research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A binuclear CuII/CaII thio­cyanate complex with a Schiff base ligand derived from o-vanillin and ammonia

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bLaboratoire MOLTECH-Anjou UMR 6200, UFR Sciences, CNRS, Université d'Angers, Bat. K, 2 Bd. Lavoisier, 49045 Angers, France, and cInstitute for Single Crystals, National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: plyutanataliya@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 24 January 2020; accepted 14 February 2020; online 21 February 2020)

The new heterometallic complex, aqua-1κO-bis­(μ2-2-imino­methyl-6-meth­oxy­phenolato-1κ2O1,O6:2κ2O1,N)bis­(thio­cyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thio­cyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear mol­ecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and penta­gonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water mol­ecules and thio­cyanate groups form a supra­molecular chain with a zigzag-shaped calcium skeleton.

1. Chemical context

The coordination chemistry of s-block elements is a fairly new and rapidly growing area of research (Fromm, 2008[Fromm, K. M. (2008). Coord. Chem. Rev. 252, 856-885.]). Among the many systems studied, special attention is paid to heterometallic Cu/Ca complexes because of their structural diversity, relatively low toxicity, useful properties such as catalytic (Saha et al., 2016[Saha, D., Hazra, D. K., Maity, T. & Koner, S. (2016). Inorg. Chem. 55, 5729-5731.]; Liu et al., 2017[Liu, Q.-F., Liu, W., Cao, Y.-P., Dong, Y.-L. & Liu, H.-M. (2017). Inorg. Nano-Met. Chem. 47, 153-157.]; Mon et al., 2016[Mon, M., Ferrando-Soria, J., Grancha, T., Fortea-Pérez, F. R., Gascon, J., Leyva-Pérez, A., Armentano, D. & Pardo, E. (2016). J. Am. Chem. Soc. 138, 7864-7867.]), magnetic (Sanchis et al., 1992[Sanchis, M. J., Gomez-Romero, P., Folgado, J. V., Sapina, F., Ibanez, R., Beltran, A., Garcia, J. & Beltran, D. (1992). Inorg. Chem. 31, 2915-2919.]; Zhang et al., 2013[Zhang, J., Cheng, S., Wang, X., Yuan, L., Xue, M., Wang, Y. & Liu, W. (2013). CrystEngComm, 15, 6074-6082.]), luminescent (Zou & Gao, 2016[Zou, G.-H. & Gao, J. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1721-1724.]), sorption (Grancha et al., 2017[Grancha, T., Mon, M., Ferrando-Soria, J., Gascon, J., Seoane, B., Ramos-Fernandez, E. V., Armentano, D. & Pardo, E. (2017). J. Mater. Chem. A, 5, 11032-11039.]) and bioactivity (Mon et al., 2018[Mon, M., Bruno, R., Ferrando-Soria, J., Bartella, L., Donna, L. D., Talia, M., Lappano, R., Maggiolini, M., Armentano, D. & Pardo, E. (2018). Mater. Horiz. 5, 683-690.]; Grancha et al., 2016[Grancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., Bazaga-García, M., Losilla, E. R., Cabeza, A., Armentano, D. & Pardo, E. (2016). Chem. Mater. 28, 4608-4615.]), and therefore high potential for applications. In the course of our systematic work on the development of the `direct synthesis' (DS) approach, we have been successful in preparing different homo- and heterometallic complexes with transition metals (Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183-237. Amsterdam: Elsevier.]). Herein we report the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The main structural unit is the heterometallic mol­ecular complex formed by divalent copper and calcium ions with two deprotonated Schiff base ligands (L = C8H8NO2), two thio­cyanate ions and one water mol­ecule (Fig. 1[link]). The metal atoms are joined through two μ-O bridges from the phenolato-groups of the organic ligands, giving a binuclear {Cu(μ-O)2Ca} core with a Cu⋯Ca distance of 3.4275 (6) Å and Cu—O—Ca angles of 106.15 (8) and 106.64 (8)°. The copper atom is four-coordinated by two imino N and two phenoxo O atoms from the Schiff base ligands. The coordination geometry of the CuN2O2 chromophore is slightly distorted square planar; the Cu—O and Cu—N bond lengths vary in the range of 1.918 (2)–1.937 (2) Å and the corresponding cis/trans bond angles deviate from ideal symmetry by less than 8° with τ4 = 0.112 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The copper atom is displaced from the N2O2 plane by ca 0.01 Å. All of the O atoms of the {Cu(L)2} moiety chelate the calcium atom in a tetra­dentate manner and the coordination sphere of the Ca center is further completed by two SCN groups and one water mol­ecule giving a coordination number of seven. The CaO5N2 chromophore can be described as having a distorted penta­gonal–bipyramidal geometry with the oxygen atoms in the equatorial plane and the nitro­gen atoms in the axial positions (Fig. 2[link]). The calcium atom is located on the least-squares plane through the five equatorial O atoms, the sum of all O—Ca—O cis angles being 361°. The longest Ca—O bond distances [2.511 (2) and 2.521 (2) Å] are observed for the coordinating meth­oxy groups and the shortest ones [2.339 (2)–2.356 (2) Å] for the phenoxido groups and the water mol­ecule. The values are in accordance with those found in related binuclear Cu/Ca complexes (Mondal et al., 2011[Mondal, S., Hazra, S., Sarkar, S., Sasmal, S. & Mohanta, S. (2011). J. Mol. Struct. 1004, 204-214.]; Constable et al., 2010[Constable, E. C., Zhang, G., Housecroft, C. E., Neuburger, M. & Zampese, J. A. (2010). CrystEngComm, 12, 1764-1773.]; Chandrasekhar et al., 2012[Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031-2038.]). The Cu⋯Ca separation [3.4275 (6) Å] is inter­mediate compared to the analogous distances of 3.363 and 3.462 Å, respectively, in [CuLCa(ClO4)2(H2O)] (Mondal et al., 2011[Mondal, S., Hazra, S., Sarkar, S., Sasmal, S. & Mohanta, S. (2011). J. Mol. Struct. 1004, 204-214.]) and [LCuCa(NO3)2] (Chandrasekhar et al., 2012[Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031-2038.]). The N,O,O,O′-tetra­dentate coordination mode, or [2.1121] in the Harris notation (Coxall et al., 2000[Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349-2356.]), of the HL ligand has been observed previously in [Ni(L)2Na(ClO4)(H2O)] (Costes et al., 1994[Costes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem. 33, 2738-2742.]). The bond-valence-sum (BVS) analysis applied to the corresponding bond lengths leads to the +2 oxidation state for both metals: 2.07 (Cu) and 2.11 (Ca) (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Chen & Adams, 2017[Chen, H. & Adams, S. (2017). IUCrJ, 4, 614-625.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Coordination polyhedron of the calcium atom in the title compound.

3. Supra­molecular features

The coordinating water mol­ecule and thio­cyanate ions of each binuclear complex are involved in four O—H⋯S hydrogen bonds (Table 1[link]) with two adjacent complexes. The hydrogen-bonded repeat unit can be described as a double twelve-membered ring motif [R22(12)]2 (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 3[link]). A fragment of the crystal structure showing the chain skeleton based on the [R22(12)]2 synthon is shown in Fig. 4[link]. It should be noted that the arrangement of calcium atoms within the chain has a zigzag shape with all metal atoms lying in the same plane. The shortest Ca⋯Ca distance is 7.792 (7) Å and the angle formed by the three nearest metal centers is 85.093 (7)°. The supra­molecular chains run parallel to the b-axis (Fig. 5[link]). Weak N—H⋯S hydrogen bonds (Table 1[link]) and a ππ stacking inter­action between the C1–C6 ring and the adjacent C9–C14(x − 1, y, z) ring [dihedral angle between the rings 4.6 (1)°, mean inter­planar separation 3.40 Å and plane shift 0.69 (1) Å] link neighbouring chains, increasing the whole dimensionality of the crystal framework.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯S2i 0.85 (1) 2.47 (1) 3.297 (3) 169 (4)
O5—H5B⋯S1ii 0.84 (1) 2.40 (2) 3.226 (3) 166 (5)
N1—H1⋯S2iii 0.82 (1) 2.80 (2) 3.500 (2) 145 (3)
N2—H2⋯S1iv 0.82 (1) 2.61 (1) 3.403 (3) 163 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z.
[Figure 3]
Figure 3
Packing diagram of the title compound, showing inter­molecular O—H⋯S hydrogen bonds forming a chain structure. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) −x, 1 − y, −z.]
[Figure 4]
Figure 4
Fragment of the crystal structure of the title compound, illustrating the chain skeleton based on the [R22(12)]2 synthon in (a) ball-and-stick and (b) space-filling mode.
[Figure 5]
Figure 5
Packing diagram of the title compound viewed along the a axis, showing the supra­molecular chains. The dashed lines denote hydrogen bonds.

