research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure analysis of ethyl 3-(4-chloro­phen­yl)-1,6-di­methyl-4-methyl­sulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxyl­ate

aDepartment of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605014, India, and cDepartment of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, India
*Correspondence e-mail: hsp.rao@sharda.ac.in

Edited by A. J. Lough, University of Toronto, Canada (Received 22 January 2020; accepted 20 February 2020; online 25 February 2020)

In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect mol­ecules along [100].

1. Chemical context

The nitro­gen-containing heterocyclic motif is a component in many medicinally important drugs. Mol­ecules built around the pyrazolo­pyridine core structure exhibit diverse medicinal properties that include anti-microbial, anti-viral, anti-fungal, anti-hypertensive, analgesic, anti-cancer, anti-inflammatory, anti-Alzheimer's, anti-diabetic, anti-nociceptive, anti-tuberculosis, and anti-leishmanial activities (Hardy, 1984[Hardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343-409. New York: Academic Press.]; Hawas et al. 2019[Hawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466-2487.]; de Mello et al. 2004[Mello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427-5432.]; Panchal et al. 2019[Panchal, V., Variya, H. H. & Patel, G. R. (2019). Int. J. Appl. Eng. Res, 14, 43-50.]; El-Gohary et al. 2019[El-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1-13.]). In addition, some pyrazolo­pyridines have found uses for the treatment of hemorrhagic stress, infertility, and drug addiction (Parmar et al. 1974[Parmar, S. S., Pandey, B. R., Dwivedi, C. & Ali, B. (1974). J. Med. Chem. 17, 1031-1033.]). Specifically, they act as inhibitors of enzymes such as glycogen synthase kinase-3 (Witherington et al. 2003[Witherington, J., Bordas, V., Garland, S. L., Hickey, D. M., Ife, R. J., Liddle, J., Saunders, M., Smith, D. G. & Ward, R. W. (2003). Bioorg. Med. Chem. Lett. 13, 1577-1580.]) and as inhibitors for adenosine receptors (Timóteo et al. 2008[Timóteo, M. A., Oliveira, L., Campesatto-Mella, E., Barroso, A., Silva, C., Magalhães-Cardoso, M. T., Alves-do-Prado, W. & Correia-de-Sá, P. (2008). Neurochem. Int. 52, 834-845.]). Furthermore, they have been identified as promising inhibitors of cycline dependent kinase, xanthine oxidase, inter­leukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), phospho­diesterase-4, NAD(P)H oxidases and cholesterol formation (Gökhan-Kelekçi et al. 2007[Gökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775-5786.]; Panchal et al. 2019[Panchal, V., Variya, H. H. & Patel, G. R. (2019). Int. J. Appl. Eng. Res, 14, 43-50.]; Fathy et al. 2015[Fathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4-12.]). Considering the aforementioned importance of derivatives of pyrazolo­pyridine, we have carried out a single-crystal X-ray diffraction study on the title compound and have analyzed the structure in terms of geometrical parameters, conformation, and inter­mol­ecular hydrogen-bonding inter­actions.

[Scheme 1]

2. Structural commentary

The title compound has pyrazole­[3,4-b]pyridine motif that is decorated by several substituents shown in Fig. 1[link]. The chloro­phenyl (C6H4Cl) group attached to the pyrazolo­pyridine moiety exhibits an (−)anti­clinal conformation [N3—C7—C6—C3 = −141.96 (19)°], as does the methyl­thio (SCH3) group attached to the pyrazolo­pyridine unit [C11—S1—C12—C13 = −128.93 (15) °] while the –COOC2H5 group attached to the pyrazolo­pyridine moiety has an (+)anti-periplanar conformation [N1—C14—C13—C16 = 177.00 (15)°, as do the methyl group attached to the pyridine sub-structure [C9—N1—C14—C15 = −176.20 (16)°] and the methyl group attached to the pyrazole ring (NCH3) [C10—N2—C9—C8: −178.42 (19)°]. The fused pyrazole and pyridine rings are not exactly planar, subtending a dihedral angle of 3.81 (9)°. The dihedral angle between the planes of the benzene and pyrazole rings is 35.08 (10)° and that between the benzene and pyridine rings is 36.26 (9)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into chains along [100] (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.59 3.513 (2) 170
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of title compound, viewed along the c axis, showing the weak inter­molecular C—H⋯O hydrogen bonds as dotted lines

4. Database survey

A search for the pyrazolo­pyridine scaffold in the Cambridge Structural Database (CSD, Version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 236 hits. Of these, the structures most closely related to the title compound are FIZLEI (ethyl 2,7-di­amino-3,4-di­cyano-5-phenyl­pyrazolo­[1,5-a]pyridine-6-carboxyl­ate; Naik et al. 2019[Naik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). ChemistrySelect, 4, 285-297.]), ALAFID (Wu et al. 2016[Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288-300.]), DAWKAQ {[2-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridin-3-yl(phen­yl)methanone; Ravi et al. 2017[Ravi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513-2522.]}, NADPIU [3-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridine; Wu et al. 2016[Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288-300.]] and ZOJWAW (Barrett et al. 1996[Barrett, D., Sasaki, H., Kinoshita, T. & Sakane, K. (1996). Chem. Commun. pp. 61-62.]). The geometrical parameters of the –COOCH2CH3 substituent in the title compound are comparable with those reported for FIZLEI. Similarly, the geometrical parameters of the –C6H4Cl unit in the title compound are comparable with those for in DAWKAQ and NADPIU. The bond lengths of the pyrazolo­[3,4-b]pyridine scaffold of the title compound are closer to those in NADPIU. The pyrazolo­pyridine moiety (N1–N3/C7–C9/C12–C14) of the title compound is approximately plan, as is also observed for FIZLEI, ALAFID, DAWKAQ, NADPIU and ZOJWAW. Apart from the CSD database, two other important databases, namely Drug Bank (database for FDA-approved drugs, drugs under investigation or in clinical trials, etc; Law et al. 2013[Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z. T., Han, B., Zhou, Y. & Wishart, D. S. (2013). Nucleic Acids Res. 42, D1091-D1097.]) and ZINC (database for commercially available compounds; Irwin et al. 2005[Irwin, J. J. & Shoichet, B. K. (2005). J. Chem. Inf. Model. 45, 177-182.]) were also surveyed. The former database is used for drug repurposing or drug re-profiling studies, and latter for high-throughput virtual screening against the binding site of drug target proteins to identify promising and putative inhibitors. In the Drug Bank database, there were 31 hits, based on a 0.5 similarity threshold, whereas the ZINC search gave only three hits (ZINCIDs: ZINC45166781, ZINC3852638 and ZINC39053824). Out of 31 mol­ecules identified in the Drug Bank database, two mol­ecules were in the approved drug category namely riciguat (accession No: DB08931, similarity score: 0.55) and teletristat ethyl (accession No: DB12095, similarity score: 0.511). The remaining 29 mol­ecules belong to the experimental, investigational or other categories.

5. Synthesis and crystallization:

To a solution of 3-(4-chloro­phen­yl)-1-methyl-1H-pyrazol-5-amine (125 mg, 0.65 mmol) and ethyl 2-(bis­(meth­ylthio)­meth­ylene)-3-oxo­butano­ate (145 mg, 0.65 mmol) in toluene (5 ml) under a blanket of dry N2, a catalytic amount of tri­fluoro­acetic acid (TFA; 30 mol%) was added. The resulting mixture was refluxed for 12 h, while monitoring progress by TLC (hexa­ne:ethyl acetate, 99:1). After completion of the reaction, the resulting mixture was subjected to purification by column chromatography to furnish 182 mg of the title compound in 75% yield as a colourless solid, m.p. 415.85 K, Rf = 0.3 (hexa­ne:ethyl acetate 99:01). A sample suitable for single-crystal X-ray analysis was obtained by recrystallization from dry methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C18H18ClN3O2S
Mr 375.86
Crystal system, space group Monoclinic, P21/a
Temperature (K) 298
a, b, c (Å) 8.9995 (5), 16.7778 (11), 12.3595 (8)
β (°) 98.892 (6)
V3) 1843.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.65 × 0.6 × 0.24
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.857, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13882, 4340, 3323
Rint 0.027
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.161, 1.10
No. of reflections 4340
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.41
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

Ethyl 3-(4-chlorophenyl)-1,6-dimethyl-4-methylsulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate top
Crystal data top
C18H18ClN3O2SF(000) = 784
Mr = 375.86Dx = 1.354 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 8.9995 (5) ÅCell parameters from 4472 reflections
b = 16.7778 (11) Åθ = 3.9–29.0°
c = 12.3595 (8) ŵ = 0.34 mm1
β = 98.892 (6)°T = 298 K
V = 1843.8 (2) Å3Block, colourless
Z = 40.65 × 0.6 × 0.24 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
4340 independent reflections
Radiation source: Enhance (Mo) X-ray Source3323 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1Rint = 0.027
ω scansθmax = 29.0°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1112
Tmin = 0.857, Tmax = 1.000k = 2222
13882 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4340 reflections(Δ/σ)max = 0.006
230 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38706 (5)0.06089 (3)0.65888 (4)0.04572 (19)
Cl10.26383 (7)0.13979 (4)0.63284 (7)0.0751 (3)
O10.77428 (16)0.12709 (8)0.67467 (12)0.0460 (4)
N10.73909 (16)0.02099 (9)0.95211 (12)0.0363 (4)
N20.57052 (18)0.12776 (9)0.97183 (14)0.0404 (4)
O20.62392 (19)0.20707 (9)0.75585 (14)0.0599 (4)
N30.42863 (18)0.15124 (10)0.92994 (14)0.0409 (4)
C90.6093 (2)0.06010 (10)0.92252 (14)0.0335 (4)
C70.37469 (19)0.09887 (11)0.85219 (15)0.0347 (4)
C140.75435 (19)0.04529 (11)0.89531 (15)0.0340 (4)
C30.1239 (2)0.04255 (12)0.77078 (17)0.0421 (5)
H30.1617300.0085330.7856680.051*
C80.48642 (19)0.03902 (11)0.84112 (14)0.0323 (4)
C150.8936 (2)0.09402 (12)0.93020 (17)0.0430 (5)
H15A0.9689390.0613860.9723040.064*
H15B0.9308070.1136970.8665570.064*
H15C0.8698920.1381030.9740260.064*
C60.21737 (19)0.10825 (11)0.79948 (15)0.0345 (4)
C120.51150 (19)0.02733 (11)0.77555 (14)0.0329 (4)
C20.0231 (2)0.05183 (12)0.72086 (17)0.0435 (5)
H20.0832920.0075040.7010570.052*
C50.0072 (2)0.19448 (12)0.73163 (18)0.0463 (5)
H50.0328530.2453830.7195990.056*
C130.64421 (19)0.06941 (10)0.80566 (14)0.0322 (4)
C40.1552 (2)0.18420 (12)0.78090 (17)0.0410 (4)
H40.2140970.2287380.8019820.049*
C100.6609 (3)0.17282 (13)1.05805 (19)0.0525 (5)
H10A0.7234430.1370171.1056410.079*
H10B0.5960790.2013571.0993500.079*
H10C0.7229080.2099451.0262880.079*
C160.6758 (2)0.14269 (11)0.74373 (15)0.0372 (4)
C10.0800 (2)0.12802 (13)0.70063 (17)0.0439 (5)
C110.3529 (3)0.02945 (16)0.57990 (18)0.0586 (6)
H11A0.3034940.0675470.6200890.088*
H11B0.2901910.0178460.5116110.088*
H11C0.4469150.0510400.5659400.088*
C170.8220 (3)0.19386 (15)0.6139 (2)0.0620 (7)
H17A0.7414290.2096880.5564640.074*
H17B0.8472770.2389630.6623330.074*
C180.9549 (3)0.16898 (19)0.5657 (2)0.0784 (9)
H18A0.9286340.1246590.5173410.118*
H18B0.9883420.2125710.5252430.118*
H18C1.0340700.1535180.6230180.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0408 (3)0.0500 (3)0.0424 (3)0.0014 (2)0.0061 (2)0.0113 (2)
Cl10.0410 (3)0.0734 (5)0.1034 (6)0.0093 (3)0.0123 (3)0.0214 (4)
O10.0491 (8)0.0400 (8)0.0522 (8)0.0015 (6)0.0179 (7)0.0078 (6)
N10.0350 (8)0.0336 (8)0.0387 (8)0.0032 (6)0.0005 (6)0.0019 (7)
N20.0426 (9)0.0337 (9)0.0426 (9)0.0007 (6)0.0009 (7)0.0074 (7)
O20.0696 (10)0.0392 (9)0.0749 (11)0.0140 (7)0.0236 (8)0.0115 (8)
N30.0411 (9)0.0371 (9)0.0436 (9)0.0035 (7)0.0040 (7)0.0016 (7)
C90.0356 (9)0.0319 (9)0.0327 (9)0.0041 (7)0.0042 (7)0.0007 (7)
C70.0375 (9)0.0305 (9)0.0368 (9)0.0014 (7)0.0084 (7)0.0017 (7)
C140.0308 (8)0.0332 (9)0.0370 (9)0.0045 (7)0.0027 (7)0.0027 (8)
C30.0426 (10)0.0332 (10)0.0522 (12)0.0002 (8)0.0122 (9)0.0019 (9)
C80.0312 (8)0.0317 (9)0.0339 (9)0.0015 (7)0.0048 (7)0.0008 (7)
C150.0360 (9)0.0422 (11)0.0476 (11)0.0032 (8)0.0030 (8)0.0006 (9)
C60.0323 (8)0.0373 (10)0.0357 (9)0.0010 (7)0.0105 (7)0.0015 (8)
C120.0306 (8)0.0361 (9)0.0319 (9)0.0044 (7)0.0049 (7)0.0006 (7)
C20.0375 (10)0.0416 (11)0.0531 (12)0.0053 (8)0.0122 (8)0.0061 (9)
C50.0408 (10)0.0391 (11)0.0590 (13)0.0088 (8)0.0075 (9)0.0040 (10)
C130.0320 (8)0.0312 (9)0.0334 (9)0.0030 (7)0.0050 (7)0.0004 (7)
C40.0376 (9)0.0355 (10)0.0511 (11)0.0009 (8)0.0101 (8)0.0049 (9)
C100.0624 (13)0.0420 (12)0.0490 (12)0.0044 (10)0.0044 (10)0.0149 (10)
C160.0333 (9)0.0364 (10)0.0405 (10)0.0003 (7)0.0015 (7)0.0031 (8)
C10.0349 (10)0.0494 (12)0.0487 (11)0.0037 (8)0.0098 (8)0.0067 (9)
C110.0595 (13)0.0778 (17)0.0367 (10)0.0189 (12)0.0022 (9)0.0032 (11)
C170.0615 (14)0.0577 (15)0.0692 (15)0.0088 (11)0.0179 (12)0.0218 (12)
C180.0790 (19)0.092 (2)0.0719 (17)0.0399 (16)0.0366 (15)0.0135 (16)
Geometric parameters (Å, º) top
S1—C121.7752 (18)C15—H15C0.9600
S1—C111.803 (3)C6—C41.396 (3)
Cl1—C11.746 (2)C12—C131.388 (2)
O1—C161.347 (2)C2—C11.385 (3)
O1—C171.450 (2)C2—H20.9300
N1—C141.333 (2)C5—C11.383 (3)
N1—C91.340 (2)C5—C41.387 (3)
N2—C91.359 (2)C5—H50.9300
N2—N31.360 (2)C13—C161.499 (2)
N2—C101.449 (2)C4—H40.9300
O2—C161.195 (2)C10—H10A0.9600
N3—C71.337 (2)C10—H10B0.9600
C9—C81.420 (2)C10—H10C0.9600
C7—C81.442 (2)C11—H11A0.9600
C7—C61.473 (2)C11—H11B0.9600
C14—C131.426 (2)C11—H11C0.9600
C14—C151.502 (3)C17—C181.476 (3)
C3—C21.380 (3)C17—H17A0.9700
C3—C61.399 (3)C17—H17B0.9700
C3—H30.9300C18—H18A0.9600
C8—C121.415 (2)C18—H18B0.9600
C15—H15A0.9600C18—H18C0.9600
C15—H15B0.9600
C12—S1—C11101.91 (10)C1—C5—H5120.4
C16—O1—C17117.03 (16)C4—C5—H5120.4
C14—N1—C9114.90 (15)C12—C13—C14122.00 (17)
C9—N2—N3111.25 (15)C12—C13—C16120.27 (16)
C9—N2—C10127.70 (17)C14—C13—C16117.74 (16)
N3—N2—C10121.05 (16)C5—C4—C6121.27 (18)
C7—N3—N2107.38 (15)C5—C4—H4119.4
N1—C9—N2124.05 (17)C6—C4—H4119.4
N1—C9—C8128.45 (16)N2—C10—H10A109.5
N2—C9—C8107.43 (16)N2—C10—H10B109.5
N3—C7—C8110.17 (16)H10A—C10—H10B109.5
N3—C7—C6117.73 (15)N2—C10—H10C109.5
C8—C7—C6131.99 (16)H10A—C10—H10C109.5
N1—C14—C13121.99 (16)H10B—C10—H10C109.5
N1—C14—C15116.87 (16)O2—C16—O1124.26 (18)
C13—C14—C15121.14 (17)O2—C16—C13124.64 (17)
C2—C3—C6121.48 (19)O1—C16—C13111.07 (15)
C2—C3—H3119.3C5—C1—C2121.04 (19)
C6—C3—H3119.3C5—C1—Cl1119.79 (16)
C12—C8—C9115.20 (15)C2—C1—Cl1119.16 (16)
C12—C8—C7140.99 (16)S1—C11—H11A109.5
C9—C8—C7103.74 (15)S1—C11—H11B109.5
C14—C15—H15A109.5H11A—C11—H11B109.5
C14—C15—H15B109.5S1—C11—H11C109.5
H15A—C15—H15B109.5H11A—C11—H11C109.5
C14—C15—H15C109.5H11B—C11—H11C109.5
H15A—C15—H15C109.5O1—C17—C18108.3 (2)
H15B—C15—H15C109.5O1—C17—H17A110.0
C4—C6—C3117.87 (17)C18—C17—H17A110.0
C4—C6—C7120.25 (17)O1—C17—H17B110.0
C3—C6—C7121.83 (17)C18—C17—H17B110.0
C13—C12—C8116.96 (16)H17A—C17—H17B108.4
C13—C12—S1117.71 (14)C17—C18—H18A109.5
C8—C12—S1125.32 (13)C17—C18—H18B109.5
C3—C2—C1119.14 (19)H18A—C18—H18B109.5
C3—C2—H2120.4C17—C18—H18C109.5
C1—C2—H2120.4H18A—C18—H18C109.5
C1—C5—C4119.13 (19)H18B—C18—H18C109.5
C9—N2—N3—C70.4 (2)C9—C8—C12—S1173.01 (13)
C10—N2—N3—C7179.58 (18)C7—C8—C12—S13.2 (3)
C14—N1—C9—N2178.40 (16)C11—S1—C12—C13128.93 (15)
C14—N1—C9—C81.6 (3)C11—S1—C12—C851.29 (17)
N3—N2—C9—N1175.78 (16)C6—C3—C2—C11.2 (3)
C10—N2—C9—N14.2 (3)C8—C12—C13—C142.9 (3)
N3—N2—C9—C81.6 (2)S1—C12—C13—C14177.35 (13)
C10—N2—C9—C8178.42 (19)C8—C12—C13—C16177.08 (15)
N2—N3—C7—C80.9 (2)S1—C12—C13—C162.7 (2)
N2—N3—C7—C6175.72 (15)N1—C14—C13—C123.1 (3)
C9—N1—C14—C133.7 (2)C15—C14—C13—C12176.81 (16)
C9—N1—C14—C15176.20 (16)N1—C14—C13—C16177.00 (15)
N1—C9—C8—C127.2 (3)C15—C14—C13—C163.1 (3)
N2—C9—C8—C12175.55 (15)C1—C5—C4—C60.1 (3)
N1—C9—C8—C7175.22 (17)C3—C6—C4—C52.5 (3)
N2—C9—C8—C72.00 (19)C7—C6—C4—C5179.85 (17)
N3—C7—C8—C12174.7 (2)C17—O1—C16—O21.7 (3)
C6—C7—C8—C129.4 (4)C17—O1—C16—C13176.52 (18)
N3—C7—C8—C91.81 (19)C12—C13—C16—O279.4 (3)
C6—C7—C8—C9174.18 (18)C14—C13—C16—O2100.5 (2)
C2—C3—C6—C43.1 (3)C12—C13—C16—O1102.39 (19)
C2—C3—C6—C7179.64 (17)C14—C13—C16—O177.7 (2)
N3—C7—C6—C435.3 (2)C4—C5—C1—C21.8 (3)
C8—C7—C6—C4148.98 (19)C4—C5—C1—Cl1177.07 (15)
N3—C7—C6—C3141.96 (19)C3—C2—C1—C51.3 (3)
C8—C7—C6—C333.8 (3)C3—C2—C1—Cl1177.61 (15)
C9—C8—C12—C137.2 (2)C16—O1—C17—C18166.05 (19)
C7—C8—C12—C13176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.593.513 (2)170
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, email: j.muthukumaran@sharda.ac.in.

Acknowledgements

The authors thank the DST–FIST Single Crystal XRD facility at the Department of Chemistry, Pondicherry University, for the diffraction data and Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey. RG thanks the Department of Chemistry for facilities, and the UGC and CSIR for a fellowship. JM thanks Dr Amit Kumar Singh (Sharda University, India) for support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBarrett, D., Sasaki, H., Kinoshita, T. & Sakane, K. (1996). Chem. Commun. pp. 61–62.  CSD CrossRef Google Scholar
First citationEl-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1–13.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4–12.  CAS Google Scholar
First citationGökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343–409. New York: Academic Press.  Google Scholar
First citationHawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466–2487.  CrossRef CAS Google Scholar
First citationIrwin, J. J. & Shoichet, B. K. (2005). J. Chem. Inf. Model. 45, 177–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaw, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z. T., Han, B., Zhou, Y. & Wishart, D. S. (2013). Nucleic Acids Res. 42, D1091–D1097.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427–5432.  PubMed Google Scholar
First citationNaik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). ChemistrySelect, 4, 285–297.  CSD CrossRef CAS Google Scholar
First citationPanchal, V., Variya, H. H. & Patel, G. R. (2019). Int. J. Appl. Eng. Res, 14, 43–50.  Google Scholar
First citationParmar, S. S., Pandey, B. R., Dwivedi, C. & Ali, B. (1974). J. Med. Chem. 17, 1031–1033.  CrossRef CAS PubMed Google Scholar
First citationRavi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513–2522.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimóteo, M. A., Oliveira, L., Campesatto-Mella, E., Barroso, A., Silva, C., Magalhães-Cardoso, M. T., Alves-do-Prado, W. & Correia-de-Sá, P. (2008). Neurochem. Int. 52, 834–845.  PubMed Google Scholar
First citationWitherington, J., Bordas, V., Garland, S. L., Hickey, D. M., Ife, R. J., Liddle, J., Saunders, M., Smith, D. G. & Ward, R. W. (2003). Bioorg. Med. Chem. Lett. 13, 1577–1580.  CrossRef PubMed CAS Google Scholar
First citationWu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288–300.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds