research communications
H-pyrazolo[3,4-b]pyridine-5-carboxylate
analysis of ethyl 3-(4-chlorophenyl)-1,6-dimethyl-4-methylsulfanyl-1aDepartment of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605014, India, and cDepartment of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, India
*Correspondence e-mail: hsp.rao@sharda.ac.in
In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect molecules along [100].
Keywords: crystal structure; pyrazolopyridine; biological activity.
CCDC reference: 1977404
1. Chemical context
The nitrogen-containing heterocyclic motif is a component in many medicinally important drugs. Molecules built around the pyrazolopyridine core structure exhibit diverse medicinal properties that include anti-microbial, anti-viral, anti-fungal, anti-hypertensive, analgesic, anti-cancer, anti-inflammatory, anti-Alzheimer's, anti-diabetic, anti-nociceptive, anti-tuberculosis, and anti-leishmanial activities (Hardy, 1984; Hawas et al. 2019; de Mello et al. 2004; Panchal et al. 2019; El-Gohary et al. 2019). In addition, some pyrazolopyridines have found uses for the treatment of hemorrhagic stress, infertility, and drug addiction (Parmar et al. 1974). Specifically, they act as inhibitors of enzymes such as glycogen synthase kinase-3 (Witherington et al. 2003) and as inhibitors for adenosine receptors (Timóteo et al. 2008). Furthermore, they have been identified as promising inhibitors of cycline dependent kinase, xanthine oxidase, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), phosphodiesterase-4, NAD(P)H oxidases and cholesterol formation (Gökhan-Kelekçi et al. 2007; Panchal et al. 2019; Fathy et al. 2015). Considering the aforementioned importance of derivatives of pyrazolopyridine, we have carried out a single-crystal X-ray diffraction study on the title compound and have analyzed the structure in terms of geometrical parameters, conformation, and intermolecular hydrogen-bonding interactions.
2. Structural commentary
The title compound has pyrazole[3,4-b]pyridine motif that is decorated by several substituents shown in Fig. 1. The chlorophenyl (C6H4Cl) group attached to the pyrazolopyridine moiety exhibits an (−)anticlinal conformation [N3—C7—C6—C3 = −141.96 (19)°], as does the methylthio (SCH3) group attached to the pyrazolopyridine unit [C11—S1—C12—C13 = −128.93 (15) °] while the –COOC2H5 group attached to the pyrazolopyridine moiety has an (+)anti-periplanar conformation [N1—C14—C13—C16 = 177.00 (15)°, as do the methyl group attached to the pyridine sub-structure [C9—N1—C14—C15 = −176.20 (16)°] and the methyl group attached to the pyrazole ring (NCH3) [C10—N2—C9—C8: −178.42 (19)°]. The fused pyrazole and pyridine rings are not exactly planar, subtending a dihedral angle of 3.81 (9)°. The dihedral angle between the planes of the benzene and pyrazole rings is 35.08 (10)° and that between the benzene and pyridine rings is 36.26 (9)°.
3. Supramolecular features
In the crystal, weak C—H⋯O hydrogen bonds link molecules into chains along [100] (Table 1 and Fig. 2).
4. Database survey
A search for the pyrazolopyridine scaffold in the Cambridge Structural Database (CSD, Version 5.40; Groom et al., 2016) gave 236 hits. Of these, the structures most closely related to the title compound are FIZLEI (ethyl 2,7-diamino-3,4-dicyano-5-phenylpyrazolo[1,5-a]pyridine-6-carboxylate; Naik et al. 2019), ALAFID (Wu et al. 2016), DAWKAQ {[2-(4-chlorophenyl)pyrazolo[1,5-a]pyridin-3-yl(phenyl)methanone; Ravi et al. 2017}, NADPIU [3-(4-chlorophenyl)pyrazolo[1,5-a]pyridine; Wu et al. 2016] and ZOJWAW (Barrett et al. 1996). The geometrical parameters of the –COOCH2CH3 substituent in the title compound are comparable with those reported for FIZLEI. Similarly, the geometrical parameters of the –C6H4Cl unit in the title compound are comparable with those for in DAWKAQ and NADPIU. The bond lengths of the pyrazolo[3,4-b]pyridine scaffold of the title compound are closer to those in NADPIU. The pyrazolopyridine moiety (N1–N3/C7–C9/C12–C14) of the title compound is approximately plan, as is also observed for FIZLEI, ALAFID, DAWKAQ, NADPIU and ZOJWAW. Apart from the CSD database, two other important databases, namely Drug Bank (database for FDA-approved drugs, drugs under investigation or in clinical trials, etc; Law et al. 2013) and ZINC (database for commercially available compounds; Irwin et al. 2005) were also surveyed. The former database is used for drug repurposing or drug re-profiling studies, and latter for high-throughput virtual screening against the binding site of drug target proteins to identify promising and putative inhibitors. In the Drug Bank database, there were 31 hits, based on a 0.5 similarity threshold, whereas the ZINC search gave only three hits (ZINCIDs: ZINC45166781, ZINC3852638 and ZINC39053824). Out of 31 molecules identified in the Drug Bank database, two molecules were in the approved drug category namely riciguat (accession No: DB08931, similarity score: 0.55) and teletristat ethyl (accession No: DB12095, similarity score: 0.511). The remaining 29 molecules belong to the experimental, investigational or other categories.
5. Synthesis and crystallization:
To a solution of 3-(4-chlorophenyl)-1-methyl-1H-pyrazol-5-amine (125 mg, 0.65 mmol) and ethyl 2-(bis(methylthio)methylene)-3-oxobutanoate (145 mg, 0.65 mmol) in toluene (5 ml) under a blanket of dry N2, a catalytic amount of trifluoroacetic acid (TFA; 30 mol%) was added. The resulting mixture was refluxed for 12 h, while monitoring progress by TLC (hexane:ethyl acetate, 99:1). After completion of the reaction, the resulting mixture was subjected to purification by to furnish 182 mg of the title compound in 75% yield as a colourless solid, m.p. 415.85 K, Rf = 0.3 (hexane:ethyl acetate 99:01). A sample suitable for single-crystal X-ray analysis was obtained by recrystallization from dry methanol.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 1977404
https://doi.org/10.1107/S2056989020002479/lh5946sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002479/lh5946Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002479/lh5946Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).C18H18ClN3O2S | F(000) = 784 |
Mr = 375.86 | Dx = 1.354 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9995 (5) Å | Cell parameters from 4472 reflections |
b = 16.7778 (11) Å | θ = 3.9–29.0° |
c = 12.3595 (8) Å | µ = 0.34 mm−1 |
β = 98.892 (6)° | T = 298 K |
V = 1843.8 (2) Å3 | Block, colourless |
Z = 4 | 0.65 × 0.6 × 0.24 mm |
Agilent Xcalibur Eos diffractometer | 4340 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3323 reflections with I > 2σ(I) |
Detector resolution: 15.9821 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 29.0°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −11→12 |
Tmin = 0.857, Tmax = 1.000 | k = −22→22 |
13882 measured reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
4340 reflections | (Δ/σ)max = 0.006 |
230 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.38706 (5) | −0.06089 (3) | 0.65888 (4) | 0.04572 (19) | |
Cl1 | −0.26383 (7) | 0.13979 (4) | 0.63284 (7) | 0.0751 (3) | |
O1 | 0.77428 (16) | −0.12709 (8) | 0.67467 (12) | 0.0460 (4) | |
N1 | 0.73909 (16) | 0.02099 (9) | 0.95211 (12) | 0.0363 (4) | |
N2 | 0.57052 (18) | 0.12776 (9) | 0.97183 (14) | 0.0404 (4) | |
O2 | 0.62392 (19) | −0.20707 (9) | 0.75585 (14) | 0.0599 (4) | |
N3 | 0.42863 (18) | 0.15124 (10) | 0.92994 (14) | 0.0409 (4) | |
C9 | 0.6093 (2) | 0.06010 (10) | 0.92252 (14) | 0.0335 (4) | |
C7 | 0.37469 (19) | 0.09887 (11) | 0.85219 (15) | 0.0347 (4) | |
C14 | 0.75435 (19) | −0.04529 (11) | 0.89531 (15) | 0.0340 (4) | |
C3 | 0.1239 (2) | 0.04255 (12) | 0.77078 (17) | 0.0421 (5) | |
H3 | 0.161730 | −0.008533 | 0.785668 | 0.051* | |
C8 | 0.48642 (19) | 0.03902 (11) | 0.84112 (14) | 0.0323 (4) | |
C15 | 0.8936 (2) | −0.09402 (12) | 0.93020 (17) | 0.0430 (5) | |
H15A | 0.968939 | −0.061386 | 0.972304 | 0.064* | |
H15B | 0.930807 | −0.113697 | 0.866557 | 0.064* | |
H15C | 0.869892 | −0.138103 | 0.974026 | 0.064* | |
C6 | 0.21737 (19) | 0.10825 (11) | 0.79948 (15) | 0.0345 (4) | |
C12 | 0.51150 (19) | −0.02733 (11) | 0.77555 (14) | 0.0329 (4) | |
C2 | −0.0231 (2) | 0.05183 (12) | 0.72086 (17) | 0.0435 (5) | |
H2 | −0.083292 | 0.007504 | 0.701057 | 0.052* | |
C5 | 0.0072 (2) | 0.19448 (12) | 0.73163 (18) | 0.0463 (5) | |
H5 | −0.032853 | 0.245383 | 0.719599 | 0.056* | |
C13 | 0.64421 (19) | −0.06941 (10) | 0.80566 (14) | 0.0322 (4) | |
C4 | 0.1552 (2) | 0.18420 (12) | 0.78090 (17) | 0.0410 (4) | |
H4 | 0.214097 | 0.228738 | 0.801982 | 0.049* | |
C10 | 0.6609 (3) | 0.17282 (13) | 1.05805 (19) | 0.0525 (5) | |
H10A | 0.723443 | 0.137017 | 1.105641 | 0.079* | |
H10B | 0.596079 | 0.201357 | 1.099350 | 0.079* | |
H10C | 0.722908 | 0.209945 | 1.026288 | 0.079* | |
C16 | 0.6758 (2) | −0.14269 (11) | 0.74373 (15) | 0.0372 (4) | |
C1 | −0.0800 (2) | 0.12802 (13) | 0.70063 (17) | 0.0439 (5) | |
C11 | 0.3529 (3) | 0.02945 (16) | 0.57990 (18) | 0.0586 (6) | |
H11A | 0.303494 | 0.067547 | 0.620089 | 0.088* | |
H11B | 0.290191 | 0.017846 | 0.511611 | 0.088* | |
H11C | 0.446915 | 0.051040 | 0.565940 | 0.088* | |
C17 | 0.8220 (3) | −0.19386 (15) | 0.6139 (2) | 0.0620 (7) | |
H17A | 0.741429 | −0.209688 | 0.556464 | 0.074* | |
H17B | 0.847277 | −0.238963 | 0.662333 | 0.074* | |
C18 | 0.9549 (3) | −0.16898 (19) | 0.5657 (2) | 0.0784 (9) | |
H18A | 0.928634 | −0.124659 | 0.517341 | 0.118* | |
H18B | 0.988342 | −0.212571 | 0.525243 | 0.118* | |
H18C | 1.034070 | −0.153518 | 0.623018 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0408 (3) | 0.0500 (3) | 0.0424 (3) | 0.0014 (2) | −0.0061 (2) | −0.0113 (2) |
Cl1 | 0.0410 (3) | 0.0734 (5) | 0.1034 (6) | 0.0093 (3) | −0.0123 (3) | −0.0214 (4) |
O1 | 0.0491 (8) | 0.0400 (8) | 0.0522 (8) | 0.0015 (6) | 0.0179 (7) | −0.0078 (6) |
N1 | 0.0350 (8) | 0.0336 (8) | 0.0387 (8) | −0.0032 (6) | 0.0005 (6) | −0.0019 (7) |
N2 | 0.0426 (9) | 0.0337 (9) | 0.0426 (9) | −0.0007 (6) | −0.0009 (7) | −0.0074 (7) |
O2 | 0.0696 (10) | 0.0392 (9) | 0.0749 (11) | −0.0140 (7) | 0.0236 (8) | −0.0115 (8) |
N3 | 0.0411 (9) | 0.0371 (9) | 0.0436 (9) | 0.0035 (7) | 0.0040 (7) | −0.0016 (7) |
C9 | 0.0356 (9) | 0.0319 (9) | 0.0327 (9) | −0.0041 (7) | 0.0042 (7) | −0.0007 (7) |
C7 | 0.0375 (9) | 0.0305 (9) | 0.0368 (9) | 0.0014 (7) | 0.0084 (7) | 0.0017 (7) |
C14 | 0.0308 (8) | 0.0332 (9) | 0.0370 (9) | −0.0045 (7) | 0.0027 (7) | 0.0027 (8) |
C3 | 0.0426 (10) | 0.0332 (10) | 0.0522 (12) | 0.0002 (8) | 0.0122 (9) | 0.0019 (9) |
C8 | 0.0312 (8) | 0.0317 (9) | 0.0339 (9) | −0.0015 (7) | 0.0048 (7) | 0.0008 (7) |
C15 | 0.0360 (9) | 0.0422 (11) | 0.0476 (11) | 0.0032 (8) | −0.0030 (8) | −0.0006 (9) |
C6 | 0.0323 (8) | 0.0373 (10) | 0.0357 (9) | 0.0010 (7) | 0.0105 (7) | 0.0015 (8) |
C12 | 0.0306 (8) | 0.0361 (9) | 0.0319 (9) | −0.0044 (7) | 0.0049 (7) | 0.0006 (7) |
C2 | 0.0375 (10) | 0.0416 (11) | 0.0531 (12) | −0.0053 (8) | 0.0122 (8) | −0.0061 (9) |
C5 | 0.0408 (10) | 0.0391 (11) | 0.0590 (13) | 0.0088 (8) | 0.0075 (9) | −0.0040 (10) |
C13 | 0.0320 (8) | 0.0312 (9) | 0.0334 (9) | −0.0030 (7) | 0.0050 (7) | −0.0004 (7) |
C4 | 0.0376 (9) | 0.0355 (10) | 0.0511 (11) | −0.0009 (8) | 0.0101 (8) | −0.0049 (9) |
C10 | 0.0624 (13) | 0.0420 (12) | 0.0490 (12) | −0.0044 (10) | −0.0044 (10) | −0.0149 (10) |
C16 | 0.0333 (9) | 0.0364 (10) | 0.0405 (10) | 0.0003 (7) | 0.0015 (7) | −0.0031 (8) |
C1 | 0.0349 (10) | 0.0494 (12) | 0.0487 (11) | 0.0037 (8) | 0.0098 (8) | −0.0067 (9) |
C11 | 0.0595 (13) | 0.0778 (17) | 0.0367 (10) | 0.0189 (12) | 0.0022 (9) | 0.0032 (11) |
C17 | 0.0615 (14) | 0.0577 (15) | 0.0692 (15) | 0.0088 (11) | 0.0179 (12) | −0.0218 (12) |
C18 | 0.0790 (19) | 0.092 (2) | 0.0719 (17) | 0.0399 (16) | 0.0366 (15) | 0.0135 (16) |
S1—C12 | 1.7752 (18) | C15—H15C | 0.9600 |
S1—C11 | 1.803 (3) | C6—C4 | 1.396 (3) |
Cl1—C1 | 1.746 (2) | C12—C13 | 1.388 (2) |
O1—C16 | 1.347 (2) | C2—C1 | 1.385 (3) |
O1—C17 | 1.450 (2) | C2—H2 | 0.9300 |
N1—C14 | 1.333 (2) | C5—C1 | 1.383 (3) |
N1—C9 | 1.340 (2) | C5—C4 | 1.387 (3) |
N2—C9 | 1.359 (2) | C5—H5 | 0.9300 |
N2—N3 | 1.360 (2) | C13—C16 | 1.499 (2) |
N2—C10 | 1.449 (2) | C4—H4 | 0.9300 |
O2—C16 | 1.195 (2) | C10—H10A | 0.9600 |
N3—C7 | 1.337 (2) | C10—H10B | 0.9600 |
C9—C8 | 1.420 (2) | C10—H10C | 0.9600 |
C7—C8 | 1.442 (2) | C11—H11A | 0.9600 |
C7—C6 | 1.473 (2) | C11—H11B | 0.9600 |
C14—C13 | 1.426 (2) | C11—H11C | 0.9600 |
C14—C15 | 1.502 (3) | C17—C18 | 1.476 (3) |
C3—C2 | 1.380 (3) | C17—H17A | 0.9700 |
C3—C6 | 1.399 (3) | C17—H17B | 0.9700 |
C3—H3 | 0.9300 | C18—H18A | 0.9600 |
C8—C12 | 1.415 (2) | C18—H18B | 0.9600 |
C15—H15A | 0.9600 | C18—H18C | 0.9600 |
C15—H15B | 0.9600 | ||
C12—S1—C11 | 101.91 (10) | C1—C5—H5 | 120.4 |
C16—O1—C17 | 117.03 (16) | C4—C5—H5 | 120.4 |
C14—N1—C9 | 114.90 (15) | C12—C13—C14 | 122.00 (17) |
C9—N2—N3 | 111.25 (15) | C12—C13—C16 | 120.27 (16) |
C9—N2—C10 | 127.70 (17) | C14—C13—C16 | 117.74 (16) |
N3—N2—C10 | 121.05 (16) | C5—C4—C6 | 121.27 (18) |
C7—N3—N2 | 107.38 (15) | C5—C4—H4 | 119.4 |
N1—C9—N2 | 124.05 (17) | C6—C4—H4 | 119.4 |
N1—C9—C8 | 128.45 (16) | N2—C10—H10A | 109.5 |
N2—C9—C8 | 107.43 (16) | N2—C10—H10B | 109.5 |
N3—C7—C8 | 110.17 (16) | H10A—C10—H10B | 109.5 |
N3—C7—C6 | 117.73 (15) | N2—C10—H10C | 109.5 |
C8—C7—C6 | 131.99 (16) | H10A—C10—H10C | 109.5 |
N1—C14—C13 | 121.99 (16) | H10B—C10—H10C | 109.5 |
N1—C14—C15 | 116.87 (16) | O2—C16—O1 | 124.26 (18) |
C13—C14—C15 | 121.14 (17) | O2—C16—C13 | 124.64 (17) |
C2—C3—C6 | 121.48 (19) | O1—C16—C13 | 111.07 (15) |
C2—C3—H3 | 119.3 | C5—C1—C2 | 121.04 (19) |
C6—C3—H3 | 119.3 | C5—C1—Cl1 | 119.79 (16) |
C12—C8—C9 | 115.20 (15) | C2—C1—Cl1 | 119.16 (16) |
C12—C8—C7 | 140.99 (16) | S1—C11—H11A | 109.5 |
C9—C8—C7 | 103.74 (15) | S1—C11—H11B | 109.5 |
C14—C15—H15A | 109.5 | H11A—C11—H11B | 109.5 |
C14—C15—H15B | 109.5 | S1—C11—H11C | 109.5 |
H15A—C15—H15B | 109.5 | H11A—C11—H11C | 109.5 |
C14—C15—H15C | 109.5 | H11B—C11—H11C | 109.5 |
H15A—C15—H15C | 109.5 | O1—C17—C18 | 108.3 (2) |
H15B—C15—H15C | 109.5 | O1—C17—H17A | 110.0 |
C4—C6—C3 | 117.87 (17) | C18—C17—H17A | 110.0 |
C4—C6—C7 | 120.25 (17) | O1—C17—H17B | 110.0 |
C3—C6—C7 | 121.83 (17) | C18—C17—H17B | 110.0 |
C13—C12—C8 | 116.96 (16) | H17A—C17—H17B | 108.4 |
C13—C12—S1 | 117.71 (14) | C17—C18—H18A | 109.5 |
C8—C12—S1 | 125.32 (13) | C17—C18—H18B | 109.5 |
C3—C2—C1 | 119.14 (19) | H18A—C18—H18B | 109.5 |
C3—C2—H2 | 120.4 | C17—C18—H18C | 109.5 |
C1—C2—H2 | 120.4 | H18A—C18—H18C | 109.5 |
C1—C5—C4 | 119.13 (19) | H18B—C18—H18C | 109.5 |
C9—N2—N3—C7 | −0.4 (2) | C9—C8—C12—S1 | −173.01 (13) |
C10—N2—N3—C7 | 179.58 (18) | C7—C8—C12—S1 | 3.2 (3) |
C14—N1—C9—N2 | 178.40 (16) | C11—S1—C12—C13 | −128.93 (15) |
C14—N1—C9—C8 | 1.6 (3) | C11—S1—C12—C8 | 51.29 (17) |
N3—N2—C9—N1 | −175.78 (16) | C6—C3—C2—C1 | −1.2 (3) |
C10—N2—C9—N1 | 4.2 (3) | C8—C12—C13—C14 | −2.9 (3) |
N3—N2—C9—C8 | 1.6 (2) | S1—C12—C13—C14 | 177.35 (13) |
C10—N2—C9—C8 | −178.42 (19) | C8—C12—C13—C16 | 177.08 (15) |
N2—N3—C7—C8 | −0.9 (2) | S1—C12—C13—C16 | −2.7 (2) |
N2—N3—C7—C6 | 175.72 (15) | N1—C14—C13—C12 | −3.1 (3) |
C9—N1—C14—C13 | 3.7 (2) | C15—C14—C13—C12 | 176.81 (16) |
C9—N1—C14—C15 | −176.20 (16) | N1—C14—C13—C16 | 177.00 (15) |
N1—C9—C8—C12 | −7.2 (3) | C15—C14—C13—C16 | −3.1 (3) |
N2—C9—C8—C12 | 175.55 (15) | C1—C5—C4—C6 | 0.1 (3) |
N1—C9—C8—C7 | 175.22 (17) | C3—C6—C4—C5 | −2.5 (3) |
N2—C9—C8—C7 | −2.00 (19) | C7—C6—C4—C5 | −179.85 (17) |
N3—C7—C8—C12 | −174.7 (2) | C17—O1—C16—O2 | −1.7 (3) |
C6—C7—C8—C12 | 9.4 (4) | C17—O1—C16—C13 | 176.52 (18) |
N3—C7—C8—C9 | 1.81 (19) | C12—C13—C16—O2 | −79.4 (3) |
C6—C7—C8—C9 | −174.18 (18) | C14—C13—C16—O2 | 100.5 (2) |
C2—C3—C6—C4 | 3.1 (3) | C12—C13—C16—O1 | 102.39 (19) |
C2—C3—C6—C7 | −179.64 (17) | C14—C13—C16—O1 | −77.7 (2) |
N3—C7—C6—C4 | 35.3 (2) | C4—C5—C1—C2 | 1.8 (3) |
C8—C7—C6—C4 | −148.98 (19) | C4—C5—C1—Cl1 | −177.07 (15) |
N3—C7—C6—C3 | −141.96 (19) | C3—C2—C1—C5 | −1.3 (3) |
C8—C7—C6—C3 | 33.8 (3) | C3—C2—C1—Cl1 | 177.61 (15) |
C9—C8—C12—C13 | 7.2 (2) | C16—O1—C17—C18 | −166.05 (19) |
C7—C8—C12—C13 | −176.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.59 | 3.513 (2) | 170 |
Symmetry code: (i) x−1, y, z. |
Footnotes
‡Additional correspondence author, email: j.muthukumaran@sharda.ac.in.
Acknowledgements
The authors thank the DST–FIST Single Crystal XRD facility at the Department of Chemistry, Pondicherry University, for the diffraction data and Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey. RG thanks the Department of Chemistry for facilities, and the UGC and CSIR for a fellowship. JM thanks Dr Amit Kumar Singh (Sharda University, India) for support.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Barrett, D., Sasaki, H., Kinoshita, T. & Sakane, K. (1996). Chem. Commun. pp. 61–62. CSD CrossRef Google Scholar
El-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1–13. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4–12. CAS Google Scholar
Gökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343–409. New York: Academic Press. Google Scholar
Hawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466–2487. CrossRef CAS Google Scholar
Irwin, J. J. & Shoichet, B. K. (2005). J. Chem. Inf. Model. 45, 177–182. Web of Science CrossRef PubMed CAS Google Scholar
Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z. T., Han, B., Zhou, Y. & Wishart, D. S. (2013). Nucleic Acids Res. 42, D1091–D1097. CrossRef PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427–5432. PubMed Google Scholar
Naik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). ChemistrySelect, 4, 285–297. CSD CrossRef CAS Google Scholar
Panchal, V., Variya, H. H. & Patel, G. R. (2019). Int. J. Appl. Eng. Res, 14, 43–50. Google Scholar
Parmar, S. S., Pandey, B. R., Dwivedi, C. & Ali, B. (1974). J. Med. Chem. 17, 1031–1033. CrossRef CAS PubMed Google Scholar
Ravi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513–2522. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Timóteo, M. A., Oliveira, L., Campesatto-Mella, E., Barroso, A., Silva, C., Magalhães-Cardoso, M. T., Alves-do-Prado, W. & Correia-de-Sá, P. (2008). Neurochem. Int. 52, 834–845. PubMed Google Scholar
Witherington, J., Bordas, V., Garland, S. L., Hickey, D. M., Ife, R. J., Liddle, J., Saunders, M., Smith, D. G. & Ward, R. W. (2003). Bioorg. Med. Chem. Lett. 13, 1577–1580. CrossRef PubMed CAS Google Scholar
Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288–300. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.