4. Database survey

To date, the crystal structures of 72 complexes containing copper and calcium are known (CSD, version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Most of them possess polymeric or ionic frameworks. Only five examples were found of mol­ecular binuclear Cu/Ca complexes, including two formed by carboxyl­ate ligands (Smith et al., 1985[Smith, G., O'Reilly, E. J., Kennard, C. H. L. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 243-251.]; Breeze & Wang, 1994[Breeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113-5121.]) and three with symmetric salen-type Schiff base ligands (Constable et al., 2010[Constable, E. C., Zhang, G., Housecroft, C. E., Neuburger, M. & Zampese, J. A. (2010). CrystEngComm, 12, 1764-1773.]; Mondal et al., 2011[Mondal, S., Hazra, S., Sarkar, S., Sasmal, S. & Mohanta, S. (2011). J. Mol. Struct. 1004, 204-214.]; Chandrasekhar et al., 2012[Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031-2038.]). To the best of our knowledge, [Cu(L)2Ca(NCS)2(H2O)] is the first mol­ecular binuclear Cu/Ca complex with an asymmetric Schiff base ligand to have been characterized crystallographically.

5. Synthesis and crystallization

The following system has been investigated:

Cu0–CaO–o-vanillin–NH4SCN–methanol (open air),

and the heterometallic complex [Cu(L)2Ca(NCS)2(H2O)] was obtained. Its formation can be described by the following scheme:

Cu0 + CaO + 2o-vanillin + 2NH4SCN + 1/2O2(air)→ [Cu(L)2Ca(NCS)2(H2O)] + 3H2O,

where the Schiff base HL can be regarded as a product of the condensation of o-vanillin and NH3, which is released from NH4SCN in the basic environment.

Copper powder (0.06 g, 1 mmol), CaO (0.11 g, 2 mmol), o-vanillin (0.3 g, 2 mmol) and NH4SCN (0.15 g, 2 mmol) were added to 30 ml of methanol. The reaction mixture was stirred magnetically at 323–333 K for ca 5 h until the complete dissolution of the copper powder was observed. The solution was filtered and left for 1 d, and then light-orange crystals were formed. Yield: 0.26 g (48.3%, Cu). Analysis calculated for CaCuC18N4H18O5S2: Ca 7.45, Cu 11.81, C 40.18, N 10.41, H 3.37, S 11.92. Found: Ca 8.1, Cu 11.2, C 36.5, N 10.1, H 3.2, S 11.4. FT–IR (KBr, νmax cm−1): 3349 vs, 3187 vs, 2942 s, 2076 vs, 1617vs, 1555 m, 1464 vs, 1386 s, 1318 s, 1245 s, 1225 vs, 1162 m, 1074 s, 1036 m, 948 m, 853 m, 823 m, 738 s, 652 m, 617 m, 571 m, 515 m, 469 m.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of CH and CH3 groups were placed in idealized positions (C—H = 0.93–0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for CH and 1.5Ueq(C) for CH3. All H atoms of the NH and OH groups were located in a difference-Fourier map and refined isotropically; the N—H and O—H distances were restrained to have fixed lengths of 0.82 (1) and 0.85 (1) Å, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [CaCu(C8H8NO2)2(NCS)2(H2O)]
Mr 538.10
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 8.5623 (3), 10.5377 (3), 24.4439 (7)
β (°) 90.768 (3)
V3) 2205.30 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.40 × 0.20 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.671, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15599, 5844, 3849
Rint 0.037
(sin θ/λ)max−1) 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.02
No. of reflections 5844
No. of parameters 298
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.53
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Aqua-1κO-bis(µ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II) top
Crystal data top
[CaCu(C8H8NO2)2(NCS)2(H2O)]F(000) = 1100
Mr = 538.10Dx = 1.621 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5623 (3) ÅCell parameters from 3455 reflections
b = 10.5377 (3) Åθ = 3.2–28.2°
c = 24.4439 (7) ŵ = 1.45 mm1
β = 90.768 (3)°T = 298 K
V = 2205.30 (13) Å3Plate, clear light orange
Z = 40.40 × 0.20 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
5844 independent reflections
Radiation source: Enhance (Mo) X-ray Source3849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1827 pixels mm-1θmax = 30.4°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2007)
k = 1413
Tmin = 0.671, Tmax = 1.000l = 3133
15599 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4639P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5844 reflectionsΔρmax = 0.55 e Å3
298 parametersΔρmin = 0.53 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25895 (4)0.25464 (3)0.00673 (2)0.03322 (10)
Ca10.22640 (7)0.27119 (5)0.13299 (2)0.03249 (14)
S10.51771 (13)0.14153 (9)0.18147 (3)0.0646 (3)
S20.03690 (13)0.68682 (9)0.19653 (3)0.0614 (3)
O10.1048 (2)0.22468 (17)0.04945 (7)0.0338 (4)
O20.0464 (2)0.1848 (2)0.13976 (7)0.0414 (5)
O30.3808 (2)0.30690 (18)0.05483 (7)0.0355 (4)
O40.4805 (2)0.3859 (2)0.14838 (7)0.0450 (5)
O50.2298 (3)0.2535 (3)0.22876 (9)0.0619 (7)
H5A0.305 (3)0.225 (4)0.2470 (16)0.098 (16)*
H5B0.179 (5)0.288 (4)0.2545 (14)0.119 (18)*
N10.1121 (3)0.2106 (2)0.06324 (9)0.0428 (6)
H10.134 (4)0.218 (3)0.0957 (5)0.055 (10)*
N20.4350 (3)0.2754 (2)0.05565 (10)0.0409 (6)
H20.430 (4)0.254 (3)0.0876 (5)0.044 (9)*
N30.3366 (4)0.0593 (3)0.14345 (10)0.0554 (7)
N40.1238 (3)0.4817 (3)0.15087 (11)0.0631 (8)
C10.0978 (3)0.1323 (2)0.00536 (10)0.0331 (6)
C20.0321 (3)0.1693 (2)0.04459 (10)0.0291 (6)
C30.1196 (3)0.1456 (2)0.09263 (10)0.0323 (6)
C40.2633 (4)0.0899 (3)0.09111 (12)0.0424 (7)
H40.3196380.0769170.1234290.051*
C50.3257 (4)0.0525 (3)0.04175 (13)0.0454 (7)
H50.4229670.0132840.0409830.054*
C60.2446 (3)0.0731 (3)0.00573 (12)0.0417 (7)
H60.2869720.0475570.0387880.050*
C70.0217 (4)0.1594 (3)0.05695 (11)0.0401 (7)
H70.0749320.1374990.0884850.048*
C80.1315 (5)0.1643 (5)0.18992 (12)0.0846 (15)
H8A0.0735010.1985120.2198530.127*
H8B0.2311220.2057650.1881050.127*
H8C0.1467540.0749310.1953670.127*
C90.6152 (3)0.3727 (3)0.00718 (11)0.0374 (6)
C100.5218 (3)0.3585 (2)0.05441 (11)0.0335 (6)
C110.5812 (3)0.4028 (3)0.10421 (11)0.0377 (6)
C120.7263 (4)0.4563 (3)0.10718 (13)0.0470 (7)
H120.7639010.4836210.1406890.056*
C130.8170 (4)0.4696 (3)0.06040 (15)0.0530 (8)
H130.9156150.5060000.0625170.064*
C140.7631 (4)0.4299 (3)0.01150 (14)0.0486 (8)
H140.8247880.4406320.0197610.058*
C150.5658 (4)0.3266 (3)0.04523 (12)0.0428 (7)
H150.6363410.3350620.0742780.051*
C160.5129 (5)0.4603 (4)0.19647 (12)0.0657 (11)
H16A0.4275800.4527050.2221330.099*
H16B0.6069920.4300870.2129680.099*
H16C0.5257990.5477510.1863050.099*
C170.4078 (4)0.0245 (3)0.15950 (11)0.0442 (7)
C180.0590 (4)0.5668 (3)0.17037 (11)0.0461 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03093 (18)0.0417 (2)0.02712 (16)0.00156 (16)0.00306 (13)0.00148 (13)
Ca10.0298 (3)0.0411 (3)0.0267 (3)0.0003 (3)0.0050 (2)0.0035 (2)
S10.0866 (8)0.0591 (5)0.0475 (5)0.0227 (5)0.0176 (5)0.0163 (4)
S20.0702 (6)0.0635 (6)0.0508 (5)0.0184 (5)0.0145 (4)0.0176 (4)
O10.0275 (10)0.0456 (11)0.0284 (9)0.0035 (9)0.0037 (7)0.0061 (8)
O20.0356 (11)0.0576 (12)0.0310 (9)0.0097 (11)0.0004 (8)0.0014 (9)
O30.0286 (10)0.0461 (11)0.0319 (9)0.0072 (9)0.0057 (8)0.0013 (8)
O40.0430 (13)0.0508 (12)0.0416 (11)0.0128 (11)0.0101 (9)0.0079 (9)
O50.0562 (16)0.098 (2)0.0315 (11)0.0175 (16)0.0059 (11)0.0061 (12)
N10.0490 (17)0.0540 (15)0.0256 (12)0.0007 (14)0.0063 (11)0.0032 (11)
N20.0413 (15)0.0484 (15)0.0328 (13)0.0064 (13)0.0028 (11)0.0018 (11)
N30.0602 (19)0.0542 (17)0.0516 (16)0.0112 (16)0.0036 (14)0.0043 (13)
N40.0536 (19)0.0588 (18)0.0773 (19)0.0139 (16)0.0206 (16)0.0210 (15)
C10.0294 (15)0.0306 (13)0.0396 (14)0.0071 (12)0.0115 (12)0.0051 (11)
C20.0244 (13)0.0282 (13)0.0349 (13)0.0041 (12)0.0075 (11)0.0037 (10)
C30.0309 (15)0.0306 (13)0.0355 (14)0.0002 (12)0.0072 (11)0.0004 (11)
C40.0379 (17)0.0399 (16)0.0494 (17)0.0050 (15)0.0021 (14)0.0033 (13)
C50.0311 (16)0.0379 (16)0.067 (2)0.0076 (14)0.0095 (15)0.0018 (14)
C60.0367 (17)0.0340 (15)0.0549 (17)0.0011 (14)0.0206 (14)0.0076 (13)
C70.0454 (18)0.0405 (16)0.0348 (14)0.0052 (15)0.0165 (13)0.0083 (12)
C80.077 (3)0.145 (4)0.0323 (17)0.051 (3)0.0041 (17)0.000 (2)
C90.0307 (15)0.0302 (14)0.0514 (17)0.0064 (13)0.0017 (13)0.0072 (12)
C100.0275 (14)0.0276 (13)0.0455 (15)0.0045 (12)0.0047 (12)0.0062 (11)
C110.0341 (16)0.0314 (14)0.0480 (16)0.0001 (13)0.0096 (13)0.0019 (12)
C120.0376 (18)0.0366 (16)0.067 (2)0.0022 (15)0.0147 (15)0.0010 (14)
C130.0307 (17)0.0382 (17)0.090 (2)0.0075 (15)0.0083 (17)0.0027 (17)
C140.0344 (17)0.0359 (16)0.075 (2)0.0037 (15)0.0089 (16)0.0128 (15)
C150.0403 (18)0.0444 (17)0.0432 (16)0.0107 (15)0.0114 (14)0.0115 (13)
C160.080 (3)0.068 (2)0.0498 (19)0.018 (2)0.0130 (18)0.0179 (17)
C170.053 (2)0.0468 (18)0.0321 (14)0.0011 (17)0.0102 (14)0.0010 (13)
C180.0421 (18)0.0538 (19)0.0426 (16)0.0008 (16)0.0158 (14)0.0026 (14)
Geometric parameters (Å, º) top
Cu1—Ca13.4275 (6)C1—C21.406 (3)
Cu1—O11.9183 (18)C1—C61.404 (4)
Cu1—O31.9232 (18)C1—C71.440 (4)
Cu1—N11.937 (2)C2—C31.407 (3)
Cu1—N21.924 (2)C3—C41.364 (4)
Ca1—O12.3565 (17)C4—H40.9300
Ca1—O22.511 (2)C4—C51.383 (4)
Ca1—O32.3394 (18)C5—H50.9300
Ca1—O42.521 (2)C5—C61.362 (4)
Ca1—O52.349 (2)C6—H60.9300
Ca1—N32.439 (3)C7—H70.9300
Ca1—N42.423 (3)C8—H8A0.9600
S1—C171.646 (3)C8—H8B0.9600
S2—C181.633 (4)C8—H8C0.9600
O1—C21.315 (3)C9—C101.403 (4)
O2—C31.382 (3)C9—C141.408 (4)
O2—C81.434 (3)C9—C151.439 (4)
O3—C101.324 (3)C10—C111.405 (4)
O4—C111.384 (3)C11—C121.367 (4)
O4—C161.443 (3)C12—H120.9300
O5—H5A0.845 (10)C12—C131.381 (4)
O5—H5B0.844 (10)C13—H130.9300
N1—H10.815 (10)C13—C141.353 (4)
N1—C71.274 (4)C14—H140.9300
N2—H20.816 (10)C15—H150.9300
N2—C151.272 (4)C16—H16A0.9600
N3—C171.145 (4)C16—H16B0.9600
N4—C181.155 (4)C16—H16C0.9600
O1—Cu1—Ca141.33 (5)C17—N3—Ca1161.8 (3)
O1—Cu1—O382.10 (8)C18—N4—Ca1163.1 (3)
O1—Cu1—N191.37 (10)C2—C1—C7121.6 (3)
O1—Cu1—N2171.72 (9)C6—C1—C2119.8 (2)
O3—Cu1—Ca140.84 (5)C6—C1—C7118.5 (2)
O3—Cu1—N1172.27 (10)O1—C2—C1124.7 (2)
O3—Cu1—N291.42 (10)O1—C2—C3118.0 (2)
N1—Cu1—Ca1132.69 (8)C1—C2—C3117.4 (2)
N2—Cu1—Ca1131.76 (8)O2—C3—C2113.6 (2)
N2—Cu1—N195.45 (11)C4—C3—O2124.8 (2)
O1—Ca1—Cu132.52 (4)C4—C3—C2121.6 (2)
O1—Ca1—O263.89 (6)C3—C4—H4119.8
O1—Ca1—O4128.41 (6)C3—C4—C5120.3 (3)
O1—Ca1—N394.38 (8)C5—C4—H4119.8
O1—Ca1—N4100.56 (8)C4—C5—H5120.0
O2—Ca1—Cu196.33 (4)C6—C5—C4120.0 (3)
O2—Ca1—O4165.45 (6)C6—C5—H5120.0
O3—Ca1—Cu132.52 (4)C1—C6—H6119.6
O3—Ca1—O164.99 (6)C5—C6—C1120.8 (3)
O3—Ca1—O2128.85 (6)C5—C6—H6119.6
O3—Ca1—O464.24 (6)N1—C7—C1125.8 (3)
O3—Ca1—O5144.32 (8)N1—C7—H7117.1
O3—Ca1—N391.01 (8)C1—C7—H7117.1
O3—Ca1—N4101.51 (9)O2—C8—H8A109.5
O4—Ca1—Cu196.56 (4)O2—C8—H8B109.5
O5—Ca1—Cu1170.80 (8)O2—C8—H8C109.5
O5—Ca1—O1149.18 (9)H8A—C8—H8B109.5
O5—Ca1—O285.97 (8)H8A—C8—H8C109.5
O5—Ca1—O482.36 (8)H8B—C8—H8C109.5
O5—Ca1—N379.22 (9)C10—C9—C14119.1 (3)
O5—Ca1—N484.39 (10)C10—C9—C15121.7 (3)
N3—Ca1—Cu191.80 (6)C14—C9—C15119.1 (3)
N3—Ca1—O291.27 (9)O3—C10—C9124.0 (2)
N3—Ca1—O495.02 (9)O3—C10—C11118.0 (2)
N4—Ca1—Cu1104.52 (7)C9—C10—C11117.9 (3)
N4—Ca1—O289.15 (9)O4—C11—C10113.8 (2)
N4—Ca1—O481.12 (9)C12—C11—O4124.7 (3)
N4—Ca1—N3163.53 (9)C12—C11—C10121.5 (3)
Cu1—O1—Ca1106.15 (8)C11—C12—H12120.0
C2—O1—Cu1127.85 (15)C11—C12—C13120.0 (3)
C2—O1—Ca1125.10 (15)C13—C12—H12120.0
C3—O2—Ca1119.05 (15)C12—C13—H13119.8
C3—O2—C8115.9 (2)C14—C13—C12120.4 (3)
C8—O2—Ca1124.91 (18)C14—C13—H13119.8
Cu1—O3—Ca1106.64 (8)C9—C14—H14119.5
C10—O3—Cu1128.01 (16)C13—C14—C9121.1 (3)
C10—O3—Ca1125.29 (16)C13—C14—H14119.5
C11—O4—Ca1118.37 (15)N2—C15—C9126.2 (3)
C11—O4—C16116.1 (2)N2—C15—H15116.9
C16—O4—Ca1123.92 (19)C9—C15—H15116.9
Ca1—O5—H5A125 (3)O4—C16—H16A109.5
Ca1—O5—H5B134 (4)O4—C16—H16B109.5
H5A—O5—H5B99 (4)O4—C16—H16C109.5
Cu1—N1—H1122 (2)H16A—C16—H16B109.5
C7—N1—Cu1127.4 (2)H16A—C16—H16C109.5
C7—N1—H1111 (2)H16B—C16—H16C109.5
Cu1—N2—H2121 (2)N3—C17—S1177.3 (3)
C15—N2—Cu1127.5 (2)N4—C18—S2178.2 (3)
C15—N2—H2111 (2)
Cu1—O1—C2—C16.8 (4)C3—C4—C5—C61.0 (4)
Cu1—O1—C2—C3173.44 (17)C4—C5—C6—C10.1 (4)
Cu1—O3—C10—C96.7 (4)C6—C1—C2—O1179.6 (2)
Cu1—O3—C10—C11172.68 (18)C6—C1—C2—C30.6 (4)
Cu1—N1—C7—C15.3 (4)C6—C1—C7—N1178.8 (3)
Cu1—N2—C15—C94.8 (5)C7—C1—C2—O13.6 (4)
Ca1—O1—C2—C1174.37 (18)C7—C1—C2—C3176.2 (2)
Ca1—O1—C2—C35.8 (3)C7—C1—C6—C5175.9 (3)
Ca1—O2—C3—C24.8 (3)C8—O2—C3—C2179.3 (3)
Ca1—O2—C3—C4175.7 (2)C8—O2—C3—C40.2 (4)
Ca1—O3—C10—C9176.52 (19)C9—C10—C11—O4179.4 (2)
Ca1—O3—C10—C114.1 (3)C9—C10—C11—C121.2 (4)
Ca1—O4—C11—C103.5 (3)C10—C9—C14—C130.9 (4)
Ca1—O4—C11—C12175.9 (2)C10—C9—C15—N23.6 (5)
O1—C2—C3—O20.2 (3)C10—C11—C12—C131.1 (4)
O1—C2—C3—C4179.3 (2)C11—C12—C13—C140.0 (5)
O2—C3—C4—C5179.2 (3)C12—C13—C14—C91.0 (5)
O3—C10—C11—O40.0 (4)C14—C9—C10—O3179.5 (2)
O3—C10—C11—C12179.4 (2)C14—C9—C10—C110.1 (4)
O4—C11—C12—C13179.5 (3)C14—C9—C15—N2178.5 (3)
C1—C2—C3—O2180.0 (2)C15—C9—C10—O32.5 (4)
C1—C2—C3—C40.5 (4)C15—C9—C10—C11178.1 (2)
C2—C1—C6—C51.0 (4)C15—C9—C14—C13177.1 (3)
C2—C1—C7—N14.3 (4)C16—O4—C11—C10162.7 (3)
C2—C3—C4—C51.4 (4)C16—O4—C11—C1217.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···S2i0.85 (1)2.47 (1)3.297 (3)169 (4)
O5—H5B···S1ii0.84 (1)2.40 (2)3.226 (3)166 (5)
N1—H1···S2iii0.82 (1)2.80 (2)3.500 (2)145 (3)
N2—H2···S1iv0.82 (1)2.61 (1)3.403 (3)163 (3)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y, z.
 

Funding information

This work was supported in Ukraine by the Ministry of Education and Science of Ukraine (Project No. 19BF037–05), in France by the CNRS, the University of Angers, and by the French Embassy in Kiev (grant to NP).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBreeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113–5121.  CSD CrossRef CAS Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031–2038.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, H. & Adams, S. (2017). IUCrJ, 4, 614–625.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationConstable, E. C., Zhang, G., Housecroft, C. E., Neuburger, M. & Zampese, J. A. (2010). CrystEngComm, 12, 1764–1773.  CSD CrossRef CAS Google Scholar
First citationCostes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem. 33, 2738–2742.  CSD CrossRef CAS Web of Science Google Scholar
First citationCoxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFromm, K. M. (2008). Coord. Chem. Rev. 252, 856–885.  Web of Science CrossRef CAS Google Scholar
First citationGrancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., Bazaga-García, M., Losilla, E. R., Cabeza, A., Armentano, D. & Pardo, E. (2016). Chem. Mater. 28, 4608–4615.  CSD CrossRef CAS Google Scholar
First citationGrancha, T., Mon, M., Ferrando-Soria, J., Gascon, J., Seoane, B., Ramos-Fernandez, E. V., Armentano, D. & Pardo, E. (2017). J. Mater. Chem. A, 5, 11032–11039.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationLiu, Q.-F., Liu, W., Cao, Y.-P., Dong, Y.-L. & Liu, H.-M. (2017). Inorg. Nano-Met. Chem. 47, 153–157.  CAS Google Scholar
First citationMon, M., Bruno, R., Ferrando-Soria, J., Bartella, L., Donna, L. D., Talia, M., Lappano, R., Maggiolini, M., Armentano, D. & Pardo, E. (2018). Mater. Horiz. 5, 683–690.  CSD CrossRef CAS Google Scholar
First citationMon, M., Ferrando-Soria, J., Grancha, T., Fortea-Pérez, F. R., Gascon, J., Leyva-Pérez, A., Armentano, D. & Pardo, E. (2016). J. Am. Chem. Soc. 138, 7864–7867.  CSD CrossRef CAS PubMed Google Scholar
First citationMondal, S., Hazra, S., Sarkar, S., Sasmal, S. & Mohanta, S. (2011). J. Mol. Struct. 1004, 204–214.  CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaha, D., Hazra, D. K., Maity, T. & Koner, S. (2016). Inorg. Chem. 55, 5729–5731.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSanchis, M. J., Gomez-Romero, P., Folgado, J. V., Sapina, F., Ibanez, R., Beltran, A., Garcia, J. & Beltran, D. (1992). Inorg. Chem. 31, 2915–2919.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., O'Reilly, E. J., Kennard, C. H. L. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 243–251.  CSD CrossRef Web of Science Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Cheng, S., Wang, X., Yuan, L., Xue, M., Wang, Y. & Liu, W. (2013). CrystEngComm, 15, 6074–6082.  CSD CrossRef CAS Google Scholar
First citationZou, G.-H. & Gao, J. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1721–1724.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds