research communications
Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bFaculté des Sciences Appliquées Ait Melloul, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mohamedsrhir2018@gmail.com
In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; benzothiazine; hydrogen bond; triazole; π-stacking; Hirshfeld surface.
CCDC reference: 1982595
1. Chemical context
Compounds containing the benzothiazole backbone have been studied extensively in both academic and industrial laboratories (Mekhzoum et al., 2016, 2019; Chakib et al., 2010a,b, 2019). These molecules exhibit a wide range of biological applications including as anti-tumor agents (Bénéteau et al., 1999; Ćaleta et al., 2004), antimicrobial agents (Shastry et al., 2003; Latrofa et al., 2005, Singh et al., 2013), analgesics (Kaur et al., 2010), anti-inflammatory agents (Oketani et al., 2001), anti-HIV agents (Nagarajan et al., 2003; Pitta et al., 2013), anti-leishmanial agents (Delmas et al., 2004), anti-cancer agents (Yang et al., 2003; Huang et al., 2006; Kok et al., 2008), anti-hypertensive agents (Saggu et al., 2002), antioxidants, (Ayhan-Kilcigil et al., 2004) and anti-viral agents (Tewari et al., 2006). The imidazolinone moiety is an important scaffold possessing a spectrum of pharmacological actions, which include anti-convulsant, anti-parkinsonism and monoamino-oxidase inhibitory activities (Hari Narayana Moorthy et al., 2012; Desai et al., 2009). Furthermore, imidazolones are anti-bacterial, anti-fungal, anti-viral, anti-cancer and CNS-depressant agents (Naithani et al., 1989; Harfenist et al., 1978). We have previously shown that bis(2-chloroethyl)amine hydrochloride is an interesting precursor of several containing the oxazolidinone moiety (Sebbar et al., 2016, 2018; Ellouz et al., 2017; Hni et al., 2019). In a continuation of our research using bis(2-chloroethyl)amine hydrochloride as an intermediate in the synthesis of new heterocyclic systems, we have studied the condensation of 2-aminobenzothiazole with bis(2-chloroethyl)amine hydrochloride in the presence of tetra-n-butylammonium bromide as catalyst and potassium carbonate as base. A plausible mechanism for the formationof the product, 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one (I), is given in the reaction scheme.
The title compound was obtained for the first time and characterized by single crystal X-ray diffraction techniques as well as by Hirshfeld surface analysis. The results of the calculations by density functional theory (DFT), carried out at the B3LYP/6-311G (d,p) level, are compared with the experimentally determined molecular structure in the solid state.
2. Structural commentary
In the title molecule (I) (Fig. 1), the benzothiazole unit is slightly non-planar, as indicated by the dihedral angle of 1.52 (4)° between the mean planes of the component rings, [A (C1–C6) and B (S1/N1/C1/C6/C7)]. A puckering analysis of the conformation of the imidazolidine ring C (N2/N3/C8-C10) gave the parameters Q(2) = 0.0767 (14) Å and φ(2) = 66.5 (10)°. The conformation is described as an `envelope on C9′. This ring is almost coplanar with the thiazole ring B with a dihedral angle of 3.61 (4)° between their mean planes.
3. Supramolecular features
In the crystal, O—HHydethy⋯NThz (Hydethy = hydroxyethyl and Thz = thiazole) hydrogen bonds (Table 1) form stepped chains of molecules extending along the c-axis direction (Fig. 2). These are connected into layers parallel to the bc plane by weak C—HImdz⋯OImdz (Imdz = imidazolidine) and C—HImdz⋯π(ring) interactions (Table 1). The layers are connected by weak C—HBnz⋯OImdz (Bnz = benzene) interactions. Both the layer formation and stacking are also assisted by head-to-tail slipped π-stacking interactions (Figs. 3 and 4) along the a-axis direction between thiazole rings [Cg2⋯Cg2i and Cg2⋯Cg2ii = 3.6507 (7) and 3.6866 (7) Å, respectively; symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + , −z + , where Cg2 is the centroid of ring B].
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of I, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 5), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atoms H5, H2A, H8B indicate their roles as donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 7 clearly suggests that there are π–π interactions in I.
The overall two-dimensional fingerprint plot, Fig. 8a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯N/N ⋯ H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O, S⋯C/C⋯S and S⋯N/N ⋯ S contacts (McKinnon et al., 2007) are illustrated in Fig. 8b–k, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction (Table 2) is H⋯H, contributing 47.0% to the overall crystal packing, which is reflected in Fig. 8b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.10 Å. The pair of wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 8c, 16.9% contribution) has a symmetrical distribution of points with the edges at de + di = 2.40 Å. The presence of C—H⋯π interactions is indicated by the characteristic wings with a spikes with the tips at de + di = 2.63 Å in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 8d, 8.0% contribution). The H⋯S/S⋯H contacts contribute 7.6% to the overall crystal packing and are seen in Fig. 8e as widely scattered points with the tips at de + di = 3.03 Å. The pair of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 8f, 5.3%) has a symmetrical distribution of points with the tips at de + di = 1.88 Å. The C⋯C contacts (5.0% contribution, Fig. 8g) have an arrow-shaped distribution of points with the tip at de = di = 1.70 Å. The N⋯C/C⋯N interactions (4.3%, Fig. 8h) give rise to tiny wings with the tips at de + di = 3.41 Å. The O⋯C/C⋯O contacts (2.2%, Fig. 8i) give widely scattered points with the tips at de + di = 3.56 Å. Finally, the S⋯C/C⋯S and S⋯N/N⋯S interactions, contributing 2.2% and 1.3% to the overall crystal packing (Fig. 8j and k) give rise to tiny wings with the tips at de + di = 3.63 Å and de + di = 3.63 Å, respectively.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H ⋯ S/S⋯H, H⋯N/N⋯H and C⋯C interactions in Fig. 9a--f, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated by the CE–B3LYP/6–311G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017) using the cluster of molecules generated by applying operations within a radius of 3.8 Å of a central molecule (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −67.2 (Eele), −18.0 (Epol), −35.4 (Edis), 75.7 (Erep) and −68.5 (Etot) for O2—H2A⋯N1, −21.5 (Eele), −6.1 (Epol), −82.0 (Edis), 62.3 (Erep) and −60.1 (Etot) for C5—H5⋯O1 and −1.2 (Eele), −6.3 (Epol), −73.7 (Edis), 45.7 (Erep) and −41.8 (Etot) for C8—H8B⋯O1.
6. DFT calculations
The main aim of these computations is to provide an interpretation of the experimental results. For this purpose, the structural parameters of equilibrium geometry for I in the gas phase have been computed using the B3LYP functional level of theory and the 6-31G (d,p) basis set (Becke, 1993) implemented in GAUSSIAN-09 (Frisch et al., 2009). The molecule adopts a geometry very close to that obtained using DFT calculations (Table 3). The largest differences between the calculated and experimental values are observed for the S1—C6 (0.1 Å) and S1—C7 (0.08 Å) bond lengths and the C11—N3—C9 bond angle (1.6°). These disparities can be linked to the fact that these calculations relate to the isolated molecule, whereas the experimental results correspond to interacting molecules in the where intra and intermolecular interactions with the neighboring molecules are present.
|
7. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41 updated to December 2019; Groom et al., 2016) with the search fragment II generated 24 hits of which 10 were metal complexes of benzothiazole or its derivatives. Of the remaining molecules, the four closest in composition and structure to I are III (KEQTAC; Olyaei et al., 2006), IV (NOHJAX; Sahoo et al., 2014), V (RUBPAG; Saczewski et al., 2005) and VI (YUYTUH; Kozísek et al., 1995). In all four, the benzothiazole moiety is more nearly planar than in I, with the dihedral angle between the constituent planes being < 1° except for VI where it is 1.3°. In I, the dihedral angle between the planes defined by C7/N1/C1/C6/S1 and C7/N2/C8/C10 is 1.94 (4)° while the corresponding dihedral angle in the others vary from 13.64° in III to 0.61° in V.
8. Synthesis and crystallization
To a mixture of 2-aminobenzothiazole (2.22 mmol), bis(2-chloroethyl)amine (1.11 mmol) and potassium carbonate (3.21 mmol) in DMF (25 mL) was added a catalytic amount of tetra-n-butylammonium bromide (0.37 mmol). The mixture was stirred at 353 K for 24 h. The solid material was removed by filtration and the solvent evaporated in vacuo. The solid product was purified by recrystallization from ethanol to give colourless crystals (yield: 70%).
9. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in a difference-Fourier map and their coordinates and isotropic displacement parameters refined without restraints.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1982595
https://doi.org/10.1107/S2056989020001723/jj2219sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001723/jj2219Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020001723/jj2219Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020001723/jj2219Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H13N3O2S | F(000) = 552 |
Mr = 263.31 | Dx = 1.503 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 7.2863 (2) Å | Cell parameters from 7989 reflections |
b = 13.9178 (5) Å | θ = 6.2–72.3° |
c = 11.6156 (4) Å | µ = 2.47 mm−1 |
β = 98.866 (1)° | T = 150 K |
V = 1163.85 (7) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.27 × 0.11 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2246 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2160 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.3°, θmin = 6.2° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→15 |
Tmin = 0.69, Tmax = 0.77 | l = −14→14 |
8781 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.080 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.4296P] where P = (Fo2 + 2Fc2)/3 |
2246 reflections | (Δ/σ)max = 0.001 |
215 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.84367 (4) | 0.49137 (2) | 0.62655 (3) | 0.02128 (12) | |
O1 | 0.88222 (13) | 0.29904 (7) | 0.68752 (8) | 0.0249 (2) | |
O2 | 0.55711 (14) | 0.04397 (7) | 0.66690 (8) | 0.0288 (2) | |
H2A | 0.586 (3) | 0.0432 (16) | 0.745 (2) | 0.055 (6)* | |
N1 | 0.67379 (15) | 0.47968 (7) | 0.41147 (9) | 0.0191 (2) | |
N2 | 0.74321 (14) | 0.33066 (7) | 0.49825 (9) | 0.0193 (2) | |
N3 | 0.78449 (16) | 0.17939 (8) | 0.55357 (9) | 0.0223 (2) | |
C1 | 0.69815 (16) | 0.57713 (9) | 0.43706 (11) | 0.0188 (3) | |
C2 | 0.63908 (18) | 0.65197 (10) | 0.35997 (12) | 0.0241 (3) | |
H2 | 0.570 (2) | 0.6355 (13) | 0.2837 (16) | 0.035 (4)* | |
C3 | 0.67664 (19) | 0.74589 (10) | 0.39635 (13) | 0.0267 (3) | |
H3 | 0.637 (2) | 0.7985 (14) | 0.3464 (16) | 0.035 (5)* | |
C4 | 0.77217 (19) | 0.76532 (10) | 0.50716 (13) | 0.0275 (3) | |
H4 | 0.797 (2) | 0.8334 (13) | 0.5348 (16) | 0.035 (4)* | |
C5 | 0.82913 (19) | 0.69236 (10) | 0.58568 (12) | 0.0251 (3) | |
H5 | 0.891 (2) | 0.7065 (13) | 0.6624 (16) | 0.032 (4)* | |
C6 | 0.79036 (17) | 0.59783 (9) | 0.54928 (11) | 0.0201 (3) | |
C7 | 0.74425 (16) | 0.42847 (9) | 0.50177 (10) | 0.0177 (3) | |
C8 | 0.66402 (19) | 0.27650 (9) | 0.39448 (11) | 0.0217 (3) | |
H8A | 0.528 (2) | 0.2896 (12) | 0.3761 (15) | 0.031 (4)* | |
H8B | 0.725 (2) | 0.2958 (12) | 0.3310 (15) | 0.027 (4)* | |
C9 | 0.7093 (2) | 0.17217 (10) | 0.43041 (11) | 0.0274 (3) | |
H9A | 0.597 (3) | 0.1309 (13) | 0.4205 (16) | 0.037 (5)* | |
H9B | 0.801 (2) | 0.1427 (13) | 0.3901 (15) | 0.036 (4)* | |
C10 | 0.81190 (17) | 0.27069 (9) | 0.59095 (11) | 0.0189 (3) | |
C11 | 0.8591 (2) | 0.09704 (10) | 0.62142 (11) | 0.0250 (3) | |
H11A | 0.900 (2) | 0.1210 (12) | 0.6983 (15) | 0.028 (4)* | |
H11B | 0.972 (2) | 0.0720 (13) | 0.5935 (15) | 0.031 (4)* | |
C12 | 0.7190 (2) | 0.01623 (9) | 0.62181 (12) | 0.0256 (3) | |
H12A | 0.784 (2) | −0.0373 (12) | 0.6672 (14) | 0.026 (4)* | |
H12B | 0.681 (2) | −0.0069 (11) | 0.5418 (16) | 0.025 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0263 (2) | 0.01777 (18) | 0.01832 (18) | 0.00109 (11) | −0.00106 (13) | −0.00110 (10) |
O1 | 0.0344 (5) | 0.0211 (5) | 0.0181 (4) | 0.0011 (4) | 0.0003 (4) | 0.0002 (3) |
O2 | 0.0353 (5) | 0.0272 (5) | 0.0228 (5) | −0.0006 (4) | 0.0011 (4) | 0.0037 (4) |
N1 | 0.0222 (5) | 0.0164 (5) | 0.0185 (5) | 0.0007 (4) | 0.0025 (4) | 0.0010 (4) |
N2 | 0.0259 (5) | 0.0152 (5) | 0.0163 (5) | −0.0001 (4) | 0.0012 (4) | 0.0004 (4) |
N3 | 0.0319 (6) | 0.0153 (5) | 0.0183 (5) | −0.0003 (4) | −0.0002 (4) | 0.0023 (4) |
C1 | 0.0191 (6) | 0.0160 (6) | 0.0218 (6) | 0.0007 (5) | 0.0048 (4) | −0.0003 (5) |
C2 | 0.0284 (7) | 0.0198 (6) | 0.0237 (6) | 0.0030 (5) | 0.0027 (5) | 0.0023 (5) |
C3 | 0.0312 (7) | 0.0181 (6) | 0.0316 (7) | 0.0048 (5) | 0.0073 (5) | 0.0036 (5) |
C4 | 0.0300 (7) | 0.0174 (6) | 0.0361 (7) | 0.0016 (5) | 0.0081 (6) | −0.0030 (5) |
C5 | 0.0262 (6) | 0.0204 (6) | 0.0281 (7) | 0.0004 (5) | 0.0027 (5) | −0.0051 (5) |
C6 | 0.0198 (6) | 0.0183 (6) | 0.0221 (6) | 0.0017 (5) | 0.0030 (5) | −0.0006 (5) |
C7 | 0.0180 (6) | 0.0166 (6) | 0.0188 (6) | −0.0002 (4) | 0.0041 (4) | −0.0005 (4) |
C8 | 0.0299 (7) | 0.0175 (6) | 0.0168 (6) | −0.0019 (5) | 0.0005 (5) | −0.0003 (5) |
C9 | 0.0439 (8) | 0.0179 (6) | 0.0187 (6) | −0.0025 (6) | −0.0008 (5) | 0.0003 (5) |
C10 | 0.0220 (6) | 0.0172 (6) | 0.0180 (6) | 0.0006 (5) | 0.0046 (5) | 0.0021 (5) |
C11 | 0.0333 (7) | 0.0167 (6) | 0.0243 (7) | 0.0038 (5) | 0.0022 (5) | 0.0033 (5) |
C12 | 0.0399 (8) | 0.0153 (6) | 0.0210 (7) | 0.0011 (5) | 0.0023 (6) | 0.0003 (5) |
S1—C6 | 1.7448 (13) | C3—C4 | 1.392 (2) |
S1—C7 | 1.7517 (12) | C3—H3 | 0.952 (19) |
O1—C10 | 1.2246 (16) | C4—C5 | 1.385 (2) |
O2—C12 | 1.4161 (17) | C4—H4 | 1.008 (18) |
O2—H2A | 0.90 (2) | C5—C6 | 1.3974 (18) |
N1—C7 | 1.3060 (16) | C5—H5 | 0.954 (19) |
N1—C1 | 1.3940 (16) | C8—C9 | 1.5327 (18) |
N2—C7 | 1.3619 (17) | C8—H8A | 0.997 (17) |
N2—C10 | 1.3930 (16) | C8—H8B | 0.958 (17) |
N2—C8 | 1.4628 (16) | C9—H9A | 0.993 (19) |
N3—C10 | 1.3477 (16) | C9—H9B | 0.967 (18) |
N3—C11 | 1.4485 (16) | C11—C12 | 1.5194 (19) |
N3—C9 | 1.4543 (17) | C11—H11A | 0.957 (18) |
C1—C2 | 1.3975 (18) | C11—H11B | 0.992 (17) |
C1—C6 | 1.4013 (18) | C12—H12A | 0.991 (17) |
C2—C3 | 1.388 (2) | C12—H12B | 0.982 (18) |
C2—H2 | 0.977 (19) | ||
S1···O1 | 2.7721 (10) | C1···C7iv | 3.4070 (17) |
S1···C11i | 3.6700 (14) | C2···C10iv | 3.5859 (18) |
S1···C1ii | 3.6552 (12) | C3···C10iv | 3.5928 (19) |
S1···H11Ai | 3.117 (16) | C4···C10ii | 3.4350 (19) |
O1···C9iii | 3.2869 (16) | C4···C8iv | 3.587 (2) |
O1···C8iii | 3.2543 (16) | C6···C7ii | 3.5502 (17) |
O2···N1iii | 2.8560 (14) | C1···H2Avi | 2.81 (2) |
O2···C3iv | 3.4071 (17) | C4···H8Aiv | 2.850 (16) |
O2···N3 | 2.9500 (15) | C5···H8Aiv | 2.718 (15) |
O1···H9Biii | 2.640 (17) | C9···H12B | 2.830 (16) |
O1···H11A | 2.482 (17) | C12···H9A | 2.857 (18) |
O1···H8Biii | 2.534 (16) | H2···H9Avii | 2.49 (3) |
O2···H9Av | 2.804 (19) | H2···H2Avi | 2.53 (3) |
O2···H12Bv | 2.803 (18) | H2A···H8Biii | 2.59 (3) |
O2···H3iv | 2.601 (18) | H4···C12viii | 2.828 (18) |
O2···H2iii | 2.838 (18) | H4···H12Aviii | 2.38 (2) |
N1···C12vi | 3.4313 (17) | H4···H12Bviii | 2.38 (2) |
N2···C5ii | 3.4204 (17) | H5···O1i | 2.557 (17) |
N1···H8B | 2.769 (17) | H5···H11Ai | 2.36 (2) |
N1···H2Avi | 1.97 (2) | H8B···H11Avi | 2.44 (2) |
N1···H8A | 2.857 (17) | H9A···H12B | 2.40 (2) |
C6—S1—C7 | 88.16 (6) | N2—C7—S1 | 121.60 (9) |
C12—O2—H2A | 106.8 (13) | N2—C8—C9 | 102.87 (10) |
C7—N1—C1 | 109.77 (10) | N2—C8—H8A | 109.6 (10) |
C7—N2—C10 | 125.18 (10) | C9—C8—H8A | 113.3 (10) |
C7—N2—C8 | 122.65 (10) | N2—C8—H8B | 108.6 (10) |
C10—N2—C8 | 112.16 (10) | C9—C8—H8B | 111.6 (10) |
C10—N3—C11 | 123.10 (11) | H8A—C8—H8B | 110.5 (14) |
C10—N3—C9 | 113.37 (10) | N3—C9—C8 | 103.60 (10) |
C11—N3—C9 | 122.24 (11) | N3—C9—H9A | 109.4 (11) |
N1—C1—C2 | 124.89 (12) | C8—C9—H9A | 112.1 (10) |
N1—C1—C6 | 115.18 (11) | N3—C9—H9B | 108.8 (10) |
C2—C1—C6 | 119.93 (12) | C8—C9—H9B | 114.0 (11) |
C3—C2—C1 | 118.69 (13) | H9A—C9—H9B | 108.7 (15) |
C3—C2—H2 | 123.1 (10) | O1—C10—N3 | 128.27 (12) |
C1—C2—H2 | 118.2 (11) | O1—C10—N2 | 124.38 (11) |
C2—C3—C4 | 120.76 (13) | N3—C10—N2 | 107.35 (10) |
