research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-(1,3-benzo­thia­zol-2-yl)-3-(2-hy­dr­oxy­eth­yl)imidazolidin-2-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bFaculté des Sciences Appliquées Ait Melloul, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mohamedsrhir2018@gmail.com

Edited by J. Jasinsk, Keene State College, USA (Received 23 December 2019; accepted 6 February 2020; online 14 February 2020)

In the title mol­ecule, C12H13N3O2S, the benzo­thia­zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hy­droxy­ethyl, Thz = thia­zole, Imdz = imidazolidine and Bnz = benzene) inter­actions, together with C—HImdzπ(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter­actions between thia­zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Compounds containing the benzo­thia­zole backbone have been studied extensively in both academic and industrial laboratories (Mekhzoum et al., 2016[Mekhzoum, M. E. M., Essassi, E. M., Qaiss, A. E. K. & Bouhfid, R. (2016). RSC Adv. 6, 111472-111481.], 2019[Mekhzoum, M. E. M., El Bourakadi, K., Essassi, E. M., Qaiss, A. E. K. & Bouhfid, R. (2019). J. Mol. Struct. 1193, 303-309.]; Chakib et al., 2010a[Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842.],b[Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010b). Acta Cryst. E66, o1096.], 2019[Chakib, I., El Bakri, Y., Lai, C.-H., Benbacer, L., Zerzouf, A., Essassi, E. M. & Mague, J. T. (2019). J. Mol. Struct. 1198, 126910-126921.]). These mol­ecules exhibit a wide range of biological applications including as anti-tumor agents (Bénéteau et al., 1999[Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053-1060.]; Ćaleta et al., 2004[Ćaleta, I., Grdiša, M., Mrvoš-Sermek, D., Cetina, M., Tralić-Kulenović, V., Pavelić, K. & Karminski-Zamola, G. (2004). Farmaco, 59, 297-305.]), anti­microbial agents (Shastry et al., 2003[Shastry, C. S., Joshi, S. D., Aravind, M. B. & Veerapur, V. P. (2003). Indian. J. Het. Chem. 13, 57-60.]; Latrofa et al., 2005[Latrofa, A., Franco, M., Lopedota, A., Rosato, A., Carone, D. & Vitali, C. (2005). Farmaco, 60, 291-297.], Singh et al., 2013[Singh, M. K., Tilak, R., Nath, G., Awasthi, S. K. & Agarwal, A. (2013). Eur. J. Med. Chem. 63, 635-644.]), analgesics (Kaur et al., 2010[Kaur, H., Kumar, S., Singh, I., Saxena, K. K. & Kumar, A. (2010). DIG. J. Nanomater. Bios 5, 67-76.]), anti-inflammatory agents (Oketani et al., 2001[Oketani, K., Nagakura, N., Harada, K. & Inoue, T. (2001). Eur. J. Pharmacol. 422, 209-216.]), anti-HIV agents (Nagarajan et al., 2003[Nagarajan, S. R., De Crescenzo, G. A., Getman, D. P., Lu, H. F., Sikorski, J. A., Walker, J. L., McDonald, J. J., Houseman, K. A., Kocan, G. P., Kishore, N., Mehta, P. P., Funkes-Shippy, C. L. & Blystone, L. (2003). Bioorg. & Med. Chem. 11, 4769-4777.]; Pitta et al., 2013[Pitta, E., Geronikaki, A., Surmava, S., Eleftheriou, P., Mehta, V. P. & Van der Eycken, E. V. (2013). J. Enzyme Inhib. Med. Chem. 28, 113-122.]), anti-leishmanial agents (Delmas et al., 2004[Delmas, F., Avellaneda, A., Di Giorgio, C., Robin, M., De Clercq, E., Timon-David, P. & Galy, J. P. (2004). Eur. J. Med. Chem. 39, 685-690.]), anti-cancer agents (Yang et al., 2003[Yang, B. Q., Yang, P. H. & Zhu, A. L. (2003). Chin. Chem. Lett. 14, 901-903.]; Huang et al., 2006[Huang, S.-T., Hsei, I.-J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106-6119.]; Kok et al., 2008[Kok, S. H. L., Gambari, R., Chui, C. H., Yuen, M. C. W., Lin, E., Wong, R. S. M., Lau, F. Y., Cheng, G. Y. M., Lam, W. S., Chan, S. H., Lam, K. H., Cheng, C. H., Lai, P. B. S., Yu, W. Y., Cheung, F., Tang, J. C. O. & Chan, A. S. C. (2008). Bioorg. & Med. Chem. 16, 3626-3631.]), anti-hypertensive agents (Saggu et al., 2002[Saggu, J. S., Sharma, R., Dureja, H. & Kumar, V. (2002). J. Indian Inst. Sci. 82, 177-182.]), anti­oxidants, (Ayhan-Kilcigil et al., 2004[Ayhan-Kilcigil, G., Kus, C., Çoban, T., Can-Eke, B. & Iscan, M. (2004). J. Enzyme Inhib. Med. Chem. 19, 129-135.]) and anti-viral agents (Tewari et al., 2006[Tewari, A. K. & Mishra, A. (2006). Indian J. Chem. 45B, 489-493.]). The imidazolinone moiety is an important scaffold possessing a spectrum of pharmacological actions, which include anti-convulsant, anti-parkinsonism and mono­amino-oxidase inhibitory activities (Hari Narayana Moorthy et al., 2012[Hari Narayana Moorthy, N. S., Saxena, V., Karthikeyan, C. & Trivedi, P. (2012). J. Enzyme Inhib. Med. Chem. 27, 201-207.]; Desai et al., 2009[Desai, N. C., Bhavsar, A. M. & Baldaniya, B. B. (2009). Indian J. Pharm. Sci. 71, 90-94.]). Furthermore, imidazolo­nes are anti-bacterial, anti-fungal, anti-viral, anti-cancer and CNS-depressant agents (Naithani et al., 1989[Naithani, D. K., Shrivastava, V. K., Barthwal, J. P., Szxena, A. K., Gupta, T. A. & Shanker, K. (1989). Indian J. Chem. 28B, 990-992.]; Harfenist et al., 1978[Harfenist, M., Soroko, E. F. & McKenzie, G. M. (1978). J. Med. Chem. 21, 405-409.]). We have previously shown that bis­(2-chloro­eth­yl)amine hydro­chloride is an inter­esting precursor of several heterocyclic compounds containing the oxazolidinone moiety (Sebbar et al., 2016[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845-6862.], 2018[Sebbar, N. K., Ellouz, M., Elmsellem, H., Zerzouf, A., Hlimi, F. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 179-183.]; Ellouz et al., 2017[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170646.]; Hni et al., 2019[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 593-599.]). In a continuation of our research using bis­(2-chloro­eth­yl)amine hydro­chloride as an inter­mediate in the synthesis of new heterocyclic systems, we have studied the condensation of 2-amino­benzo­thia­zole with bis­(2-chloro­eth­yl)amine hydro­chloride in the presence of tetra-n-butyl­ammonium bromide as catalyst and potassium carbonate as base. A plausible mechanism for the formationof the product, 1-(1,3-benzo­thia­zol-2-yl)-3-(2-hy­droxy­eth­yl)imid­azolidin-2-one (I), is given in the reaction scheme.

[Scheme 2]

The title compound was obtained for the first time and characterized by single crystal X-ray diffraction techniques as well as by Hirshfeld surface analysis. The results of the calculations by density functional theory (DFT), carried out at the B3LYP/6-311G (d,p) level, are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

In the title mol­ecule (I) (Fig. 1[link]), the benzo­thia­zole unit is slightly non-planar, as indicated by the dihedral angle of 1.52 (4)° between the mean planes of the component rings, [A (C1–C6) and B (S1/N1/C1/C6/C7)]. A puckering analysis of the conformation of the imidazolidine ring C (N2/N3/C8-C10) gave the parameters Q(2) = 0.0767 (14) Å and φ(2) = 66.5 (10)°. The conformation is described as an `envelope on C9′. This ring is almost coplanar with the thia­zole ring B with a dihedral angle of 3.61 (4)° between their mean planes.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, O—HHydethy⋯NThz (Hydethy = hy­droxy­ethyl and Thz = thia­zole) hydrogen bonds (Table 1[link]) form stepped chains of mol­ecules extending along the c-axis direction (Fig. 2[link]). These are connected into layers parallel to the bc plane by weak C—HImdz⋯OImdz (Imdz = imidazolidine) and C—HImdzπ(ring) inter­actions (Table 1[link]). The layers are connected by weak C—HBnz⋯OImdz (Bnz = benzene) inter­actions. Both the layer formation and stacking are also assisted by head-to-tail slipped π-stacking inter­actions (Figs. 3[link] and 4[link]) along the a-axis direction between thia­zole rings [Cg2⋯Cg2i and Cg2⋯Cg2ii = 3.6507 (7) and 3.6866 (7) Å, respectively; symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + [{1\over 2}], −z + [{3\over 2}], where Cg2 is the centroid of ring B].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring (A, C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1iii 0.90 (2) 1.97 (2) 2.8560 (15) 170 (2)
C5—H5⋯O1i 0.954 (19) 2.559 (19) 3.4439 (16) 154.3 (14)
C8—H8B⋯O1vi 0.958 (17) 2.532 (16) 3.2542 (16) 132.2 (13)
C8—H8ACg1iv 0.997 (17) 2.840 (16) 3.5646 (15) 130.0 (12)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A portion of the O—HHydethy⋯NThz (Hydethy = hy­droxy­ethyl and Thz = thia­zole) (red dashed lines) hydrogen bonded chain in I viewed along the a axis.
[Figure 3]
Figure 3
Portions of two chains, viewed along the b axis, showing the inter­actions between them. O—HHydethy⋯NThz hydrogen bonds are shown by red dashed lines while the weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hy­droxy­ethyl, Thz = thia­zole, Imdz = imidazolidine and Bnz = benzene) inter­actions are shown by black dashed lines. The weak C—HImdzπ(ring) and the head-to-tail slipped π-stacking inter­actions are shown, respectively, by green and orange dashed lines.
[Figure 4]
Figure 4
A partial packing diagram viewed along the b axis with inter­molecular inter­actions depicted as in Fig. 3[link]. Three unit cells along the a axis are shown.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of I, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1 and hydrogen atoms H5, H2A, H8B indicate their roles as donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) shown in Fig. 6[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 7[link] clearly suggests that there are ππ inter­actions in I.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of I plotted over dnorm in the range −0.5793 to 1.2827 a.u.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of I plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 7]
Figure 7
Hirshfeld surface of I plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 8[link]a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯N/N ⋯ H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O, S⋯C/C⋯S and S⋯N/N ⋯ S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 8[link]bk, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action (Table 2[link]) is H⋯H, contributing 47.0% to the overall crystal packing, which is reflected in Fig. 8[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.10 Å. The pair of wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 8[link]c, 16.9% contribution) has a symmetrical distribution of points with the edges at de + di = 2.40 Å. The presence of C—H⋯π inter­actions is indicated by the characteristic wings with a spikes with the tips at de + di = 2.63 Å in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 8[link]d, 8.0% contribution). The H⋯S/S⋯H contacts contribute 7.6% to the overall crystal packing and are seen in Fig. 8[link]e as widely scattered points with the tips at de + di = 3.03 Å. The pair of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 8[link]f, 5.3%) has a symmetrical distribution of points with the tips at de + di = 1.88 Å. The C⋯C contacts (5.0% contribution, Fig. 8[link]g) have an arrow-shaped distribution of points with the tip at de = di = 1.70 Å. The N⋯C/C⋯N inter­actions (4.3%, Fig. 8[link]h) give rise to tiny wings with the tips at de + di = 3.41 Å. The O⋯C/C⋯O contacts (2.2%, Fig. 8[link]i) give widely scattered points with the tips at de + di = 3.56 Å. Finally, the S⋯C/C⋯S and S⋯N/N⋯S inter­actions, contributing 2.2% and 1.3% to the overall crystal packing (Fig. 8[link]j and k) give rise to tiny wings with the tips at de + di = 3.63 Å and de + di = 3.63 Å, respectively.

Table 2
Selected interatomic distances (Å)

S1⋯O1 2.7721 (10) C1⋯C7iv 3.4070 (17)
S1⋯C11i 3.6700 (14) C2⋯C10iv 3.5859 (18)
S1⋯C1ii 3.6552 (12) C3⋯C10iv 3.5928 (19)
S1⋯H11Ai 3.117 (16) C4⋯C10ii 3.4350 (19)
O1⋯C9iii 3.2869 (16) C4⋯C8iv 3.587 (2)
O1⋯C8iii 3.2543 (16) C6⋯C7ii 3.5502 (17)
O2⋯N1iii 2.8560 (14) C1⋯H2Avi 2.81 (2)
O2⋯C3iv 3.4071 (17) C4⋯H8Aiv 2.850 (16)
O2⋯N3 2.9500 (15) C5⋯H8Aiv 2.718 (15)
O1⋯H9Biii 2.640 (17) C9⋯H12B 2.830 (16)
O1⋯H11A 2.482 (17) C12⋯H9A 2.857 (18)
O1⋯H8Biii 2.534 (16) H2⋯H9Avii 2.49 (3)
O2⋯H9Av 2.804 (19) H2⋯H2Avi 2.53 (3)
O2⋯H12Bv 2.803 (18) H2A⋯H8Biii 2.59 (3)
O2⋯H3iv 2.601 (18) H4⋯C12viii 2.828 (18)
O2⋯H2iii 2.838 (18) H4⋯H12Aviii 2.38 (2)
N1⋯C12vi 3.4313 (17) H4⋯H12Bviii 2.38 (2)
N2⋯C5ii 3.4204 (17) H5⋯O1i 2.557 (17)
N1⋯H8B 2.769 (17) H5⋯H11Ai 2.36 (2)
N1⋯H2Avi 1.97 (2) H8B⋯H11Avi 2.44 (2)
N1⋯H8A 2.857 (17) H9A⋯H12B 2.40 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) x, y+1, z.
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for I, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H ⋯ C/C⋯H, (e) H⋯S/S⋯H, (f) H⋯N/N⋯H, (g) C⋯C, (h) C ⋯ N/N⋯C, (i) O⋯C/C⋯O, (j) S⋯C/C⋯S and (k) S⋯N/N⋯S inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H ⋯ S/S⋯H, H⋯N/N⋯H and C⋯C inter­actions in Fig. 9[link]a--f, respectively.

[Figure 9]
Figure 9
The Hirshfeld surface representations for I with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H, (c) H⋯C/C⋯ H, (d) H⋯S/S⋯H, (e) H⋯N/N⋯H and (f) C⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated by the CE–B3LYP/6–311G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) using the cluster of mol­ecules generated by applying crystallographic symmetry operations within a radius of 3.8 Å of a central mol­ecule (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −67.2 (Eele), −18.0 (Epol), −35.4 (Edis), 75.7 (Erep) and −68.5 (Etot) for O2—H2A⋯N1, −21.5 (Eele), −6.1 (Epol), −82.0 (Edis), 62.3 (Erep) and −60.1 (Etot) for C5—H5⋯O1 and −1.2 (Eele), −6.3 (Epol), −73.7 (Edis), 45.7 (Erep) and −41.8 (Etot) for C8—H8B⋯O1.

6. DFT calculations

The main aim of these computations is to provide an inter­pretation of the experimental results. For this purpose, the structural parameters of equilibrium geometry for I in the gas phase have been computed using the B3LYP functional level of theory and the 6-31G (d,p) basis set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) implemented in GAUSSIAN-09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN-09. Gaussian Inc., Wallingford, CT, US.]). The mol­ecule adopts a geometry very close to that obtained using DFT calculations (Table 3[link]). The largest differences between the calculated and experimental values are observed for the S1—C6 (0.1 Å) and S1—C7 (0.08 Å) bond lengths and the C11—N3—C9 bond angle (1.6°). These disparities can be linked to the fact that these calculations relate to the isolated mol­ecule, whereas the experimental results correspond to inter­acting mol­ecules in the crystal lattice where intra and inter­molecular inter­actions with the neighboring mol­ecules are present.

Table 3
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
S1—C6 1.7448 (13) 1.83061
S1—C7 1.7517 (12) 1.85613
O1—C10 1.2246 (16) 1.24399
O2—C12 1.4161 (17) 1.45513
N1—C7 1.3060 (16) 1.30197
N1—C1 1.3940 (16) 1.40321
N2—C7 1.3619 (17) 1.37118
N2—C10 1.3930 (16) 1.40686
N2—C8 1.4628 (16) 1.47735
N3—C10 1.3477 (16) 1.37333
N3—C11 1.4485 (16) 1.45760
N3—C9 1.4543 (17) 1.47023
     
C6—S1—C7 88.16 (6) 87.72
C7—N2—C10 125.18 (10) 126.57
C7—N1—C1 109.77 (10) 110.27
C7—N2—C8 122.65 (10) 121.09
C10—N2—C8 112.16 (10) 112.17
C10—N3—C11 123.10 (11) 122.39
C10—N3—C9 113.37 (10) 113.06
C11—N3—C9 122.24 (11) 123.84

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41 updated to December 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment II generated 24 hits of which 10 were metal complexes of benzo­thia­zole or its derivatives. Of the remaining mol­ecules, the four closest in composition and structure to I are III (KEQTAC; Olyaei et al., 2006[Olyaei, A., Abbasi, A., Ghandi, M., Salimi, F. & Eriksson, L. (2006). Acta Cryst. E62, o5326-o5327.]), IV (NOHJAX; Sahoo et al., 2014[Sahoo, S. K., Jena, H. S., Majji, G. & Patel, B. K. (2014). Synthesis, 46, 1886-1900.]), V (RUBPAG; Saczewski et al., 2005[Saczewski, F., Kornicka, A. & Gdaniec, M. (2005). Pol. J. Chem. 79, 115-120.]) and VI (YUYTUH; Kozísek et al., 1995[Kozísek, J., Ulický, L., Floch, L. & Langer, V. (1995). Acta Cryst. C51, 1429-1431.]). In all four, the benzo­thia­zole moiety is more nearly planar than in I, with the dihedral angle between the constituent planes being < 1° except for VI where it is 1.3°. In I, the dihedral angle between the planes defined by C7/N1/C1/C6/S1 and C7/N2/C8/C10 is 1.94 (4)° while the corresponding dihedral angle in the others vary from 13.64° in III to 0.61° in V.

[Scheme 3]

8. Synthesis and crystallization

To a mixture of 2-amino­benzo­thia­zole (2.22 mmol), bis(2-chloro­eth­yl)amine (1.11 mmol) and potassium carbonate (3.21 mmol) in DMF (25 mL) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.37 mmol). The mixture was stirred at 353 K for 24 h. The solid material was removed by filtration and the solvent evaporated in vacuo. The solid product was purified by recrystallization from ethanol to give colourless crystals (yield: 70%).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms were located in a difference-Fourier map and their coordinates and isotropic displacement parameters refined without restraints.

Table 4
Experimental details

Crystal data
Chemical formula C12H13N3O2S
Mr 263.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 7.2863 (2), 13.9178 (5), 11.6156 (4)
β (°) 98.866 (1)
V3) 1163.85 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.47
Crystal size (mm) 0.28 × 0.27 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.69, 0.77
No. of measured, independent and observed [I > 2σ(I)] reflections 8781, 2246, 2160
Rint 0.023
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06
No. of reflections 2246
No. of parameters 215
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(1,3-Benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one top
Crystal data top
C12H13N3O2SF(000) = 552
Mr = 263.31Dx = 1.503 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.2863 (2) ÅCell parameters from 7989 reflections
b = 13.9178 (5) Åθ = 6.2–72.3°
c = 11.6156 (4) ŵ = 2.47 mm1
β = 98.866 (1)°T = 150 K
V = 1163.85 (7) Å3Block, colourless
Z = 40.28 × 0.27 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2246 independent reflections
Radiation source: INCOATEC IµS micro-focus source2160 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 6.2°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1715
Tmin = 0.69, Tmax = 0.77l = 1414
8781 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.080All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.4296P]
where P = (Fo2 + 2Fc2)/3
2246 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84367 (4)0.49137 (2)0.62655 (3)0.02128 (12)
O10.88222 (13)0.29904 (7)0.68752 (8)0.0249 (2)
O20.55711 (14)0.04397 (7)0.66690 (8)0.0288 (2)
H2A0.586 (3)0.0432 (16)0.745 (2)0.055 (6)*
N10.67379 (15)0.47968 (7)0.41147 (9)0.0191 (2)
N20.74321 (14)0.33066 (7)0.49825 (9)0.0193 (2)
N30.78449 (16)0.17939 (8)0.55357 (9)0.0223 (2)
C10.69815 (16)0.57713 (9)0.43706 (11)0.0188 (3)
C20.63908 (18)0.65197 (10)0.35997 (12)0.0241 (3)
H20.570 (2)0.6355 (13)0.2837 (16)0.035 (4)*
C30.67664 (19)0.74589 (10)0.39635 (13)0.0267 (3)
H30.637 (2)0.7985 (14)0.3464 (16)0.035 (5)*
C40.77217 (19)0.76532 (10)0.50716 (13)0.0275 (3)
H40.797 (2)0.8334 (13)0.5348 (16)0.035 (4)*
C50.82913 (19)0.69236 (10)0.58568 (12)0.0251 (3)
H50.891 (2)0.7065 (13)0.6624 (16)0.032 (4)*
C60.79036 (17)0.59783 (9)0.54928 (11)0.0201 (3)
C70.74425 (16)0.42847 (9)0.50177 (10)0.0177 (3)
C80.66402 (19)0.27650 (9)0.39448 (11)0.0217 (3)
H8A0.528 (2)0.2896 (12)0.3761 (15)0.031 (4)*
H8B0.725 (2)0.2958 (12)0.3310 (15)0.027 (4)*
C90.7093 (2)0.17217 (10)0.43041 (11)0.0274 (3)
H9A0.597 (3)0.1309 (13)0.4205 (16)0.037 (5)*
H9B0.801 (2)0.1427 (13)0.3901 (15)0.036 (4)*
C100.81190 (17)0.27069 (9)0.59095 (11)0.0189 (3)
C110.8591 (2)0.09704 (10)0.62142 (11)0.0250 (3)
H11A0.900 (2)0.1210 (12)0.6983 (15)0.028 (4)*
H11B0.972 (2)0.0720 (13)0.5935 (15)0.031 (4)*
C120.7190 (2)0.01623 (9)0.62181 (12)0.0256 (3)
H12A0.784 (2)0.0373 (12)0.6672 (14)0.026 (4)*
H12B0.681 (2)0.0069 (11)0.5418 (16)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0263 (2)0.01777 (18)0.01832 (18)0.00109 (11)0.00106 (13)0.00110 (10)
O10.0344 (5)0.0211 (5)0.0181 (4)0.0011 (4)0.0003 (4)0.0002 (3)
O20.0353 (5)0.0272 (5)0.0228 (5)0.0006 (4)0.0011 (4)0.0037 (4)
N10.0222 (5)0.0164 (5)0.0185 (5)0.0007 (4)0.0025 (4)0.0010 (4)
N20.0259 (5)0.0152 (5)0.0163 (5)0.0001 (4)0.0012 (4)0.0004 (4)
N30.0319 (6)0.0153 (5)0.0183 (5)0.0003 (4)0.0002 (4)0.0023 (4)
C10.0191 (6)0.0160 (6)0.0218 (6)0.0007 (5)0.0048 (4)0.0003 (5)
C20.0284 (7)0.0198 (6)0.0237 (6)0.0030 (5)0.0027 (5)0.0023 (5)
C30.0312 (7)0.0181 (6)0.0316 (7)0.0048 (5)0.0073 (5)0.0036 (5)
C40.0300 (7)0.0174 (6)0.0361 (7)0.0016 (5)0.0081 (6)0.0030 (5)
C50.0262 (6)0.0204 (6)0.0281 (7)0.0004 (5)0.0027 (5)0.0051 (5)
C60.0198 (6)0.0183 (6)0.0221 (6)0.0017 (5)0.0030 (5)0.0006 (5)
C70.0180 (6)0.0166 (6)0.0188 (6)0.0002 (4)0.0041 (4)0.0005 (4)
C80.0299 (7)0.0175 (6)0.0168 (6)0.0019 (5)0.0005 (5)0.0003 (5)
C90.0439 (8)0.0179 (6)0.0187 (6)0.0025 (6)0.0008 (5)0.0003 (5)
C100.0220 (6)0.0172 (6)0.0180 (6)0.0006 (5)0.0046 (5)0.0021 (5)
C110.0333 (7)0.0167 (6)0.0243 (7)0.0038 (5)0.0022 (5)0.0033 (5)
C120.0399 (8)0.0153 (6)0.0210 (7)0.0011 (5)0.0023 (6)0.0003 (5)
Geometric parameters (Å, º) top
S1—C61.7448 (13)C3—C41.392 (2)
S1—C71.7517 (12)C3—H30.952 (19)
O1—C101.2246 (16)C4—C51.385 (2)
O2—C121.4161 (17)C4—H41.008 (18)
O2—H2A0.90 (2)C5—C61.3974 (18)
N1—C71.3060 (16)C5—H50.954 (19)
N1—C11.3940 (16)C8—C91.5327 (18)
N2—C71.3619 (17)C8—H8A0.997 (17)
N2—C101.3930 (16)C8—H8B0.958 (17)
N2—C81.4628 (16)C9—H9A0.993 (19)
N3—C101.3477 (16)C9—H9B0.967 (18)
N3—C111.4485 (16)C11—C121.5194 (19)
N3—C91.4543 (17)C11—H11A0.957 (18)
C1—C21.3975 (18)C11—H11B0.992 (17)
C1—C61.4013 (18)C12—H12A0.991 (17)
C2—C31.388 (2)C12—H12B0.982 (18)
C2—H20.977 (19)
S1···O12.7721 (10)C1···C7iv3.4070 (17)
S1···C11i3.6700 (14)C2···C10iv3.5859 (18)
S1···C1ii3.6552 (12)C3···C10iv3.5928 (19)
S1···H11Ai3.117 (16)C4···C10ii3.4350 (19)
O1···C9iii3.2869 (16)C4···C8iv3.587 (2)
O1···C8iii3.2543 (16)C6···C7ii3.5502 (17)
O2···N1iii2.8560 (14)C1···H2Avi2.81 (2)
O2···C3iv3.4071 (17)C4···H8Aiv2.850 (16)
O2···N32.9500 (15)C5···H8Aiv2.718 (15)
O1···H9Biii2.640 (17)C9···H12B2.830 (16)
O1···H11A2.482 (17)C12···H9A2.857 (18)
O1···H8Biii2.534 (16)H2···H9Avii2.49 (3)
O2···H9Av2.804 (19)H2···H2Avi2.53 (3)
O2···H12Bv2.803 (18)H2A···H8Biii2.59 (3)
O2···H3iv2.601 (18)H4···C12viii2.828 (18)
O2···H2iii2.838 (18)H4···H12Aviii2.38 (2)
N1···C12vi3.4313 (17)H4···H12Bviii2.38 (2)
N2···C5ii3.4204 (17)H5···O1i2.557 (17)
N1···H8B2.769 (17)H5···H11Ai2.36 (2)
N1···H2Avi1.97 (2)H8B···H11Avi2.44 (2)
N1···H8A2.857 (17)H9A···H12B2.40 (2)
C6—S1—C788.16 (6)N2—C7—S1121.60 (9)
C12—O2—H2A106.8 (13)N2—C8—C9102.87 (10)
C7—N1—C1109.77 (10)N2—C8—H8A109.6 (10)
C7—N2—C10125.18 (10)C9—C8—H8A113.3 (10)
C7—N2—C8122.65 (10)N2—C8—H8B108.6 (10)
C10—N2—C8112.16 (10)C9—C8—H8B111.6 (10)
C10—N3—C11123.10 (11)H8A—C8—H8B110.5 (14)
C10—N3—C9113.37 (10)N3—C9—C8103.60 (10)
C11—N3—C9122.24 (11)N3—C9—H9A109.4 (11)
N1—C1—C2124.89 (12)C8—C9—H9A112.1 (10)
N1—C1—C6115.18 (11)N3—C9—H9B108.8 (10)
C2—C1—C6119.93 (12)C8—C9—H9B114.0 (11)
C3—C2—C1118.69 (13)H9A—C9—H9B108.7 (15)
C3—C2—H2123.1 (10)O1—C10—N3128.27 (12)
C1—C2—H2118.2 (11)O1—C10—N2124.38 (11)
C2—C3—C4120.76 (13)N3—C10—N2107.35 (10)
C2—C3—H3120.8 (11)N3—C11—C12113.03 (11)
C4—C3—H3118.5 (11)N3—C11—H11A105.6 (10)
C5—C4—C3121.51 (13)C12—C11—H11A111.7 (10)
C5—C4—H4117.3 (10)N3—C11—H11B111.1 (10)
C3—C4—H4121.1 (10)C12—C11—H11B109.4 (10)
C4—C5—C6117.70 (13)H11A—C11—H11B105.7 (14)
C4—C5—H5120.9 (11)O2—C12—C11113.43 (11)
C6—C5—H5121.4 (11)O2—C12—H12A111.6 (9)
C5—C6—C1121.38 (12)C11—C12—H12A106.8 (9)
C5—C6—S1128.70 (10)O2—C12—H12B108.1 (10)
C1—C6—S1109.92 (9)C11—C12—H12B109.3 (9)
N1—C7—N2121.45 (11)H12A—C12—H12B107.4 (13)
N1—C7—S1116.94 (10)
C7—N1—C1—C2179.95 (12)C8—N2—C7—S1178.90 (9)
C7—N1—C1—C60.42 (15)C6—S1—C7—N11.36 (10)
N1—C1—C2—C3178.49 (12)C6—S1—C7—N2177.54 (10)
C6—C1—C2—C31.12 (19)C7—N2—C8—C9175.82 (11)
C1—C2—C3—C40.4 (2)C10—N2—C8—C95.38 (14)
C2—C3—C4—C51.5 (2)C10—N3—C9—C87.90 (16)
C3—C4—C5—C61.1 (2)C11—N3—C9—C8175.30 (11)
C4—C5—C6—C10.40 (19)N2—C8—C9—N37.49 (14)
C4—C5—C6—S1179.83 (10)C11—N3—C10—O18.4 (2)
N1—C1—C6—C5178.12 (11)C9—N3—C10—O1175.68 (13)
C2—C1—C6—C51.53 (19)C11—N3—C10—N2172.01 (11)
N1—C1—C6—S11.40 (13)C9—N3—C10—N24.74 (15)
C2—C1—C6—S1178.95 (9)C7—N2—C10—O10.1 (2)
C7—S1—C6—C5178.02 (13)C8—N2—C10—O1178.84 (12)
C7—S1—C6—C11.45 (9)C7—N2—C10—N3179.53 (11)
C1—N1—C7—N2178.10 (11)C8—N2—C10—N30.77 (14)
C1—N1—C7—S10.80 (13)C10—N3—C11—C12135.47 (13)
C10—N2—C7—N1178.69 (11)C9—N3—C11—C1258.36 (17)
C8—N2—C7—N10.05 (18)N3—C11—C12—O259.05 (15)
C10—N2—C7—S12.46 (17)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x, y+1/2, z1/2; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring (A, C1–C6).
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1iii0.90 (2)1.97 (2)2.8560 (15)170 (2)
C5—H5···O1i0.954 (19)2.559 (19)3.4439 (16)154.3 (14)
C8—H8B···O1vi0.958 (17)2.532 (16)3.2542 (16)132.2 (13)
C8—H8A···Cg1iv0.997 (17)2.840 (16)3.5646 (15)130.0 (12)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (vi) x, y+1/2, z1/2.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
S1—C61.7448 (13)1.83061
S1—C71.7517 (12)1.85613
O1—C101.2246 (16)1.24399
O2—C121.4161 (17)1.45513
N1—C71.3060 (16)1.30197
N1—C11.3940 (16)1.40321
N2—C71.3619 (17)1.37118
N2—C101.3930 (16)1.40686
N2—C81.4628 (16)1.47735
N3—C101.3477 (16)1.37333
N3—C111.4485 (16)1.45760
N3—C91.4543 (17)1.47023
C6—S1—C788.16 (6)87.72
C7—N2—C10125.18 (10)126.57
C7—N1—C1109.77 (10)110.27
C7—N2—C8122.65 (10)121.09
C10—N2—C8112.16 (10)112.17
C10—N3—C11123.10 (11)122.39
C10—N3—C9113.37 (10)113.06
C11—N3—C9122.24 (11)123.84
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAyhan-Kilcigil, G., Kus, C., Çoban, T., Can-Eke, B. & Iscan, M. (2004). J. Enzyme Inhib. Med. Chem. 19, 129–135.  Web of Science PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053–1060.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationĆaleta, I., Grdiša, M., Mrvoš-Sermek, D., Cetina, M., Tralić-Kulenović, V., Pavelić, K. & Karminski-Zamola, G. (2004). Farmaco, 59, 297–305.  PubMed Google Scholar
First citationChakib, I., El Bakri, Y., Lai, C.-H., Benbacer, L., Zerzouf, A., Essassi, E. M. & Mague, J. T. (2019). J. Mol. Struct. 1198, 126910–126921.  Web of Science CSD CrossRef Google Scholar
First citationChakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010b). Acta Cryst. E66, o1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDelmas, F., Avellaneda, A., Di Giorgio, C., Robin, M., De Clercq, E., Timon-David, P. & Galy, J. P. (2004). Eur. J. Med. Chem. 39, 685–690.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesai, N. C., Bhavsar, A. M. & Baldaniya, B. B. (2009). Indian J. Pharm. Sci. 71, 90–94.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170646.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN-09. Gaussian Inc., Wallingford, CT, US.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarfenist, M., Soroko, E. F. & McKenzie, G. M. (1978). J. Med. Chem. 21, 405–409.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHari Narayana Moorthy, N. S., Saxena, V., Karthikeyan, C. & Trivedi, P. (2012). J. Enzyme Inhib. Med. Chem. 27, 201–207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 593–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, S.-T., Hsei, I.-J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKaur, H., Kumar, S., Singh, I., Saxena, K. K. & Kumar, A. (2010). DIG. J. Nanomater. Bios 5, 67–76.  Google Scholar
First citationKok, S. H. L., Gambari, R., Chui, C. H., Yuen, M. C. W., Lin, E., Wong, R. S. M., Lau, F. Y., Cheng, G. Y. M., Lam, W. S., Chan, S. H., Lam, K. H., Cheng, C. H., Lai, P. B. S., Yu, W. Y., Cheung, F., Tang, J. C. O. & Chan, A. S. C. (2008). Bioorg. & Med. Chem. 16, 3626–3631.  Web of Science CrossRef CAS Google Scholar
First citationKozísek, J., Ulický, L., Floch, L. & Langer, V. (1995). Acta Cryst. C51, 1429–1431.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLatrofa, A., Franco, M., Lopedota, A., Rosato, A., Carone, D. & Vitali, C. (2005). Farmaco, 60, 291–297.  CrossRef PubMed CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMekhzoum, M. E. M., El Bourakadi, K., Essassi, E. M., Qaiss, A. E. K. & Bouhfid, R. (2019). J. Mol. Struct. 1193, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekhzoum, M. E. M., Essassi, E. M., Qaiss, A. E. K. & Bouhfid, R. (2016). RSC Adv. 6, 111472–111481.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagarajan, S. R., De Crescenzo, G. A., Getman, D. P., Lu, H. F., Sikorski, J. A., Walker, J. L., McDonald, J. J., Houseman, K. A., Kocan, G. P., Kishore, N., Mehta, P. P., Funkes-Shippy, C. L. & Blystone, L. (2003). Bioorg. & Med. Chem. 11, 4769–4777.  Web of Science CrossRef CAS Google Scholar
First citationNaithani, D. K., Shrivastava, V. K., Barthwal, J. P., Szxena, A. K., Gupta, T. A. & Shanker, K. (1989). Indian J. Chem. 28B, 990–992.  CAS Google Scholar
First citationOketani, K., Nagakura, N., Harada, K. & Inoue, T. (2001). Eur. J. Pharmacol. 422, 209–216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlyaei, A., Abbasi, A., Ghandi, M., Salimi, F. & Eriksson, L. (2006). Acta Cryst. E62, o5326–o5327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPitta, E., Geronikaki, A., Surmava, S., Eleftheriou, P., Mehta, V. P. & Van der Eycken, E. V. (2013). J. Enzyme Inhib. Med. Chem. 28, 113–122.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaczewski, F., Kornicka, A. & Gdaniec, M. (2005). Pol. J. Chem. 79, 115–120.  CAS Google Scholar
First citationSaggu, J. S., Sharma, R., Dureja, H. & Kumar, V. (2002). J. Indian Inst. Sci. 82, 177–182.  CAS Google Scholar
First citationSahoo, S. K., Jena, H. S., Majji, G. & Patel, B. K. (2014). Synthesis, 46, 1886–1900.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Elmsellem, H., Zerzouf, A., Hlimi, F. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 179–183.  CAS Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationShastry, C. S., Joshi, S. D., Aravind, M. B. & Veerapur, V. P. (2003). Indian. J. Het. Chem. 13, 57–60.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M. K., Tilak, R., Nath, G., Awasthi, S. K. & Agarwal, A. (2013). Eur. J. Med. Chem. 63, 635–644.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTewari, A. K. & Mishra, A. (2006). Indian J. Chem. 45B, 489–493.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, B. Q., Yang, P. H. & Zhu, A. L. (2003). Chin. Chem. Lett. 14, 901–903.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds