in situ from the corresponding oxime according to our recently described methodology (Oubella et al., 2019[Oubella, A., Ait Itto, M. Y., Auhmani, A., Riahi, A., Robert, A., Daran, J.-C., Morjani, H., Parish, C. A. & Esseffar, M. (2019). J. Mol. Struct. 1198, 126924p.]). The corresponding isoxazole, 3, was obtained in 80% yield, as an (R,R)/(R,S) diastereoisomeric mixture. The 1H NMR spectrum of 3 clearly shows a splitting of both the methyl and methyl­ene groups in the α position of the newly formed stereogenic center of the isoxazole nucleus (Fig. 4[link]a). The former gave rise to two singlets at 1.44 ppm and 1.48 ppm, respectively, while the latter is seen as two pairs of doublets, one at 2.90 and 3.20 ppm (J = 16.9 Hz) and the other at 2.75 and 3.30 ppm (J = 16.7 Hz). Integrating the corresponding 1H NMR signals allowed us to qu­antify the ratio of the diastereoisomereric mixture as 58:42. After several attempts at separation, either by column chromatography or a series of fractional crystallizations by slow evaporation from a chloro­form solution of 3, we managed to separate the diastereo­isomer 3a, the title compound, as pure single crystals suitable for crystallographic analysis. Its 1H NMR spectrum (Fig. 4[link]b) is mainly characterized by the isoxazolic methyl group resonating as a singlet at 1.44 ppm, and the methyl­ene group appeared as two doublets at 2.90 ppm (J = 16.9 Hz) and 3.20 ppm (J = 16.9 Hz).

[Figure 3]
Figure 3
Synthesis pathway leading to the formation of the title compound, 3a.
[Figure 4]
Figure 4
1H NMR spectra of (a) the diastereoisomeric mixture 3 and (b) the pure separated (5R,5′R) diastereoisomer 3a.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methyl­ene), 0.98 Å (meth­yl) or 0.95 Å (methine), and with Uiso(H) = 1.2Ueq(C) for methyl­ene and methine or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H18ClNO2
Mr 303.77
Crystal system, space group Orthorhombic, P212121
Temperature (K) 105
a, b, c (Å) 6.4590 (2), 7.3545 (3), 31.3436 (12)
V3) 1488.91 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.31 × 0.26 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.694, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16529, 3019, 2827
Rint 0.057
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.105, 1.19
No. of reflections 3019
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.23
Absolute structure Flack x determined using 1100 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.09 (4)
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

(R)-5-[(R)-3-(4-Chlorophenyl)-5-methyl-4,5-dihydroisoxazol-5-yl]-2-methylcyclohex-2-enone top
Crystal data top
C17H18ClNO2Dx = 1.355 Mg m3
Mr = 303.77Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5113 reflections
a = 6.4590 (2) Åθ = 2.8–27.9°
b = 7.3545 (3) ŵ = 0.26 mm1
c = 31.3436 (12) ÅT = 105 K
V = 1488.91 (10) Å3Box, colourless
Z = 40.31 × 0.26 × 0.18 mm
F(000) = 640
Data collection top
Bruker APEXII CCD
diffractometer
3019 independent reflections
Radiation source: micro-focus sealed tube2827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 26.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 88
Tmin = 0.694, Tmax = 0.746k = 99
16529 measured reflectionsl = 3839
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.060P)2 + 0.137P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.19Δρmax = 0.40 e Å3
3019 reflectionsΔρmin = 0.23 e Å3
193 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.014 (4)
Primary atom site location: dualAbsolute structure: Flack x determined using 1100 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6484 (4)0.6566 (4)0.64093 (9)0.0150 (6)
C20.4125 (4)0.4711 (4)0.60439 (8)0.0140 (6)
C30.6216 (4)0.4598 (4)0.62542 (9)0.0158 (6)
H310.7286440.4258330.6052420.019*
H320.6212730.3744750.6490260.019*
C40.7886 (4)0.7654 (4)0.61166 (9)0.0197 (6)
H410.7395500.7558660.5828400.030*
H420.9270890.7184680.6133530.030*
H430.7879900.8906320.6202830.030*
C110.7057 (4)0.6782 (4)0.68816 (9)0.0134 (6)
H110.7139270.8087920.6941380.016*
C120.5419 (4)0.5983 (4)0.71777 (9)0.0181 (6)
H12A0.4114430.6600090.7127390.022*
H12B0.5226610.4709110.7107570.022*
C130.5961 (4)0.6140 (4)0.76455 (9)0.0155 (6)
C140.8176 (4)0.6073 (4)0.77632 (9)0.0163 (6)
C150.9600 (4)0.5958 (4)0.74575 (9)0.0175 (6)
H151.0975900.5871390.7542790.021*
C160.9173 (4)0.5956 (4)0.69867 (9)0.0182 (6)
H16A0.9222290.4715840.6881550.022*
H16B1.0244500.6642960.6841690.022*
C170.8694 (5)0.6108 (4)0.82302 (9)0.0222 (6)
H17A1.0161540.5966600.8266310.033*
H17B0.7988260.5131860.8372260.033*
H17C0.8265000.7247500.8350470.033*
C210.3164 (4)0.3268 (4)0.57902 (8)0.0146 (6)
C220.1345 (4)0.3588 (4)0.55578 (9)0.0164 (6)
H220.0770550.4747330.5553870.020*
C230.0396 (4)0.2195 (4)0.53343 (9)0.0180 (6)
H230.0814030.2409790.5181750.022*
C240.1273 (5)0.0476 (4)0.53409 (9)0.0176 (6)
C250.3067 (5)0.0123 (4)0.55656 (9)0.0194 (6)
H250.3640660.1036820.5566700.023*
C260.3997 (4)0.1524 (4)0.57889 (9)0.0181 (6)
H260.5203990.1294730.5941450.022*
N10.3162 (3)0.6195 (3)0.61149 (7)0.0152 (5)
O10.4384 (3)0.7345 (3)0.63657 (6)0.0161 (4)
O130.4603 (3)0.6257 (3)0.79158 (6)0.0220 (5)
Cl10.00864 (11)0.12745 (10)0.50590 (2)0.0242 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0094 (12)0.0177 (14)0.0179 (14)0.0039 (11)0.0007 (11)0.0012 (11)
C20.0129 (13)0.0170 (14)0.0121 (13)0.0026 (11)0.0016 (10)0.0016 (11)
C30.0132 (13)0.0177 (14)0.0166 (14)0.0055 (11)0.0009 (11)0.0029 (11)
C40.0159 (13)0.0272 (16)0.0161 (14)0.0024 (13)0.0020 (12)0.0036 (12)
C110.0098 (12)0.0144 (13)0.0162 (13)0.0015 (10)0.0007 (11)0.0021 (10)
C120.0111 (13)0.0221 (15)0.0210 (14)0.0027 (11)0.0007 (11)0.0013 (11)
C130.0154 (13)0.0098 (12)0.0211 (14)0.0021 (11)0.0037 (11)0.0003 (11)
C140.0185 (13)0.0139 (13)0.0164 (14)0.0008 (12)0.0000 (11)0.0009 (11)
C150.0119 (14)0.0218 (14)0.0188 (14)0.0015 (12)0.0007 (11)0.0027 (11)
C160.0113 (13)0.0260 (16)0.0172 (15)0.0045 (12)0.0018 (11)0.0002 (12)
C170.0230 (14)0.0263 (16)0.0171 (14)0.0038 (14)0.0013 (12)0.0018 (13)
C210.0156 (13)0.0159 (14)0.0123 (13)0.0008 (11)0.0037 (11)0.0008 (10)
C220.0166 (12)0.0152 (13)0.0173 (13)0.0021 (12)0.0006 (11)0.0004 (11)
C230.0167 (13)0.0214 (14)0.0161 (13)0.0013 (12)0.0007 (11)0.0004 (11)
C240.0215 (15)0.0181 (14)0.0131 (13)0.0032 (12)0.0004 (12)0.0017 (11)
C250.0260 (15)0.0151 (13)0.0172 (14)0.0031 (12)0.0007 (13)0.0001 (11)
C260.0197 (14)0.0191 (14)0.0155 (14)0.0038 (12)0.0032 (12)0.0004 (11)
N10.0134 (10)0.0162 (11)0.0160 (11)0.0017 (11)0.0019 (9)0.0017 (10)
O10.0106 (9)0.0156 (9)0.0222 (10)0.0035 (7)0.0048 (8)0.0048 (8)
O130.0191 (10)0.0249 (10)0.0220 (10)0.0008 (10)0.0067 (8)0.0005 (9)
Cl10.0307 (4)0.0197 (4)0.0223 (4)0.0051 (3)0.0041 (3)0.0033 (3)
Geometric parameters (Å, º) top
C1—O11.478 (3)C14—C171.502 (4)
C1—C41.517 (4)C15—C161.501 (4)
C1—C111.534 (4)C15—H150.9300
C1—C31.537 (4)C16—H16A0.9700
C2—N11.276 (4)C16—H16B0.9700
C2—C211.464 (4)C17—H17A0.9600
C2—C31.505 (4)C17—H17B0.9600
C3—H310.9700C17—H17C0.9600
C3—H320.9700C21—C261.391 (4)
C4—H410.9600C21—C221.402 (4)
C4—H420.9600C22—C231.384 (4)
C4—H430.9600C22—H220.9300
C11—C121.525 (4)C23—C241.386 (4)
C11—C161.532 (3)C23—H230.9300
C11—H110.9800C24—C251.380 (4)
C12—C131.512 (4)C24—Cl11.740 (3)
C12—H12A0.9700C25—C261.383 (4)
C12—H12B0.9700C25—H250.9300
C13—O131.223 (3)C26—H260.9300
C13—C141.478 (4)N1—O11.398 (3)
C14—C151.331 (4)
O1—C1—C4106.7 (2)C15—C14—C17123.3 (3)
O1—C1—C11105.7 (2)C13—C14—C17117.3 (2)
C4—C1—C11112.6 (2)C14—C15—C16125.5 (3)
O1—C1—C3103.4 (2)C14—C15—H15117.3
C4—C1—C3111.9 (2)C16—C15—H15117.2
C11—C1—C3115.5 (2)C15—C16—C11112.0 (2)
N1—C2—C21120.6 (2)C15—C16—H16A109.2
N1—C2—C3114.1 (2)C11—C16—H16A109.2
C21—C2—C3125.3 (2)C15—C16—H16B109.2
C2—C3—C1100.8 (2)C11—C16—H16B109.2
C2—C3—H31111.6H16A—C16—H16B107.9
C1—C3—H31111.6C14—C17—H17A109.5
C2—C3—H32111.6C14—C17—H17B109.5
C1—C3—H32111.6H17A—C17—H17B109.5
H31—C3—H32109.4C14—C17—H17C109.5
C1—C4—H41109.5H17A—C17—H17C109.5
C1—C4—H42109.5H17B—C17—H17C109.5
H41—C4—H42109.5C26—C21—C22118.5 (3)
C1—C4—H43109.5C26—C21—C2120.4 (2)
H41—C4—H43109.5C22—C21—C2121.0 (2)
H42—C4—H43109.5C23—C22—C21120.6 (3)
C12—C11—C16109.6 (2)C23—C22—H22119.7
C12—C11—C1112.3 (2)C21—C22—H22119.7
C16—C11—C1112.4 (2)C22—C23—C24119.1 (3)
C12—C11—H11107.4C22—C23—H23120.4
C16—C11—H11107.4C24—C23—H23120.4
C1—C11—H11107.4C25—C24—C23121.5 (3)
C13—C12—C11113.6 (2)C25—C24—Cl1119.3 (2)
C13—C12—H12A108.9C23—C24—Cl1119.2 (2)
C11—C12—H12A108.9C24—C25—C26118.9 (3)
C13—C12—H12B108.9C24—C25—H25120.6
C11—C12—H12B108.9C26—C25—H25120.6
H12A—C12—H12B107.7C25—C26—C21121.4 (3)
O13—C13—C14121.6 (3)C25—C26—H26119.3
O13—C13—C12120.7 (2)C21—C26—H26119.3
C14—C13—C12117.6 (2)C2—N1—O1109.9 (2)
C15—C14—C13119.4 (2)N1—O1—C1109.61 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C4—H42···N1i0.962.623.572 (4)173
C12—H12B···O13ii0.972.543.488 (4)165
C23—H23···Cg1iii0.932.713.554 (3)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1.
 

References

First citationAit Itto, M. Y., Feddouli, A., Boutalib, A., Riahi, A. & Daran, J.-C. (2013). J. Sulfur Chem. 34, 250–258.  CSD CrossRef CAS Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalí, P., Naerum, L., Mukhija, S. & Hjelmencrantz, A. (2004). Bioorg. Med. Chem. Lett. 14, 5997–6000.  PubMed Google Scholar
First citationDeng, B. L., Zhao, Y. J., Hartman, T. L., Watson, K., Buckheit, R. W., Pannecouque, C., De Clercq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210–1214.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeddouli, A., Ait Itto, Y. M., Ait Ali, M., Hasnaoui, A. & Riahi, A. (2006). Synth. Commun. 36, 3617–3624.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHouk, K. N., Moses, S. R., Wu, Y.-D., Rondan, N. G., Jager, V., Schohe, R. & Fronczek, F. R. (1984). J. Am. Chem. Soc. 106, 3880–3882.  CSD CrossRef CAS Google Scholar
First citationKamal, A., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Bharathi, E. V., Azhar, M. A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Juvekar, A., Sen, S. & Zingde, S. (2010). Eur. J. Med. Chem. 45, 3924–3937.  CrossRef CAS PubMed Google Scholar
First citationNieto, C. I., Cornago, M. P., Cabildo, M. P., Sanz, D., Claramunt, R. M., Torralba, M. C. & Elguero, J. (2019). J. Fluor. Chem. 219, 39–49.  CSD CrossRef CAS Google Scholar
First citationOubella, A., Ait Itto, M. Y., Auhmani, A., Riahi, A., Robert, A., Daran, J.-C., Morjani, H., Parish, C. A. & Esseffar, M. (2019). J. Mol. Struct. 1198, 126924p.  CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPedada, S. R., Yarla, N. S., Tambade, P. J., Dhananjaya, B. L., Bishayee, A., Arunasree, K. M., Philip, G. H., Dharmapuri, G., Aliev, G., Putta, S. & Rangaiah, G. (2016). Eur. J. Med. Chem. 112, 289–297.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds