research communications
Crystal structures and comparisons of huntite aluminum borates REAl3(BO3)4 (RE = Tb, Dy and Ho)
aPacific Northwest National Laboratory, Richland, WA 99354, USA, and bDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov
Three huntite-type aluminoborates of stoichiometry REAl3(BO3)4 (RE = Tb, Dy and Ho), namely, terbium/dysprosium/holmium trialuminium tetrakis(borate), were synthesized by slow cooling within a K2Mo3O10 with spontaneous crystallization. The crystal structures were determined using single-crystal X-ray diffraction (SC-XRD) data. The synthesized borates are isostructural to the huntite [CaMg3(CO3)4] structure and crystallized within the trigonal R32 The structural parameters were compared to literature data of other huntite REAl3(BO3)4 crystals within the R32 All three borates fit well into the trends calculated from the literature data. The unit-cell parameters and volumes increase linearly with larger RE cations whereas the densities decrease. All of the crystals studied were refined as inversion twins.
Keywords: huntite borate; lanthanide aluminum borate; single-crystal XRD.
1. Chemical context
Rare-earth aluminum borates (REAB) with the general chemical formula REAl3(BO3)4 (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) have been studied extensively for applications in lasers, nonlinear optics, sensors, and phosphors because of their optical and magnetoelectric properties as well as the capacity to be doped with other rare-earth metals (Koporulina et al., 2000; Leonyuk & Leonyuk, 1995; Leonyuk et al., 1998; Mills, 1962; Belokoneva & Timchenko, 1983; Belokoneva, 1994). The REAB crystals are promising materials for self-frequency-doubling lasers as their nonlinear optical properties can be changed by doping with different rare-earth elements including Nd, Dy, Er, Yb, Tm, or Y (Leonyuk et al., 1998, 2007; Földvári et al., 2003; Chen et al., 2012). The REAB compounds with RE = Tb, Ho, Er, or Tm exhibit the magnetoelectric properties useful for sensor applications (Liang et al., 2011, 2012), and REAB with the RE = Pr, Sm, Eu, Gd, Tb, or Ho can be used as phosphors (Li & Wang, 2007; He et al., 2015).
The REAB compounds are generally synthesized by a flux-assisted growth method with or without seeds at 800–1150°C (Leonyuk & Leonyuk, 1995; Koporulina et al., 2000; Wang, 2012; Leonyuk, 2017). The K2Mo3O10 (Tu et al., 1994; Wang et al., 1995; Leonyuk & Leonyuk, 1995; Teshima et al., 2006) compound is the most commonly used for the crystallization of REAB, although other fluxes such as Bi2O3–B2O3 (Chani et al., 1994) and BaO–B2O3 (Jung et al., 1995) have been used. Two major drawbacks of using the K2Mo3O10 are the potential incorporation of Mo into the REAB structure and co-crystallization of other phases (Wang, 2012; Leonyuk, 2017; Kuz'micheva et al., 2019). In the current study, K2Mo3O10 was used to synthesize REAl3(BO3)4 (RE = Tb, Dy, Ho) crystals, and the structural parameters of the synthesized REAB crystals were compared to literature data.
2. Structural commentary
The crystal structures of the synthesized REAB crystals are isostructural to the huntite structure (Mills, 1962) with the R32 (Fig. 1). The huntite aluminoborates generally crystallize within the R32 however, REAB compounds with RE = Pr, Nd, Sm, Eu, Tb, Ho, or Gd showed the transition in from R32 to lower symmetry monoclinic C2/c and C2 space groups in the disordered structures caused by variations in the growth temperature, cooling rate, and composition (Belokoneva & Timchenko, 1983; Belokoneva et al., 1988, 1994; Leonyuk & Leonyuk, 1995; Plachinda & Belokoneva, 2008; Leonyuk, 2017). The structures of the REAB crystals are composed of rare-earth cations with a distorted trigonal–prismatic coordination (REO6), aluminum cations with a distorted octahedral coordination (AlO6), and boron cations with a trigonal–planar coordination (BO3) as shown in Fig. 2. The AlO6 octahedra form helical chains along the c-axis direction by sharing edges, and these chains are connected by BO3 units (see Fig. 3).
The structural parameters of the synthesized REAB compounds were added to literature data for comparison (see Fig. 4), and they were in good agreement when plotted versus the average ionic crystal radius of the six-coordinated RE element according to Shannon (1976). The trendlines show that the unit-cell parameters and volumes increase linearly whereas the densities decrease with the larger rare-earth cations in the structures. The data included in Fig. 4 include literature data for REAl3(BO3)4 where RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu, as well as mixtures of Y/Er and Y/Nd (Belokoneva et al., 1981; Hong & Dwight, 1974; Xu et al., 2002; Jia et al., 2006; Kuroda et al., 1981; Leonyuk & Leonyuk, 1995; Malakhovskii et al., 2014; Mészáros et al., 2000; Mills, 1962; Plachinda & Belokoneva, 2008; Prokhorov et al., 2013, 2014; Sváb et al., 2012; Wang et al., 1991).
3. Synthesis and crystallization
The REAB single crystals were synthesized using Tb2O3 (Alfa Aesar, 99.9%), Dy2O3 (Alfa Aesar, 99.9%), Ho2O3 (Alfa Aesar, 99.9%), Al(OH)3 (Almatis, 99.5%), B2O3 (Alfa Aesar, 99.98%), and K2Mo3O10 All the rare-earth oxides, Al(OH)3, and B2O3 were used as received; the B2O3 was stored and handled in a nitrogen glovebox to prevent hydration (M-Braun, Inc., < 0.1 ppm of O2 and H2O). The K2Mo3O10 was synthesized using K2CO3 (Alfa Aesar, 99%) and MoO3 (Alfa Aesar, 99.5%). For the appropriate amounts of K2CO3 and MoO3 were mixed in a mortar and pestle and placed into a Pt/10%Rh crucible. The crucible was heated to 520°C at 5°C min−1, maintained at that temperature for 8 h, and then cooled down to room temperature at 5°C min−1. For the synthesis of the REAB crystals, the rare-earth oxide was mixed with Al(OH)3 and B2O3 in a 1:6:5 molar ratio, and then K2Mo3O10 was added at 40 mass% of the total precursor mass. The mixed powder of each rare-earth element was put into a Pt/10%Rh crucible, tightly covered with a Pt/10%Rh lid, and placed in a Thermolyne box furnace. The furnace was heated to 900°C at 5°C min−1, maintained at that temperature for 4 h, cooled to 400°C at 5°C h−1, and then shut off to cool naturally. The synthesized products were washed with deionized water in a sonic bath, and the crystals were recovered with vacuum filtration using a Büchner funnel. The REAB crystals along with KRE(MoO4)2 were synthesized by this process as expected from previous studies (Leonyuk et al., 1998; Teshima et al., 2006; Leonyuk, 2017; Kuz'micheva et al., 2019).
The REAB crystals generally have hexagonal prismatic shapes, and they were often agglomerated (Fig. 5), as observed with (JSM-7001F field emission gun SEM; JEOL USA, Inc.). Crystals of SmAl3(BO3)4 and LuAl3(BO3)4 were also grown using the same procedure as described above and these are shown in Fig. 5 for comparison; however, the crystal structures are not reported due to the poor diffraction of SmAl3(BO3)4 and unresolvable displacement parameters during structural for LuAl3(BO3)4. Finally, for the crystal growth conditions used here, the average crystallite sizes for the different REAl3(BO3)4 crystals herein (RE = Sm, Tb, Dy, Ho, Lu) are shown in Fig. 6 with standard deviations based on measurements of ≥ 7 crystals from each sample.
4. Refinement
Crystal data, data collection and structure . Suitable crystals were selected for SC-XRD and were placed on cryoloops in oil (Parabar 10312, Hampton Research). Data were collected with a scan width of 0.5° in φ and ω with a 10 sec dwell time per frame at 100 K. All the REAB crystals had chiral structures and were refined with inversion The final refinements for TbAl3(BO3)4, DyAl3(BO3)4, and HoAl3(BO3)4 converged at R1 = 1.97% with goodness-of-fit of 1.08, R1 = 0.80% with goodness-of-fit of 1.14, and R1 = 1.15% with goodness-of-fit of 1.08, respectively.
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989020001802/ru2069sup1.cif
contains datablocks global, Tb-borate, Dy-borate, Ho-borate. DOI:Structure factors: contains datablock Tb-borate. DOI: https://doi.org/10.1107/S2056989020001802/ru2069Tb-boratesup2.hkl
Structure factors: contains datablock Dy-borate. DOI: https://doi.org/10.1107/S2056989020001802/ru2069Dy-boratesup3.hkl
Structure factors: contains datablock Ho-borate. DOI: https://doi.org/10.1107/S2056989020001802/ru2069Ho-boratesup4.hkl
For all structures, data collection: APEX3 (Bruker, 2012); cell
JANA2006 (Petříček et al., 2014); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).TbAl3(BO3)4 | Dx = 4.354 Mg m−3 |
Mr = 475.1 | Mo Kα radiation, λ = 0.71075 Å |
Trigonal, R32 | Cell parameters from 6957 reflections |
Hall symbol: R 3 2" | θ = 3.8–33.2° |
a = 9.2992 (8) Å | µ = 10.21 mm−1 |
c = 7.2588 (7) Å | T = 100 K |
V = 543.61 (8) Å3 | Hexagonal prism, light white |
Z = 3 | 0.03 × 0.03 × 0.02 mm |
F(000) = 660 |
Bruker D8 QUEST CMOS area detector diffractometer | 270 reflections with I > 2σ(I) |
Radiation source: X-ray tube | Rint = 0.113 |
φ and ω scans | θmax = 33.2°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→14 |
Tmin = 0.530, Tmax = 0.747 | k = −14→13 |
6957 measured reflections | l = −11→11 |
270 independent reflections |
Refinement on F | Primary atom site location: iterative |
R[F > 3σ(F)] = 0.020 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.021 | (Δ/σ)max = 0.041 |
S = 1.08 | Δρmax = 0.59 e Å−3 |
270 reflections | Δρmin = −0.88 e Å−3 |
32 parameters | Absolute structure: Data was refined with inversion twinning in JANA2006, and the twin ratio was 0.51(2):0.49(2). |
0 restraints | Absolute structure parameter: 0.49 (2) |
0 constraints |
Refinement. Data was refined with inversion twinning, and the twin ratio was 0.51 (2):0.49 (2). |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0 | 0 | 0 | 0.01126 (13) | |
Al1 | 0.5557 (2) | 0 | 0 | 0.0052 (6) | |
B1 | 0.666667 | 0.333333 | −0.166667 | 0.0054 (19) | |
O1 | 0.7418 (7) | 0.0752 (7) | 0.166667 | 0.012 (2) | |
O2 | 0.3668 (5) | −0.1151 (5) | −0.1448 (5) | 0.0098 (12) | |
O3 | 0.8151 (5) | 0.4818 (5) | −0.166667 | 0.0091 (14) | |
B2 | 0.8912 (11) | 0.2245 (11) | 0.166667 | 0.0066 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.01027 (16) | 0.01027 (16) | 0.0133 (2) | 0.00513 (8) | 0 | 0 |
Al1 | 0.0040 (6) | 0.0036 (8) | 0.0078 (9) | 0.0018 (4) | 0.0005 (3) | 0.0010 (6) |
B1 | 0.004 (2) | 0.004 (2) | 0.008 (3) | 0.0021 (12) | 0 | 0 |
O1 | 0.007 (2) | 0.007 (2) | 0.017 (3) | 0.000 (2) | 0.0008 (9) | −0.0008 (9) |
O2 | 0.0082 (16) | 0.0086 (15) | 0.0123 (15) | 0.0039 (13) | 0.0003 (12) | −0.0013 (12) |
O3 | 0.0075 (15) | 0.0075 (15) | 0.011 (2) | 0.0031 (18) | −0.0010 (8) | 0.0010 (8) |
Tb1—O2i | 2.336 (4) | B1—O3 | 1.381 (4) |
Tb1—O2ii | 2.336 (4) | B1—O3vii | 1.381 (6) |
Tb1—O2iii | 2.336 (6) | B1—O3viii | 1.381 (6) |
Tb1—O2iv | 2.336 (4) | O1—B2 | 1.389 (8) |
Tb1—O2v | 2.336 (4) | O2—B2ix | 1.362 (12) |
Tb1—O2vi | 2.336 (6) | ||
O2i—Tb1—O2ii | 89.15 (16) | O2iii—Tb1—O2vi | 144.93 (12) |
O2i—Tb1—O2iii | 89.15 (16) | O2iv—Tb1—O2v | 89.15 (16) |
O2i—Tb1—O2iv | 119.88 (12) | O2iv—Tb1—O2vi | 89.15 (16) |
O2i—Tb1—O2v | 144.93 (19) | O2v—Tb1—O2vi | 89.15 (16) |
O2i—Tb1—O2vi | 73.32 (15) | O3—B1—O3vii | 120.0 (4) |
O2ii—Tb1—O2iii | 89.15 (16) | O3—B1—O3viii | 120.0 (4) |
O2ii—Tb1—O2iv | 144.93 (19) | O3vii—B1—O3viii | 120.0 (4) |
O2ii—Tb1—O2v | 73.32 (14) | Tb1x—O2—B2ix | 105.0 (3) |
O2ii—Tb1—O2vi | 119.88 (18) | O1—B2—O2xi | 117.7 (9) |
O2iii—Tb1—O2iv | 73.32 (15) | O1—B2—O2xii | 117.7 (9) |
O2iii—Tb1—O2v | 119.88 (18) | O2xi—B2—O2xii | 124.7 (6) |
Symmetry codes: (i) x−1/3, y+1/3, z+1/3; (ii) −y−1/3, x−y−2/3, z+1/3; (iii) −x+y+2/3, −x+1/3, z+1/3; (iv) y+1/3, x−1/3, −z−1/3; (v) x−y−2/3, −y−1/3, −z−1/3; (vi) −x+1/3, −x+y+2/3, −z−1/3; (vii) −y+1, x−y, z; (viii) −x+y+1, −x+1, z; (ix) x−2/3, y−1/3, z−1/3; (x) x+1/3, y−1/3, z−1/3; (xi) x+2/3, y+1/3, z+1/3; (xii) y+1, x, −z. |
DyAl3(BO3)4 | Dx = 4.406 Mg m−3 |
Mr = 478.7 | Mo Kα radiation, λ = 0.71075 Å |
Trigonal, R32 | Cell parameters from 7295 reflections |
Hall symbol: R 3 2" | θ = 3.8–31.5° |
a = 9.2938 (5) Å | µ = 10.81 mm−1 |
c = 7.2348 (4) Å | T = 100 K |
V = 541.18 (5) Å3 | Hexagonal prism, light white |
Z = 3 | 0.05 × 0.05 × 0.03 mm |
F(000) = 663 |
Bruker D8 QUEST CMOS area detector diffractometer | 420 reflections with I > 2σ(I) |
Radiation source: X-ray tube | Rint = 0.044 |
φ and ω scans | θmax = 31.5°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→13 |
Tmin = 0.588, Tmax = 0.723 | k = −13→13 |
7295 measured reflections | l = −10→10 |
420 independent reflections |
Refinement on F | Primary atom site location: iterative |
R[F > 3σ(F)] = 0.010 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.010 | (Δ/σ)max = 0.017 |
S = 1.14 | Δρmax = 0.29 e Å−3 |
420 reflections | Δρmin = −0.39 e Å−3 |
35 parameters | Absolute structure: The crystal had chiral structure. Data was refined with inversion twinning in JANA2006, and the twin ratio was 0.509(8):0.491(8). |
0 restraints | Absolute structure parameter: 0.491 (8) |
0 constraints |
Refinement. Data was refined with inversion twinning, and the twin ratio was 0.509 (8):0.491 (8). |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0 | 0 | 0 | 0.00585 (4) | |
Al1 | 0.55590 (10) | 0 | 0 | 0.0031 (2) | |
O1 | 0.7422 (3) | 0.0755 (3) | 0.166667 | 0.0084 (9) | |
B1 | 0.666667 | 0.333333 | −0.166667 | 0.0062 (7) | |
O3 | 0.36691 (18) | −0.11579 (17) | −0.14502 (18) | 0.0065 (4) | |
O2 | 0.8159 (2) | 0.4825 (2) | −0.166667 | 0.0067 (5) | |
B2 | 0.8916 (5) | 0.2249 (5) | 0.166667 | 0.0063 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.00546 (6) | 0.00546 (6) | 0.00665 (6) | 0.00273 (3) | 0 | 0 |
Al1 | 0.0027 (2) | 0.0023 (3) | 0.0042 (3) | 0.00114 (15) | −0.00007 (10) | −0.0001 (2) |
O1 | 0.0075 (11) | 0.0075 (11) | 0.0082 (10) | 0.0022 (11) | −0.0006 (4) | 0.0006 (4) |
B1 | 0.0068 (9) | 0.0068 (9) | 0.0051 (13) | 0.0034 (4) | 0 | 0 |
O3 | 0.0058 (6) | 0.0063 (5) | 0.0072 (5) | 0.0029 (4) | −0.0011 (4) | −0.0013 (4) |
O2 | 0.0060 (6) | 0.0060 (6) | 0.0071 (7) | 0.0022 (7) | −0.0004 (3) | 0.0004 (3) |
B2 | 0.0083 (11) | 0.0083 (11) | 0.0058 (9) | 0.0068 (15) | −0.0001 (5) | 0.0001 (5) |
Dy1—O3i | 2.3260 (16) | Al1—Al1viii | 2.9992 (7) |
Dy1—O3ii | 2.3260 (13) | O1—B2 | 1.388 (4) |
Dy1—O3iii | 2.326 (2) | B1—O2 | 1.3866 (13) |
Dy1—O3iv | 2.3260 (16) | B1—O2ix | 1.387 (2) |
Dy1—O3v | 2.3260 (13) | B1—O2x | 1.387 (2) |
Dy1—O3vi | 2.326 (2) | O3—B2xi | 1.364 (6) |
Al1—Al1vii | 2.9992 (7) | ||
O3i—Dy1—O3ii | 89.16 (6) | O3iv—Dy1—O3v | 89.16 (6) |
O3i—Dy1—O3iii | 89.16 (6) | O3iv—Dy1—O3vi | 89.16 (6) |
O3i—Dy1—O3iv | 119.78 (5) | O3v—Dy1—O3vi | 89.16 (6) |
O3i—Dy1—O3v | 145.03 (7) | Al1vii—Al1—Al1viii | 118.02 (3) |
O3i—Dy1—O3vi | 73.33 (6) | O2—B1—O2ix | 120.00 (13) |
O3ii—Dy1—O3iii | 89.16 (6) | O2—B1—O2x | 120.00 (13) |
O3ii—Dy1—O3iv | 145.03 (7) | O2ix—B1—O2x | 120.00 (13) |
O3ii—Dy1—O3v | 73.33 (5) | Dy1xii—O3—B2xi | 105.29 (15) |
O3ii—Dy1—O3vi | 119.78 (7) | O1—B2—O3xiii | 117.3 (4) |
O3iii—Dy1—O3iv | 73.33 (6) | O1—B2—O3xiv | 117.3 (4) |
O3iii—Dy1—O3v | 119.78 (7) | O3xiii—B2—O3xiv | 125.4 (3) |
O3iii—Dy1—O3vi | 145.03 (5) |
Symmetry codes: (i) x−1/3, y+1/3, z+1/3; (ii) −y−1/3, x−y−2/3, z+1/3; (iii) −x+y+2/3, −x+1/3, z+1/3; (iv) y+1/3, x−1/3, −z−1/3; (v) x−y−2/3, −y−1/3, −z−1/3; (vi) −x+1/3, −x+y+2/3, −z−1/3; (vii) −y+2/3, x−y−2/3, z+1/3; (viii) −x+y+4/3, −x+2/3, z−1/3; (ix) −y+1, x−y, z; (x) −x+y+1, −x+1, z; (xi) x−2/3, y−1/3, z−1/3; (xii) x+1/3, y−1/3, z−1/3; (xiii) x+2/3, y+1/3, z+1/3; (xiv) y+1, x, −z. |
HoAl3(BO3)4 | Dx = 4.439 Mg m−3 |
Mr = 481.1 | Mo Kα radiation, λ = 0.71075 Å |
Trigonal, R32 | Cell parameters from 5662 reflections |
Hall symbol: R 3 2" | θ = 3.8–30.5° |
a = 9.2832 (3) Å | µ = 11.45 mm−1 |
c = 7.2345 (3) Å | T = 100 K |
V = 539.93 (3) Å3 | Hexagonal prism, light pink |
Z = 3 | 0.05 × 0.05 × 0.03 mm |
F(000) = 666 |
Bruker D8 QUEST CMOS area detector diffractometer | 381 reflections with I > 2σ(I) |
Radiation source: X-ray tube | Rint = 0.047 |
φ and ω scans | θmax = 30.5°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→13 |
Tmin = 0.570, Tmax = 0.709 | k = −13→12 |
5662 measured reflections | l = −10→10 |
381 independent reflections |
Refinement on F | Primary atom site location: iterative |
R[F > 3σ(F)] = 0.012 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.015 | (Δ/σ)max = 0.036 |
S = 1.08 | Δρmax = 0.54 e Å−3 |
381 reflections | Δρmin = −0.65 e Å−3 |
35 parameters | Absolute structure: The crystal had chiral structure. Data was refined with inversion twinning in JANA2006, and the twin ratio was 0.558(12):0.442(12). |
0 restraints | Absolute structure parameter: 0.442 (12) |
0 constraints |
Refinement. Data was refined with inversion twinning, and the twin ratio was 0.558 (12):0.442 (12). |
x | y | z | Uiso*/Ueq | ||
Ho1 | 0 | 0 | 0 | 0.01041 (7) | |
Al1 | 0.55519 (15) | 0 | 0 | 0.0062 (3) | |
B1 | 0.666667 | 0.333333 | −0.166667 | 0.0090 (12) | |
O1 | 0.7428 (5) | 0.0762 (5) | 0.166667 | 0.0123 (14) | |
O3 | 0.3668 (3) | −0.1161 (3) | −0.1461 (3) | 0.0101 (7) | |
O2 | 0.8155 (3) | 0.4822 (3) | −0.166667 | 0.0094 (8) | |
B2 | 0.8911 (8) | 0.2245 (8) | 0.166667 | 0.0105 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ho1 | 0.00996 (9) | 0.00996 (9) | 0.01130 (10) | 0.00498 (4) | 0 | 0 |
Al1 | 0.0058 (4) | 0.0056 (5) | 0.0071 (5) | 0.0028 (2) | −0.00023 (15) | −0.0005 (3) |
B1 | 0.0105 (15) | 0.0105 (15) | 0.0060 (18) | 0.0053 (8) | 0 | 0 |
O1 | 0.0107 (17) | 0.0107 (17) | 0.0140 (16) | 0.0044 (17) | −0.0021 (7) | 0.0021 (7) |
O3 | 0.0100 (10) | 0.0098 (9) | 0.0106 (7) | 0.0050 (7) | −0.0004 (6) | −0.0009 (7) |
O2 | 0.0078 (9) | 0.0078 (9) | 0.0119 (10) | 0.0033 (11) | 0.0000 (5) | 0.0000 (5) |
B2 | 0.0131 (18) | 0.0131 (18) | 0.0090 (15) | 0.009 (2) | 0.0006 (9) | −0.0006 (9) |
Ho1—O3i | 2.318 (3) | B1—O2 | 1.382 (2) |
Ho1—O3ii | 2.318 (2) | B1—O2vii | 1.382 (4) |
Ho1—O3iii | 2.318 (3) | B1—O2viii | 1.382 (4) |
Ho1—O3iv | 2.318 (3) | O1—B2 | 1.377 (6) |
Ho1—O3v | 2.318 (2) | O3—B2ix | 1.364 (9) |
Ho1—O3vi | 2.318 (3) | ||
O3i—Ho1—O3ii | 89.28 (9) | O3iii—Ho1—O3vi | 144.97 (7) |
O3i—Ho1—O3iii | 89.28 (9) | O3iv—Ho1—O3v | 89.28 (9) |
O3i—Ho1—O3iv | 119.73 (7) | O3iv—Ho1—O3vi | 89.28 (9) |
O3i—Ho1—O3v | 144.97 (12) | O3v—Ho1—O3vi | 89.28 (9) |
O3i—Ho1—O3vi | 73.16 (9) | O2—B1—O2vii | 120.0 (2) |
O3ii—Ho1—O3iii | 89.28 (9) | O2—B1—O2viii | 120.0 (2) |
O3ii—Ho1—O3iv | 144.97 (12) | O2vii—B1—O2viii | 120.0 (2) |
O3ii—Ho1—O3v | 73.16 (8) | Ho1x—O3—B2ix | 105.5 (2) |
O3ii—Ho1—O3vi | 119.73 (11) | O1—B2—O3xi | 117.4 (7) |
O3iii—Ho1—O3iv | 73.16 (9) | O1—B2—O3xii | 117.4 (7) |
O3iii—Ho1—O3v | 119.73 (11) | O3xi—B2—O3xii | 125.3 (4) |
Symmetry codes: (i) x−1/3, y+1/3, z+1/3; (ii) −y−1/3, x−y−2/3, z+1/3; (iii) −x+y+2/3, −x+1/3, z+1/3; (iv) y+1/3, x−1/3, −z−1/3; (v) x−y−2/3, −y−1/3, −z−1/3; (vi) −x+1/3, −x+y+2/3, −z−1/3; (vii) −y+1, x−y, z; (viii) −x+y+1, −x+1, z; (ix) x−2/3, y−1/3, z−1/3; (x) x+1/3, y−1/3, z−1/3; (xi) x+2/3, y+1/3, z+1/3; (xii) y+1, x, −z. |
Acknowledgements
The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.
Funding information
The authors acknowledge financial support from the US Department of Energy Office of Nuclear Energy (DOE-NE).
References
Belokoneva, E. L. (1994). Russ. Chem. Rev. 63, 533–549. CrossRef Google Scholar
Belokoneva, E. L., Azizov, A. V., Leonyuk, N. I., Simonov, M. A. & Belov, N. V. (1981). J. Struct. Chem. 22, 476–478. CrossRef Web of Science Google Scholar
Belokoneva, E. L., Leonyuk, N. I., Pashkova, A. V. & Timchenko, T. I. (1988). Kristallografiya, 33, 1287–1288. CAS Google Scholar
Belokoneva, E. L. & Timchenko, T. I. (1983). Kristallografiya, 28, 1118–1123. CAS Google Scholar
Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chani, V. I., Shimamura, K., Inoue, K., Sasaki, T. & Fukuda, T. (1994). Jpn. J. Appl. Phys. 33, 247–250. CrossRef CAS Web of Science Google Scholar
Chen, Y., Lin, Y., Gong, X., Huang, J., Luo, Z. & Huang, Y. (2012). Opt. Lett. 37, 1565–1567. Web of Science CrossRef CAS PubMed Google Scholar
Földvári, I., Beregi, E., Baraldi, A., Capelletti, R., Ryba-Romanowski, W., Dominiak-Dzik, G., Munoz, A. & Sosa, R. (2003). J. Lumin. 102–103, 395–401. Google Scholar
He, J., Zhang, S., Zhou, J., Zhong, J., Liang, H., Sun, S., Huang, Y. & Tao, Y. (2015). Opt. Mater. 39, 81–85. Web of Science CrossRef CAS Google Scholar
Hong, H.-P. & Dwight, K. (1974). Mater. Res. Bull. 9, 1661–1665. CrossRef ICSD CAS Web of Science Google Scholar
Jia, G., Tu, C., Li, J., You, Z., Zhu, Z. & Wu, B. (2006). Inorg. Chem. 45, 9326–9331. Web of Science CrossRef ICSD PubMed CAS Google Scholar
Jung, S. T., Choi, D. Y., Kang, J. K. & Chung, S. J. (1995). J. Cryst. Growth, 148, 207–210. CrossRef CAS Web of Science Google Scholar
Koporulina, E. V., Leonyuk, N. I., Mokhov, A. V., Pilipenko, O. V., Bocelli, G. & Righi, L. (2000). J. Cryst. Growth, 211, 491–496. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kuroda, R., Mason, S. F. & Rosini, C. (1981). J. Chem. Soc. Faraday Trans. 2, 77, 2125–2140. Google Scholar
Kuz'micheva, G. M., Kaurova, I. A., Rybakov, V. B. & Podbel'skiy, V. V. (2019). Crystals, 9, 100. Google Scholar
Leonyuk, N. I. (2017). J. Cryst. Growth, 476, 69–77. Web of Science CrossRef CAS Google Scholar
Leonyuk, N. I., Koporulina, E. V., Barilo, S. N., Kurnevich, L. A. & Bychkov, G. L. (1998). J. Cryst. Growth, 191, 135–142. Web of Science CrossRef CAS Google Scholar
Leonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179–278. CrossRef CAS Web of Science Google Scholar
Leonyuk, N. I., Maltsev, V. V., Volkova, E. A., Pilipenko, O. V., Koporulina, E. V., Kisel, V. E., Tolstik, N. A., Kurilchik, S. V. & Kuleshov, N. V. (2007). Opt. Mater. 30, 161–163. Web of Science CrossRef CAS Google Scholar
Li, X. & Wang, Y. (2007). J. Lumin. 122–123, 1000–1002. Web of Science CrossRef CAS Google Scholar
Liang, K. C., Chaudhury, R. P., Lorenz, B., Sun, Y. Y., Bezmaternykh, L. N., Gudim, I. A., Temerov, V. L. & Chu, C. W. (2012). J. Phys. Conf. Ser. 400, 032046. CrossRef Google Scholar
Liang, K.-C., Chaudhury, R. P., Lorenz, B., Sun, Y. Y., Bezmaternykh, L. N., Temerov, V. L. & Chu, C. W. (2011). Phys. Rev. B, 83, 180417. Web of Science CrossRef Google Scholar
Malakhovskii, A. V., Kutsak, T. V., Sukhachev, A. L., Aleksandrovsky, A. S., Krylov, A. S., Gudim, I. A. & Molokeev, M. S. (2014). Chem. Phys. 428, 137–143. Web of Science CrossRef ICSD CAS Google Scholar
Mészáros, G., Sváb, E., Beregi, E., Watterich, A. & Tóth, M. (2000). Physica B, 276–278, 310–311. Google Scholar
Mills, A. (1962). Inorg. Chem. 1, 960–961. CrossRef ICSD CAS Web of Science Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Plachinda, P. A. & Belokoneva, E. L. (2008). Cryst. Res. Technol. 43, 157–165. Web of Science CrossRef ICSD CAS Google Scholar
Prokhorov, A. D., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P. & Szymczak, H. (2014). Phys. Status Solidi B, 251, 201–205. Web of Science CrossRef ICSD CAS Google Scholar
Prokhorov, A. D., Zubov, E. E., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P. & Szymczak, H. (2013). Phys. Status Solidi B, 250, 1331–1338. Web of Science CrossRef ICSD CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sváb, E., Beregi, E., Fábián, M. & Mészáros, G. (2012). Opt. Mater. 34, 1473–1476. Google Scholar
Teshima, K., Kikuchi, Y., Suzuki, T. & Oishi, S. (2006). Cryst. Growth Des. 6, 1766–1768. Web of Science CrossRef CAS Google Scholar
Tu, C., Luo, Z., Chen, G. & Wang, G. (1994). Cryst. Res. Technol. 29, K47–K50. CrossRef CAS Web of Science Google Scholar
Wang, G., Gallagher, H. G., Han, T. P. J. & Henderson, B. (1995). J. Cryst. Growth, 153, 169–174. CrossRef CAS Web of Science Google Scholar
Wang, G., Meiyun, H. & Luo, Z. (1991). Mater. Res. Bull. 26, 1085–1089. CrossRef ICSD CAS Web of Science Google Scholar
Wang, G.-F. (2012). Structure–Property Relationships in Non-Linear Optical Crystals I, pp. 105-119. Berlin, Heidelberg: Springer. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y. Y., Chen, Y. J., Luo, Z. D., Chen, J. T. & Huang, Y. D. (2002). Chin. J. Struct. Chem. 21, 402–404. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.