research communications
A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia
aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bLaboratoire MOLTECH-Anjou UMR 6200, UFR Sciences, CNRS, Université d'Angers, Bat. K, 2 Bd. Lavoisier, 49045 Angers, France, and cInstitute for Single Crystals, National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: plyutanataliya@gmail.com
The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton.
Keywords: crystal structure; Schiff base ligand; copper; calcium; heterometallic; hydrogen bond.
CCDC reference: 1984001
1. Chemical context
The coordination chemistry of s-block elements is a fairly new and rapidly growing area of research (Fromm, 2008). Among the many systems studied, special attention is paid to heterometallic Cu/Ca complexes because of their structural diversity, relatively low toxicity, useful properties such as catalytic (Saha et al., 2016; Liu et al., 2017; Mon et al., 2016), magnetic (Sanchis et al., 1992; Zhang et al., 2013), luminescent (Zou & Gao, 2016), sorption (Grancha et al., 2017) and bioactivity (Mon et al., 2018; Grancha et al., 2016), and therefore high potential for applications. In the course of our systematic work on the development of the `direct synthesis' (DS) approach, we have been successful in preparing different homo- and heterometallic complexes with transition metals (Kokozay et al., 2018). Herein we report the synthesis and of the title compound.
2. Structural commentary
The main structural unit is the heterometallic molecular complex formed by divalent copper and calcium ions with two deprotonated Schiff base ligands (L− = C8H8NO2−), two thiocyanate ions and one water molecule (Fig. 1). The metal atoms are joined through two μ-O bridges from the phenolato-groups of the organic ligands, giving a binuclear {Cu(μ-O)2Ca} core with a Cu⋯Ca distance of 3.4275 (6) Å and Cu—O—Ca angles of 106.15 (8) and 106.64 (8)°. The copper atom is four-coordinated by two imino N and two phenoxo O atoms from the Schiff base ligands. The coordination geometry of the CuN2O2 chromophore is slightly distorted square planar; the Cu—O and Cu—N bond lengths vary in the range of 1.918 (2)–1.937 (2) Å and the corresponding cis/trans bond angles deviate from ideal symmetry by less than 8° with τ4 = 0.112 (Yang et al., 2007). The copper atom is displaced from the N2O2 plane by ca 0.01 Å. All of the O atoms of the {Cu(L)2} moiety chelate the calcium atom in a tetradentate manner and the coordination sphere of the Ca center is further completed by two SCN groups and one water molecule giving a of seven. The CaO5N2 chromophore can be described as having a distorted pentagonal–bipyramidal geometry with the oxygen atoms in the equatorial plane and the nitrogen atoms in the axial positions (Fig. 2). The calcium atom is located on the least-squares plane through the five equatorial O atoms, the sum of all O—Ca—O cis angles being 361°. The longest Ca—O bond distances [2.511 (2) and 2.521 (2) Å] are observed for the coordinating methoxy groups and the shortest ones [2.339 (2)–2.356 (2) Å] for the phenoxido groups and the water molecule. The values are in accordance with those found in related binuclear Cu/Ca complexes (Mondal et al., 2011; Constable et al., 2010; Chandrasekhar et al., 2012). The Cu⋯Ca separation [3.4275 (6) Å] is intermediate compared to the analogous distances of 3.363 and 3.462 Å, respectively, in [CuLCa(ClO4)2(H2O)] (Mondal et al., 2011) and [LCuCa(NO3)2] (Chandrasekhar et al., 2012). The N,O,O,O′-tetradentate coordination mode, or [2.1121] in the Harris notation (Coxall et al., 2000), of the HL ligand has been observed previously in [Ni(L)2Na(ClO4)(H2O)] (Costes et al., 1994). The bond-valence-sum (BVS) analysis applied to the corresponding bond lengths leads to the +2 for both metals: 2.07 (Cu) and 2.11 (Ca) (Brown & Altermatt, 1985; Chen & Adams, 2017).
3. Supramolecular features
The coordinating water molecule and thiocyanate ions of each binuclear complex are involved in four O—H⋯S hydrogen bonds (Table 1) with two adjacent complexes. The hydrogen-bonded repeat unit can be described as a double twelve-membered ring motif [R22(12)]2 (Bernstein et al., 1995) (Fig. 3). A fragment of the showing the chain skeleton based on the [R22(12)]2 synthon is shown in Fig. 4. It should be noted that the arrangement of calcium atoms within the chain has a zigzag shape with all metal atoms lying in the same plane. The shortest Ca⋯Ca distance is 7.792 (7) Å and the angle formed by the three nearest metal centers is 85.093 (7)°. The supramolecular chains run parallel to the b-axis (Fig. 5). Weak N—H⋯S hydrogen bonds (Table 1) and a π–π stacking interaction between the C1–C6 ring and the adjacent C9–C14(x − 1, y, z) ring [dihedral angle between the rings 4.6 (1)°, mean interplanar separation 3.40 Å and plane shift 0.69 (1) Å] link neighbouring chains, increasing the whole dimensionality of the crystal framework.
4. Database survey
To date, the crystal structures of 72 complexes containing copper and calcium are known (CSD, version 5.40, last update February 2019; Groom et al., 2016). Most of them possess polymeric or ionic frameworks. Only five examples were found of molecular binuclear Cu/Ca complexes, including two formed by carboxylate ligands (Smith et al., 1985; Breeze & Wang, 1994) and three with symmetric salen-type Schiff base ligands (Constable et al., 2010; Mondal et al., 2011; Chandrasekhar et al., 2012). To the best of our knowledge, [Cu(L)2Ca(NCS)2(H2O)] is the first molecular binuclear Cu/Ca complex with an asymmetric Schiff base ligand to have been characterized crystallographically.
5. Synthesis and crystallization
The following system has been investigated:
Cu0–CaO–o-vanillin–NH4SCN–methanol (open air),
and the heterometallic complex [Cu(L)2Ca(NCS)2(H2O)] was obtained. Its formation can be described by the following scheme:
Cu0 + CaO + 2o-vanillin + 2NH4SCN + 1/2O2(air)→ [Cu(L)2Ca(NCS)2(H2O)] + 3H2O,
where the Schiff base HL can be regarded as a product of the condensation of o-vanillin and NH3, which is released from NH4SCN in the basic environment.
Copper powder (0.06 g, 1 mmol), CaO (0.11 g, 2 mmol), o-vanillin (0.3 g, 2 mmol) and NH4SCN (0.15 g, 2 mmol) were added to 30 ml of methanol. The reaction mixture was stirred magnetically at 323–333 K for ca 5 h until the complete dissolution of the copper powder was observed. The solution was filtered and left for 1 d, and then light-orange crystals were formed. Yield: 0.26 g (48.3%, Cu). Analysis calculated for CaCuC18N4H18O5S2: Ca 7.45, Cu 11.81, C 40.18, N 10.41, H 3.37, S 11.92. Found: Ca 8.1, Cu 11.2, C 36.5, N 10.1, H 3.2, S 11.4. FT–IR (KBr, νmax cm−1): 3349 vs, 3187 vs, 2942 s, 2076 vs, 1617vs, 1555 m, 1464 vs, 1386 s, 1318 s, 1245 s, 1225 vs, 1162 m, 1074 s, 1036 m, 948 m, 853 m, 823 m, 738 s, 652 m, 617 m, 571 m, 515 m, 469 m.
6. Refinement
Crystal data, data collection and structure . H atoms of CH and CH3 groups were placed in idealized positions (C—H = 0.93–0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for CH and 1.5Ueq(C) for CH3. All H atoms of the NH and OH groups were located in a difference-Fourier map and refined isotropically; the N—H and O—H distances were restrained to have fixed lengths of 0.82 (1) and 0.85 (1) Å, respectively.
details are summarized in Table 2Supporting information
CCDC reference: 1984001
https://doi.org/10.1107/S205698902000211X/is5531sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902000211X/is5531Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[CaCu(C8H8NO2)2(NCS)2(H2O)] | F(000) = 1100 |
Mr = 538.10 | Dx = 1.621 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5623 (3) Å | Cell parameters from 3455 reflections |
b = 10.5377 (3) Å | θ = 3.2–28.2° |
c = 24.4439 (7) Å | µ = 1.45 mm−1 |
β = 90.768 (3)° | T = 298 K |
V = 2205.30 (13) Å3 | Plate, clear light orange |
Z = 4 | 0.40 × 0.20 × 0.04 mm |
Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 5844 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3849 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.4°, θmin = 3.1° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007) | k = −14→13 |
Tmin = 0.671, Tmax = 1.000 | l = −31→33 |
15599 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4639P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5844 reflections | Δρmax = 0.55 e Å−3 |
298 parameters | Δρmin = −0.53 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.25895 (4) | 0.25464 (3) | 0.00673 (2) | 0.03322 (10) | |
Ca1 | 0.22640 (7) | 0.27119 (5) | −0.13299 (2) | 0.03249 (14) | |
S1 | 0.51771 (13) | −0.14153 (9) | −0.18147 (3) | 0.0646 (3) | |
S2 | −0.03690 (13) | 0.68682 (9) | −0.19653 (3) | 0.0614 (3) | |
O1 | 0.1048 (2) | 0.22468 (17) | −0.04945 (7) | 0.0338 (4) | |
O2 | −0.0464 (2) | 0.1848 (2) | −0.13976 (7) | 0.0414 (5) | |
O3 | 0.3808 (2) | 0.30690 (18) | −0.05483 (7) | 0.0355 (4) | |
O4 | 0.4805 (2) | 0.3859 (2) | −0.14838 (7) | 0.0450 (5) | |
O5 | 0.2298 (3) | 0.2535 (3) | −0.22876 (9) | 0.0619 (7) | |
H5A | 0.305 (3) | 0.225 (4) | −0.2470 (16) | 0.098 (16)* | |
H5B | 0.179 (5) | 0.288 (4) | −0.2545 (14) | 0.119 (18)* | |
N1 | 0.1121 (3) | 0.2106 (2) | 0.06324 (9) | 0.0428 (6) | |
H1 | 0.134 (4) | 0.218 (3) | 0.0957 (5) | 0.055 (10)* | |
N2 | 0.4350 (3) | 0.2754 (2) | 0.05565 (10) | 0.0409 (6) | |
H2 | 0.430 (4) | 0.254 (3) | 0.0876 (5) | 0.044 (9)* | |
N3 | 0.3366 (4) | 0.0593 (3) | −0.14345 (10) | 0.0554 (7) | |
N4 | 0.1238 (3) | 0.4817 (3) | −0.15087 (11) | 0.0631 (8) | |
C1 | −0.0978 (3) | 0.1323 (2) | 0.00536 (10) | 0.0331 (6) | |
C2 | −0.0321 (3) | 0.1693 (2) | −0.04459 (10) | 0.0291 (6) | |
C3 | −0.1196 (3) | 0.1456 (2) | −0.09263 (10) | 0.0323 (6) | |
C4 | −0.2633 (4) | 0.0899 (3) | −0.09111 (12) | 0.0424 (7) | |
H4 | −0.319638 | 0.076917 | −0.123429 | 0.051* | |
C5 | −0.3257 (4) | 0.0525 (3) | −0.04175 (13) | 0.0454 (7) | |
H5 | −0.422967 | 0.013284 | −0.040983 | 0.054* | |
C6 | −0.2446 (3) | 0.0731 (3) | 0.00573 (12) | 0.0417 (7) | |
H6 | −0.286972 | 0.047557 | 0.038788 | 0.050* | |
C7 | −0.0217 (4) | 0.1594 (3) | 0.05695 (11) | 0.0401 (7) | |
H7 | −0.074932 | 0.137499 | 0.088485 | 0.048* | |
C8 | −0.1315 (5) | 0.1643 (5) | −0.18992 (12) | 0.0846 (15) | |
H8A | −0.073501 | 0.198512 | −0.219853 | 0.127* | |
H8B | −0.231122 | 0.205765 | −0.188105 | 0.127* | |
H8C | −0.146754 | 0.074931 | −0.195367 | 0.127* | |
C9 | 0.6152 (3) | 0.3727 (3) | −0.00718 (11) | 0.0374 (6) | |
C10 | 0.5218 (3) | 0.3585 (2) | −0.05441 (11) | 0.0335 (6) | |
C11 | 0.5812 (3) | 0.4028 (3) | −0.10421 (11) | 0.0377 (6) | |
C12 | 0.7263 (4) | 0.4563 (3) | −0.10718 (13) | 0.0470 (7) | |
H12 | 0.763901 | 0.483621 | −0.140689 | 0.056* | |
C13 | 0.8170 (4) | 0.4696 (3) | −0.06040 (15) | 0.0530 (8) | |
H13 | 0.915615 | 0.506000 | −0.062517 | 0.064* | |
C14 | 0.7631 (4) | 0.4299 (3) | −0.01150 (14) | 0.0486 (8) | |
H14 | 0.824788 | 0.440632 | 0.019761 | 0.058* | |
C15 | 0.5658 (4) | 0.3266 (3) | 0.04523 (12) | 0.0428 (7) | |
H15 | 0.636341 | 0.335062 | 0.074278 | 0.051* | |
C16 | 0.5129 (5) | 0.4603 (4) | −0.19647 (12) | 0.0657 (11) | |
H16A | 0.427580 | 0.452705 | −0.222133 | 0.099* | |
H16B | 0.606992 | 0.430087 | −0.212968 | 0.099* | |
H16C | 0.525799 | 0.547751 | −0.186305 | 0.099* | |
C17 | 0.4078 (4) | −0.0245 (3) | −0.15950 (11) | 0.0442 (7) | |
C18 | 0.0590 (4) | 0.5668 (3) | −0.17037 (11) | 0.0461 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03093 (18) | 0.0417 (2) | 0.02712 (16) | 0.00156 (16) | 0.00306 (13) | 0.00148 (13) |
Ca1 | 0.0298 (3) | 0.0411 (3) | 0.0267 (3) | −0.0003 (3) | 0.0050 (2) | 0.0035 (2) |
S1 | 0.0866 (8) | 0.0591 (5) | 0.0475 (5) | 0.0227 (5) | −0.0176 (5) | −0.0163 (4) |
S2 | 0.0702 (6) | 0.0635 (6) | 0.0508 (5) | 0.0184 (5) | 0.0145 (4) | 0.0176 (4) |
O1 | 0.0275 (10) | 0.0456 (11) | 0.0284 (9) | −0.0035 (9) | 0.0037 (7) | 0.0061 (8) |
O2 | 0.0356 (11) | 0.0576 (12) | 0.0310 (9) | −0.0097 (11) | 0.0004 (8) | 0.0014 (9) |
O3 | 0.0286 (10) | 0.0461 (11) | 0.0319 (9) | −0.0072 (9) | 0.0057 (8) | −0.0013 (8) |
O4 | 0.0430 (13) | 0.0508 (12) | 0.0416 (11) | −0.0128 (11) | 0.0101 (9) | 0.0079 (9) |
O5 | 0.0562 (16) | 0.098 (2) | 0.0315 (11) | 0.0175 (16) | 0.0059 (11) | 0.0061 (12) |
N1 | 0.0490 (17) | 0.0540 (15) | 0.0256 (12) | 0.0007 (14) | 0.0063 (11) | 0.0032 (11) |
N2 | 0.0413 (15) | 0.0484 (15) | 0.0328 (13) | 0.0064 (13) | −0.0028 (11) | −0.0018 (11) |
N3 | 0.0602 (19) | 0.0542 (17) | 0.0516 (16) | 0.0112 (16) | −0.0036 (14) | −0.0043 (13) |
N4 | 0.0536 (19) | 0.0588 (18) | 0.0773 (19) | 0.0139 (16) | 0.0206 (16) | 0.0210 (15) |
C1 | 0.0294 (15) | 0.0306 (13) | 0.0396 (14) | 0.0071 (12) | 0.0115 (12) | 0.0051 (11) |
C2 | 0.0244 (13) | 0.0282 (13) | 0.0349 (13) | 0.0041 (12) | 0.0075 (11) | 0.0037 (10) |
C3 | 0.0309 (15) | 0.0306 (13) | 0.0355 (14) | 0.0002 (12) | 0.0072 (11) | 0.0004 (11) |
C4 | 0.0379 (17) | 0.0399 (16) | 0.0494 (17) | −0.0050 (15) | 0.0021 (14) | −0.0033 (13) |
C5 | 0.0311 (16) | 0.0379 (16) | 0.067 (2) | −0.0076 (14) | 0.0095 (15) | −0.0018 (14) |
C6 | 0.0367 (17) | 0.0340 (15) | 0.0549 (17) | 0.0011 (14) | 0.0206 (14) | 0.0076 (13) |
C7 | 0.0454 (18) | 0.0405 (16) | 0.0348 (14) | 0.0052 (15) | 0.0165 (13) | 0.0083 (12) |
C8 | 0.077 (3) | 0.145 (4) | 0.0323 (17) | −0.051 (3) | −0.0041 (17) | 0.000 (2) |
C9 | 0.0307 (15) | 0.0302 (14) | 0.0514 (17) | 0.0064 (13) | 0.0017 (13) | −0.0072 (12) |
C10 | 0.0275 (14) | 0.0276 (13) | 0.0455 (15) | 0.0045 (12) | 0.0047 (12) | −0.0062 (11) |
C11 | 0.0341 (16) | 0.0314 (14) | 0.0480 (16) | 0.0001 (13) | 0.0096 (13) | −0.0019 (12) |
C12 | 0.0376 (18) | 0.0366 (16) | 0.067 (2) | −0.0022 (15) | 0.0147 (15) | 0.0010 (14) |
C13 | 0.0307 (17) | 0.0382 (17) | 0.090 (2) | −0.0075 (15) | 0.0083 (17) | −0.0027 (17) |
C14 | 0.0344 (17) | 0.0359 (16) | 0.075 (2) | 0.0037 (15) | −0.0089 (16) | −0.0128 (15) |
C15 | 0.0403 (18) | 0.0444 (17) | 0.0432 (16) | 0.0107 (15) | −0.0114 (14) | −0.0115 (13) |
C16 | 0.080 (3) | 0.068 (2) | 0.0498 (19) | −0.018 (2) | 0.0130 (18) | 0.0179 (17) |
C17 | 0.053 (2) | 0.0468 (18) | 0.0321 (14) | −0.0011 (17) | −0.0102 (14) | −0.0010 (13) |
C18 | 0.0421 (18) | 0.0538 (19) | 0.0426 (16) | −0.0008 (16) | 0.0158 (14) | 0.0026 (14) |
Cu1—Ca1 | 3.4275 (6) | C1—C2 | 1.406 (3) |
Cu1—O1 | 1.9183 (18) | C1—C6 | 1.404 (4) |
Cu1—O3 | 1.9232 (18) | C1—C7 | 1.440 (4) |
Cu1—N1 | 1.937 (2) | C2—C3 | 1.407 (3) |
Cu1—N2 | 1.924 (2) | C3—C4 | 1.364 (4) |
Ca1—O1 | 2.3565 (17) | C4—H4 | 0.9300 |
Ca1—O2 | 2.511 (2) | C4—C5 | 1.383 (4) |
Ca1—O3 | 2.3394 (18) | C5—H5 | 0.9300 |
Ca1—O4 | 2.521 (2) | C5—C6 | 1.362 (4) |
Ca1—O5 | 2.349 (2) | C6—H6 | 0.9300 |
Ca1—N3 | 2.439 (3) | C7—H7 | 0.9300 |
Ca1—N4 | 2.423 (3) | C8—H8A | 0.9600 |
S1—C17 | 1.646 (3) | C8—H8B | 0.9600 |
S2—C18 | 1.633 (4) | C8—H8C | 0.9600 |
O1—C2 | 1.315 (3) | C9—C10 | 1.403 (4) |
O2—C3 | 1.382 (3) | C9—C14 | 1.408 (4) |
O2—C8 | 1.434 (3) | C9—C15 | 1.439 (4) |
O3—C10 | 1.324 (3) | C10—C11 | 1.405 (4) |
O4—C11 | 1.384 (3) | C11—C12 | 1.367 (4) |
O4—C16 | 1.443 (3) | C12—H12 | 0.9300 |
O5—H5A | 0.845 (10) | C12—C13 | 1.381 (4) |
O5—H5B | 0.844 (10) | C13—H13 | 0.9300 |
N1—H1 | 0.815 (10) | C13—C14 | 1.353 (4) |
N1—C7 | 1.274 (4) | C14—H14 | 0.9300 |
N2—H2 | 0.816 (10) | C15—H15 | 0.9300 |
N2—C15 | 1.272 (4) | C16—H16A | 0.9600 |
N3—C17 | 1.145 (4) | C16—H16B | 0.9600 |
N4—C18 | 1.155 (4) | C16—H16C | 0.9600 |
O1—Cu1—Ca1 | 41.33 (5) | C17—N3—Ca1 | 161.8 (3) |
O1—Cu1—O3 | 82.10 (8) | C18—N4—Ca1 | 163.1 (3) |
O1—Cu1—N1 | 91.37 (10) | C2—C1—C7 | 121.6 (3) |
O1—Cu1—N2 | 171.72 (9) | C6—C1—C2 | 119.8 (2) |
O3—Cu1—Ca1 | 40.84 (5) | C6—C1—C7 | 118.5 (2) |
O3—Cu1—N1 | 172.27 (10) | O1—C2—C1 | 124.7 (2) |
O3—Cu1—N2 | 91.42 (10) | O1—C2—C3 | 118.0 (2) |
N1—Cu1—Ca1 | 132.69 (8) | C1—C2—C3 | 117.4 (2) |
N2—Cu1—Ca1 | 131.76 (8) | O2—C3—C2 | 113.6 (2) |
N2—Cu1—N1 | 95.45 (11) | C4—C3—O2 | 124.8 (2) |
O1—Ca1—Cu1 | 32.52 (4) | C4—C3—C2 | 121.6 (2) |
O1—Ca1—O2 | 63.89 (6) | C3—C4—H4 | 119.8 |
O1—Ca1—O4 | 128.41 (6) | C3—C4—C5 | 120.3 (3) |
O1—Ca1—N3 | 94.38 (8) | C5—C4—H4 | 119.8 |
O1—Ca1—N4 | 100.56 (8) | C4—C5—H5 | 120.0 |
O2—Ca1—Cu1 | 96.33 (4) | C6—C5—C4 | 120.0 (3) |
O2—Ca1—O4 | 165.45 (6) | C6—C5—H5 | 120.0 |
O3—Ca1—Cu1 | 32.52 (4) | C1—C6—H6 | 119.6 |
O3—Ca1—O1 | 64.99 (6) | C5—C6—C1 | 120.8 (3) |
O3—Ca1—O2 | 128.85 (6) | C5—C6—H6 | 119.6 |
O3—Ca1—O4 | 64.24 (6) | N1—C7—C1 | 125.8 (3) |
O3—Ca1—O5 | 144.32 (8) | N1—C7—H7 | 117.1 |
O3—Ca1—N3 | 91.01 (8) | C1—C7—H7 | 117.1 |
O3—Ca1—N4 | 101.51 (9) | O2—C8—H8A | 109.5 |
O4—Ca1—Cu1 | 96.56 (4) | O2—C8—H8B | 109.5 |
O5—Ca1—Cu1 | 170.80 (8) | O2—C8—H8C | 109.5 |
O5—Ca1—O1 | 149.18 (9) | H8A—C8—H8B | 109.5 |
O5—Ca1—O2 | 85.97 (8) | H8A—C8—H8C | 109.5 |
O5—Ca1—O4 | 82.36 (8) | H8B—C8—H8C | 109.5 |
O5—Ca1—N3 | 79.22 (9) | C10—C9—C14 | 119.1 (3) |
O5—Ca1—N4 | 84.39 (10) | C10—C9—C15 | 121.7 (3) |
N3—Ca1—Cu1 | 91.80 (6) | C14—C9—C15 | 119.1 (3) |
N3—Ca1—O2 | 91.27 (9) | O3—C10—C9 | 124.0 (2) |
N3—Ca1—O4 | 95.02 (9) | O3—C10—C11 | 118.0 (2) |
N4—Ca1—Cu1 | 104.52 (7) | C9—C10—C11 | 117.9 (3) |
N4—Ca1—O2 | 89.15 (9) | O4—C11—C10 | 113.8 (2) |
N4—Ca1—O4 | 81.12 (9) | C12—C11—O4 | 124.7 (3) |
N4—Ca1—N3 | 163.53 (9) | C12—C11—C10 | 121.5 (3) |
Cu1—O1—Ca1 | 106.15 (8) | C11—C12—H12 | 120.0 |
C2—O1—Cu1 | 127.85 (15) | C11—C12—C13 | 120.0 (3) |
C2—O1—Ca1 | 125.10 (15) | C13—C12—H12 | 120.0 |
C3—O2—Ca1 | 119.05 (15) | C12—C13—H13 | 119.8 |
C3—O2—C8 | 115.9 (2) | C14—C13—C12 | 120.4 (3) |
C8—O2—Ca1 | 124.91 (18) | C14—C13—H13 | 119.8 |
Cu1—O3—Ca1 | 106.64 (8) | C9—C14—H14 | 119.5 |
C10—O3—Cu1 | 128.01 (16) | C13—C14—C9 | 121.1 (3) |
C10—O3—Ca1 | 125.29 (16) | C13—C14—H14 | 119.5 |
C11—O4—Ca1 | 118.37 (15) | N2—C15—C9 | 126.2 (3) |
C11—O4—C16 | 116.1 (2) | N2—C15—H15 | 116.9 |
C16—O4—Ca1 | 123.92 (19) | C9—C15—H15 | 116.9 |
Ca1—O5—H5A | 125 (3) | O4—C16—H16A | 109.5 |
Ca1—O5—H5B | 134 (4) | O4—C16—H16B | 109.5 |
H5A—O5—H5B | 99 (4) | O4—C16—H16C | 109.5 |
Cu1—N1—H1 | 122 (2) | H16A—C16—H16B | 109.5 |
C7—N1—Cu1 | 127.4 (2) | H16A—C16—H16C | 109.5 |
C7—N1—H1 | 111 (2) | H16B—C16—H16C | 109.5 |
Cu1—N2—H2 | 121 (2) | N3—C17—S1 | 177.3 (3) |
C15—N2—Cu1 | 127.5 (2) | N4—C18—S2 | 178.2 (3) |
C15—N2—H2 | 111 (2) | ||
Cu1—O1—C2—C1 | 6.8 (4) | C3—C4—C5—C6 | 1.0 (4) |
Cu1—O1—C2—C3 | −173.44 (17) | C4—C5—C6—C1 | 0.1 (4) |
Cu1—O3—C10—C9 | 6.7 (4) | C6—C1—C2—O1 | −179.6 (2) |
Cu1—O3—C10—C11 | −172.68 (18) | C6—C1—C2—C3 | 0.6 (4) |
Cu1—N1—C7—C1 | −5.3 (4) | C6—C1—C7—N1 | 178.8 (3) |
Cu1—N2—C15—C9 | −4.8 (5) | C7—C1—C2—O1 | 3.6 (4) |
Ca1—O1—C2—C1 | 174.37 (18) | C7—C1—C2—C3 | −176.2 (2) |
Ca1—O1—C2—C3 | −5.8 (3) | C7—C1—C6—C5 | 175.9 (3) |
Ca1—O2—C3—C2 | 4.8 (3) | C8—O2—C3—C2 | −179.3 (3) |
Ca1—O2—C3—C4 | −175.7 (2) | C8—O2—C3—C4 | 0.2 (4) |
Ca1—O3—C10—C9 | −176.52 (19) | C9—C10—C11—O4 | −179.4 (2) |
Ca1—O3—C10—C11 | 4.1 (3) | C9—C10—C11—C12 | 1.2 (4) |
Ca1—O4—C11—C10 | −3.5 (3) | C10—C9—C14—C13 | −0.9 (4) |
Ca1—O4—C11—C12 | 175.9 (2) | C10—C9—C15—N2 | −3.6 (5) |
O1—C2—C3—O2 | 0.2 (3) | C10—C11—C12—C13 | −1.1 (4) |
O1—C2—C3—C4 | −179.3 (2) | C11—C12—C13—C14 | 0.0 (5) |
O2—C3—C4—C5 | 179.2 (3) | C12—C13—C14—C9 | 1.0 (5) |
O3—C10—C11—O4 | 0.0 (4) | C14—C9—C10—O3 | −179.5 (2) |
O3—C10—C11—C12 | −179.4 (2) | C14—C9—C10—C11 | −0.1 (4) |
O4—C11—C12—C13 | 179.5 (3) | C14—C9—C15—N2 | 178.5 (3) |
C1—C2—C3—O2 | −180.0 (2) | C15—C9—C10—O3 | 2.5 (4) |
C1—C2—C3—C4 | 0.5 (4) | C15—C9—C10—C11 | −178.1 (2) |
C2—C1—C6—C5 | −1.0 (4) | C15—C9—C14—C13 | 177.1 (3) |
C2—C1—C7—N1 | −4.3 (4) | C16—O4—C11—C10 | 162.7 (3) |
C2—C3—C4—C5 | −1.4 (4) | C16—O4—C11—C12 | −17.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···S2i | 0.85 (1) | 2.47 (1) | 3.297 (3) | 169 (4) |
O5—H5B···S1ii | 0.84 (1) | 2.40 (2) | 3.226 (3) | 166 (5) |
N1—H1···S2iii | 0.82 (1) | 2.80 (2) | 3.500 (2) | 145 (3) |
N2—H2···S1iv | 0.82 (1) | 2.61 (1) | 3.403 (3) | 163 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z−1/2; (ii) −x+1/2, y+1/2, −z−1/2; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z. |
Funding information
This work was supported in Ukraine by the Ministry of Education and Science of Ukraine (Project No. 19BF037–05), in France by the CNRS, the University of Angers, and by the French Embassy in Kiev (grant to NP).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Breeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113–5121. CSD CrossRef CAS Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031–2038. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, H. & Adams, S. (2017). IUCrJ, 4, 614–625. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Constable, E. C., Zhang, G., Housecroft, C. E., Neuburger, M. & Zampese, J. A. (2010). CrystEngComm, 12, 1764–1773. CSD CrossRef CAS Google Scholar
Costes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem. 33, 2738–2742. CSD CrossRef CAS Web of Science Google Scholar
Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fromm, K. M. (2008). Coord. Chem. Rev. 252, 856–885. Web of Science CrossRef CAS Google Scholar
Grancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., Bazaga-García, M., Losilla, E. R., Cabeza, A., Armentano, D. & Pardo, E. (2016). Chem. Mater. 28, 4608–4615. CSD CrossRef CAS Google Scholar
Grancha, T., Mon, M., Ferrando-Soria, J., Gascon, J., Seoane, B., Ramos-Fernandez, E. V., Armentano, D. & Pardo, E. (2017). J. Mater. Chem. A, 5, 11032–11039. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier. Google Scholar
Liu, Q.-F., Liu, W., Cao, Y.-P., Dong, Y.-L. & Liu, H.-M. (2017). Inorg. Nano-Met. Chem. 47, 153–157. CAS Google Scholar
Mon, M., Bruno, R., Ferrando-Soria, J., Bartella, L., Donna, L. D., Talia, M., Lappano, R., Maggiolini, M., Armentano, D. & Pardo, E. (2018). Mater. Horiz. 5, 683–690. CSD CrossRef CAS Google Scholar
Mon, M., Ferrando-Soria, J., Grancha, T., Fortea-Pérez, F. R., Gascon, J., Leyva-Pérez, A., Armentano, D. & Pardo, E. (2016). J. Am. Chem. Soc. 138, 7864–7867. CSD CrossRef CAS PubMed Google Scholar
Mondal, S., Hazra, S., Sarkar, S., Sasmal, S. & Mohanta, S. (2011). J. Mol. Struct. 1004, 204–214. CSD CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Saha, D., Hazra, D. K., Maity, T. & Koner, S. (2016). Inorg. Chem. 55, 5729–5731. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sanchis, M. J., Gomez-Romero, P., Folgado, J. V., Sapina, F., Ibanez, R., Beltran, A., Garcia, J. & Beltran, D. (1992). Inorg. Chem. 31, 2915–2919. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., O'Reilly, E. J., Kennard, C. H. L. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 243–251. CSD CrossRef Web of Science Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, J., Cheng, S., Wang, X., Yuan, L., Xue, M., Wang, Y. & Liu, W. (2013). CrystEngComm, 15, 6074–6082. CSD CrossRef CAS Google Scholar
Zou, G.-H. & Gao, J. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1721–1724. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.