C2—C3—H3 | 120.8 (11) | N3—C11—C12 | 113.03 (11) |
C4—C3—H3 | 118.5 (11) | N3—C11—H11A | 105.6 (10) |
C5—C4—C3 | 121.51 (13) | C12—C11—H11A | 111.7 (10) |
C5—C4—H4 | 117.3 (10) | N3—C11—H11B | 111.1 (10) |
C3—C4—H4 | 121.1 (10) | C12—C11—H11B | 109.4 (10) |
C4—C5—C6 | 117.70 (13) | H11A—C11—H11B | 105.7 (14) |
C4—C5—H5 | 120.9 (11) | O2—C12—C11 | 113.43 (11) |
C6—C5—H5 | 121.4 (11) | O2—C12—H12A | 111.6 (9) |
C5—C6—C1 | 121.38 (12) | C11—C12—H12A | 106.8 (9) |
C5—C6—S1 | 128.70 (10) | O2—C12—H12B | 108.1 (10) |
C1—C6—S1 | 109.92 (9) | C11—C12—H12B | 109.3 (9) |
N1—C7—N2 | 121.45 (11) | H12A—C12—H12B | 107.4 (13) |
N1—C7—S1 | 116.94 (10) | ||
C7—N1—C1—C2 | −179.95 (12) | C8—N2—C7—S1 | −178.90 (9) |
C7—N1—C1—C6 | 0.42 (15) | C6—S1—C7—N1 | −1.36 (10) |
N1—C1—C2—C3 | −178.49 (12) | C6—S1—C7—N2 | 177.54 (10) |
C6—C1—C2—C3 | 1.12 (19) | C7—N2—C8—C9 | 175.82 (11) |
C1—C2—C3—C4 | 0.4 (2) | C10—N2—C8—C9 | −5.38 (14) |
C2—C3—C4—C5 | −1.5 (2) | C10—N3—C9—C8 | −7.90 (16) |
C3—C4—C5—C6 | 1.1 (2) | C11—N3—C9—C8 | −175.30 (11) |
C4—C5—C6—C1 | 0.40 (19) | N2—C8—C9—N3 | 7.49 (14) |
C4—C5—C6—S1 | 179.83 (10) | C11—N3—C10—O1 | −8.4 (2) |
N1—C1—C6—C5 | 178.12 (11) | C9—N3—C10—O1 | −175.68 (13) |
C2—C1—C6—C5 | −1.53 (19) | C11—N3—C10—N2 | 172.01 (11) |
N1—C1—C6—S1 | −1.40 (13) | C9—N3—C10—N2 | 4.74 (15) |
C2—C1—C6—S1 | 178.95 (9) | C7—N2—C10—O1 | −0.1 (2) |
C7—S1—C6—C5 | −178.02 (13) | C8—N2—C10—O1 | −178.84 (12) |
C7—S1—C6—C1 | 1.45 (9) | C7—N2—C10—N3 | 179.53 (11) |
C1—N1—C7—N2 | −178.10 (11) | C8—N2—C10—N3 | 0.77 (14) |
C1—N1—C7—S1 | 0.80 (13) | C10—N3—C11—C12 | 135.47 (13) |
C10—N2—C7—N1 | −178.69 (11) | C9—N3—C11—C12 | −58.36 (17) |
C8—N2—C7—N1 | −0.05 (18) | N3—C11—C12—O2 | −59.05 (15) |
C10—N2—C7—S1 | 2.46 (17) |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+2, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z−1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x, y+1, z. |
Cg1 is the centroid of the benzene ring (A, C1–C6). |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N1iii | 0.90 (2) | 1.97 (2) | 2.8560 (15) | 170 (2) |
C5—H5···O1i | 0.954 (19) | 2.559 (19) | 3.4439 (16) | 154.3 (14) |
C8—H8B···O1vi | 0.958 (17) | 2.532 (16) | 3.2542 (16) | 132.2 (13) |
C8—H8A···Cg1iv | 0.997 (17) | 2.840 (16) | 3.5646 (15) | 130.0 (12) |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (vi) x, −y+1/2, z−1/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
S1—C6 | 1.7448 (13) | 1.83061 |
S1—C7 | 1.7517 (12) | 1.85613 |
O1—C10 | 1.2246 (16) | 1.24399 |
O2—C12 | 1.4161 (17) | 1.45513 |
N1—C7 | 1.3060 (16) | 1.30197 |
N1—C1 | 1.3940 (16) | 1.40321 |
N2—C7 | 1.3619 (17) | 1.37118 |
N2—C10 | 1.3930 (16) | 1.40686 |
N2—C8 | 1.4628 (16) | 1.47735 |
N3—C10 | 1.3477 (16) | 1.37333 |
N3—C11 | 1.4485 (16) | 1.45760 |
N3—C9 | 1.4543 (17) | 1.47023 |
C6—S1—C7 | 88.16 (6) | 87.72 |
C7—N2—C10 | 125.18 (10) | 126.57 |
C7—N1—C1 | 109.77 (10) | 110.27 |
C7—N2—C8 | 122.65 (10) | 121.09 |
C10—N2—C8 | 112.16 (10) | 112.17 |
C10—N3—C11 | 123.10 (11) | 122.39 |
C10—N3—C9 | 113.37 (10) | 113.06 |
C11—N3—C9 | 122.24 (11) | 123.84 |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Ayhan-Kilcigil, G., Kus, C., Çoban, T., Can-Eke, B. & Iscan, M. (2004). J. Enzyme Inhib. Med. Chem. 19, 129–135. Web of Science PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053–1060. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Ćaleta, I., Grdiša, M., Mrvoš-Sermek, D., Cetina, M., Tralić-Kulenović, V., Pavelić, K. & Karminski-Zamola, G. (2004). Farmaco, 59, 297–305. PubMed Google Scholar
Chakib, I., El Bakri, Y., Lai, C.-H., Benbacer, L., Zerzouf, A., Essassi, E. M. & Mague, J. T. (2019). J. Mol. Struct. 1198, 126910–126921. Web of Science CSD CrossRef Google Scholar
Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010b). Acta Cryst. E66, o1096. Web of Science CSD CrossRef IUCr Journals Google Scholar
Delmas, F., Avellaneda, A., Di Giorgio, C., Robin, M., De Clercq, E., Timon-David, P. & Galy, J. P. (2004). Eur. J. Med. Chem. 39, 685–690. Web of Science CrossRef PubMed CAS Google Scholar
Desai, N. C., Bhavsar, A. M. & Baldaniya, B. B. (2009). Indian J. Pharm. Sci. 71, 90–94. Web of Science CrossRef CAS PubMed Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170646. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN-09. Gaussian Inc., Wallingford, CT, US. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harfenist, M., Soroko, E. F. & McKenzie, G. M. (1978). J. Med. Chem. 21, 405–409. CrossRef CAS PubMed Web of Science Google Scholar
Hari Narayana Moorthy, N. S., Saxena, V., Karthikeyan, C. & Trivedi, P. (2012). J. Enzyme Inhib. Med. Chem. 27, 201–207. Web of Science CrossRef CAS PubMed Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 593–599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, S.-T., Hsei, I.-J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119. Web of Science CrossRef PubMed CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kaur, H., Kumar, S., Singh, I., Saxena, K. K. & Kumar, A. (2010). DIG. J. Nanomater. Bios 5, 67–76. Google Scholar
Kok, S. H. L., Gambari, R., Chui, C. H., Yuen, M. C. W., Lin, E., Wong, R. S. M., Lau, F. Y., Cheng, G. Y. M., Lam, W. S., Chan, S. H., Lam, K. H., Cheng, C. H., Lai, P. B. S., Yu, W. Y., Cheung, F., Tang, J. C. O. & Chan, A. S. C. (2008). Bioorg. & Med. Chem. 16, 3626–3631. Web of Science CrossRef CAS Google Scholar
Kozísek, J., Ulický, L., Floch, L. & Langer, V. (1995). Acta Cryst. C51, 1429–1431. CSD CrossRef Web of Science IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Latrofa, A., Franco, M., Lopedota, A., Rosato, A., Carone, D. & Vitali, C. (2005). Farmaco, 60, 291–297. CrossRef PubMed CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mekhzoum, M. E. M., El Bourakadi, K., Essassi, E. M., Qaiss, A. E. K. & Bouhfid, R. (2019). J. Mol. Struct. 1193, 303–309. Web of Science CSD CrossRef CAS Google Scholar
Mekhzoum, M. E. M., Essassi, E. M., Qaiss, A. E. K. & Bouhfid, R. (2016). RSC Adv. 6, 111472–111481. Web of Science CSD CrossRef CAS Google Scholar
Nagarajan, S. R., De Crescenzo, G. A., Getman, D. P., Lu, H. F., Sikorski, J. A., Walker, J. L., McDonald, J. J., Houseman, K. A., Kocan, G. P., Kishore, N., Mehta, P. P., Funkes-Shippy, C. L. & Blystone, L. (2003). Bioorg. & Med. Chem. 11, 4769–4777. Web of Science CrossRef CAS Google Scholar
Naithani, D. K., Shrivastava, V. K., Barthwal, J. P., Szxena, A. K., Gupta, T. A. & Shanker, K. (1989). Indian J. Chem. 28B, 990–992. CAS Google Scholar
Oketani, K., Nagakura, N., Harada, K. & Inoue, T. (2001). Eur. J. Pharmacol. 422, 209–216. Web of Science CrossRef PubMed CAS Google Scholar
Olyaei, A., Abbasi, A., Ghandi, M., Salimi, F. & Eriksson, L. (2006). Acta Cryst. E62, o5326–o5327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pitta, E., Geronikaki, A., Surmava, S., Eleftheriou, P., Mehta, V. P. & Van der Eycken, E. V. (2013). J. Enzyme Inhib. Med. Chem. 28, 113–122. Web of Science CrossRef CAS PubMed Google Scholar
Saczewski, F., Kornicka, A. & Gdaniec, M. (2005). Pol. J. Chem. 79, 115–120. CAS Google Scholar
Saggu, J. S., Sharma, R., Dureja, H. & Kumar, V. (2002). J. Indian Inst. Sci. 82, 177–182. CAS Google Scholar
Sahoo, S. K., Jena, H. S., Majji, G. & Patel, B. K. (2014). Synthesis, 46, 1886–1900. Google Scholar
Sebbar, N. K., Ellouz, M., Elmsellem, H., Zerzouf, A., Hlimi, F. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 179–183. CAS Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Shastry, C. S., Joshi, S. D., Aravind, M. B. & Veerapur, V. P. (2003). Indian. J. Het. Chem. 13, 57–60. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, M. K., Tilak, R., Nath, G., Awasthi, S. K. & Agarwal, A. (2013). Eur. J. Med. Chem. 63, 635–644. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Tewari, A. K. & Mishra, A. (2006). Indian J. Chem. 45B, 489–493. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Yang, B. Q., Yang, P. H. & Zhu, A. L. (2003). Chin. Chem. Lett. 14, 901–903. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.