research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and comparisons of huntite aluminum borates REAl3(BO3)4 (RE = Tb, Dy and Ho)

aPacific Northwest National Laboratory, Richland, WA 99354, USA, and bDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov

Edited by P. Roussel, ENSCL, France (Received 28 January 2020; accepted 7 February 2020; online 14 February 2020)

Three huntite-type aluminoborates of stoichiometry REAl3(BO3)4 (RE = Tb, Dy and Ho), namely, terbium/dysprosium/holmium trialuminium tetrakis(borate), were synthesized by slow cooling within a K2Mo3O10 flux with spontaneous crystallization. The crystal structures were determined using single-crystal X-ray diffraction (SC-XRD) data. The synthesized borates are isostructural to the huntite [CaMg3(CO3)4] structure and crystallized within the trigonal R32 space group. The structural parameters were compared to literature data of other huntite REAl3(BO3)4 crystals within the R32 space group. All three borates fit well into the trends calculated from the literature data. The unit-cell parameters and volumes increase linearly with larger RE cations whereas the densities decrease. All of the crystals studied were refined as inversion twins.

1. Chemical context

Rare-earth aluminum borates (REAB) with the general chemical formula REAl3(BO3)4 (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) have been studied extensively for applications in lasers, nonlinear optics, sensors, and phosphors because of their optical and magnetoelectric properties as well as the capacity to be doped with other rare-earth metals (Koporulina et al., 2000[Koporulina, E. V., Leonyuk, N. I., Mokhov, A. V., Pilipenko, O. V., Bocelli, G. & Righi, L. (2000). J. Cryst. Growth, 211, 491-496.]; Leonyuk & Leonyuk, 1995[Leonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179-278.]; Leonyuk et al., 1998[Leonyuk, N. I., Koporulina, E. V., Barilo, S. N., Kurnevich, L. A. & Bychkov, G. L. (1998). J. Cryst. Growth, 191, 135-142.]; Mills, 1962[Mills, A. (1962). Inorg. Chem. 1, 960-961.]; Belokoneva & Timchenko, 1983[Belokoneva, E. L. & Timchenko, T. I. (1983). Kristallografiya, 28, 1118-1123.]; Belokoneva, 1994[Belokoneva, E. L. (1994). Russ. Chem. Rev. 63, 533-549.]). The REAB crystals are promising materials for self-frequency-doubling lasers as their nonlinear optical properties can be changed by doping with different rare-earth elements including Nd, Dy, Er, Yb, Tm, or Y (Leonyuk et al., 1998[Leonyuk, N. I., Koporulina, E. V., Barilo, S. N., Kurnevich, L. A. & Bychkov, G. L. (1998). J. Cryst. Growth, 191, 135-142.], 2007[Leonyuk, N. I., Maltsev, V. V., Volkova, E. A., Pilipenko, O. V., Koporulina, E. V., Kisel, V. E., Tolstik, N. A., Kurilchik, S. V. & Kuleshov, N. V. (2007). Opt. Mater. 30, 161-163.]; Földvári et al., 2003[Földvári, I., Beregi, E., Baraldi, A., Capelletti, R., Ryba-Romanowski, W., Dominiak-Dzik, G., Munoz, A. & Sosa, R. (2003). J. Lumin. 102-103, 395-401.]; Chen et al., 2012[Chen, Y., Lin, Y., Gong, X., Huang, J., Luo, Z. & Huang, Y. (2012). Opt. Lett. 37, 1565-1567.]). The REAB compounds with RE = Tb, Ho, Er, or Tm exhibit the magnetoelectric properties useful for sensor applications (Liang et al., 2011[Liang, K.-C., Chaudhury, R. P., Lorenz, B., Sun, Y. Y., Bezmaternykh, L. N., Temerov, V. L. & Chu, C. W. (2011). Phys. Rev. B, 83, 180417.], 2012[Liang, K. C., Chaudhury, R. P., Lorenz, B., Sun, Y. Y., Bezmaternykh, L. N., Gudim, I. A., Temerov, V. L. & Chu, C. W. (2012). J. Phys. Conf. Ser. 400, 032046.]), and REAB with the RE = Pr, Sm, Eu, Gd, Tb, or Ho can be used as phosphors (Li & Wang, 2007[Li, X. & Wang, Y. (2007). J. Lumin. 122-123, 1000-1002.]; He et al., 2015[He, J., Zhang, S., Zhou, J., Zhong, J., Liang, H., Sun, S., Huang, Y. & Tao, Y. (2015). Opt. Mater. 39, 81-85.]).

The REAB compounds are generally synthesized by a flux-assisted growth method with or without seeds at 800–1150°C (Leonyuk & Leonyuk, 1995[Leonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179-278.]; Koporulina et al., 2000[Koporulina, E. V., Leonyuk, N. I., Mokhov, A. V., Pilipenko, O. V., Bocelli, G. & Righi, L. (2000). J. Cryst. Growth, 211, 491-496.]; Wang, 2012[Wang, G.-F. (2012). Structure-Property Relationships in Non-Linear Optical Crystals I, pp. 105-119. Berlin, Heidelberg: Springer.]; Leonyuk, 2017[Leonyuk, N. I. (2017). J. Cryst. Growth, 476, 69-77.]). The K2Mo3O10 (Tu et al., 1994[Tu, C., Luo, Z., Chen, G. & Wang, G. (1994). Cryst. Res. Technol. 29, K47-K50.]; Wang et al., 1995[Wang, G., Gallagher, H. G., Han, T. P. J. & Henderson, B. (1995). J. Cryst. Growth, 153, 169-174.]; Leonyuk & Leonyuk, 1995[Leonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179-278.]; Teshima et al., 2006[Teshima, K., Kikuchi, Y., Suzuki, T. & Oishi, S. (2006). Cryst. Growth Des. 6, 1766-1768.]) compound is the most commonly used flux for the crystallization of REAB, although other fluxes such as Bi2O3–B2O3 (Chani et al., 1994[Chani, V. I., Shimamura, K., Inoue, K., Sasaki, T. & Fukuda, T. (1994). Jpn. J. Appl. Phys. 33, 247-250.]) and BaO–B2O3 (Jung et al., 1995[Jung, S. T., Choi, D. Y., Kang, J. K. & Chung, S. J. (1995). J. Cryst. Growth, 148, 207-210.]) have been used. Two major drawbacks of using the K2Mo3O10 flux are the potential incorporation of Mo into the REAB structure and co-crystallization of other phases (Wang, 2012[Wang, G.-F. (2012). Structure-Property Relationships in Non-Linear Optical Crystals I, pp. 105-119. Berlin, Heidelberg: Springer.]; Leonyuk, 2017[Leonyuk, N. I. (2017). J. Cryst. Growth, 476, 69-77.]; Kuz'micheva et al., 2019[Kuz'micheva, G. M., Kaurova, I. A., Rybakov, V. B. & Podbel'skiy, V. V. (2019). Crystals, 9, 100.]). In the current study, K2Mo3O10 flux was used to synthesize REAl3(BO3)4 (RE = Tb, Dy, Ho) crystals, and the structural parameters of the synthesized REAB crystals were compared to literature data.

2. Structural commentary

The crystal structures of the synthesized REAB crystals are isostructural to the huntite structure (Mills, 1962[Mills, A. (1962). Inorg. Chem. 1, 960-961.]) with the R32 space group (Fig. 1[link]). The huntite aluminoborates generally crystallize within the R32 space group; however, REAB compounds with RE = Pr, Nd, Sm, Eu, Tb, Ho, or Gd showed the transition in space group from R32 to lower symmetry monoclinic C2/c and C2 space groups in the disordered structures caused by variations in the growth temperature, cooling rate, and composition (Belokoneva & Timchenko, 1983[Belokoneva, E. L. & Timchenko, T. I. (1983). Kristallografiya, 28, 1118-1123.]; Belokoneva et al., 1988[Belokoneva, E. L., Leonyuk, N. I., Pashkova, A. V. & Timchenko, T. I. (1988). Kristallografiya, 33, 1287-1288.], 1994[Belokoneva, E. L. (1994). Russ. Chem. Rev. 63, 533-549.]; Leonyuk & Leonyuk, 1995[Leonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179-278.]; Plachinda & Belokoneva, 2008[Plachinda, P. A. & Belokoneva, E. L. (2008). Cryst. Res. Technol. 43, 157-165.]; Leonyuk, 2017[Leonyuk, N. I. (2017). J. Cryst. Growth, 476, 69-77.]). The structures of the REAB crystals are composed of rare-earth cations with a distorted trigonal–prismatic coordination (REO6), aluminum cations with a distorted octa­hedral coord­ination (AlO6), and boron cations with a trigonal–planar coordination (BO3) as shown in Fig. 2[link]. The AlO6 octa­hedra form helical chains along the c-axis direction by sharing edges, and these chains are connected by BO3 units (see Fig. 3[link]).

[Figure 1]
Figure 1
Crystal structure of REAl3(BO3)4.
[Figure 2]
Figure 2
Coordination of oxygen atoms around (a) rare-earth, (b) aluminum, and (c) boron atoms shown as polyhedra.
[Figure 3]
Figure 3
Structure showing the helical chains composed of edge sharing AlO6 units along the c axis connected by BO3 in REAl3(BO3)4.

The structural parameters of the synthesized REAB compounds were added to literature data for comparison (see Fig. 4[link]), and they were in good agreement when plotted versus the average ionic crystal radius of the six-coordinated RE element according to Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The trendlines show that the unit-cell parameters and volumes increase linearly whereas the densities decrease with the larger rare-earth cations in the structures. The data included in Fig. 4[link] include literature data for REAl3(BO3)4 where RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu, as well as mixtures of Y/Er and Y/Nd (Belokoneva et al., 1981[Belokoneva, E. L., Azizov, A. V., Leonyuk, N. I., Simonov, M. A. & Belov, N. V. (1981). J. Struct. Chem. 22, 476-478.]; Hong & Dwight, 1974[Hong, H.-P. & Dwight, K. (1974). Mater. Res. Bull. 9, 1661-1665.]; Xu et al., 2002[Xu, Y. Y., Chen, Y. J., Luo, Z. D., Chen, J. T. & Huang, Y. D. (2002). Chin. J. Struct. Chem. 21, 402-404.]; Jia et al., 2006[Jia, G., Tu, C., Li, J., You, Z., Zhu, Z. & Wu, B. (2006). Inorg. Chem. 45, 9326-9331.]; Kuroda et al., 1981[Kuroda, R., Mason, S. F. & Rosini, C. (1981). J. Chem. Soc. Faraday Trans. 2, 77, 2125-2140.]; Leonyuk & Leonyuk, 1995[Leonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179-278.]; Malakhovskii et al., 2014[Malakhovskii, A. V., Kutsak, T. V., Sukhachev, A. L., Aleksandrovsky, A. S., Krylov, A. S., Gudim, I. A. & Molokeev, M. S. (2014). Chem. Phys. 428, 137-143.]; Mészáros et al., 2000[Mészáros, G., Sváb, E., Beregi, E., Watterich, A. & Tóth, M. (2000). Physica B, 276-278, 310-311.]; Mills, 1962[Mills, A. (1962). Inorg. Chem. 1, 960-961.]; Plachinda & Belokoneva, 2008[Plachinda, P. A. & Belokoneva, E. L. (2008). Cryst. Res. Technol. 43, 157-165.]; Prokhorov et al., 2013[Prokhorov, A. D., Zubov, E. E., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P. & Szymczak, H. (2013). Phys. Status Solidi B, 250, 1331-1338.], 2014[Prokhorov, A. D., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P. & Szymczak, H. (2014). Phys. Status Solidi B, 251, 201-205.]; Sváb et al., 2012[Sváb, E., Beregi, E., Fábián, M. & Mészáros, G. (2012). Opt. Mater. 34, 1473-1476.]; Wang et al., 1991[Wang, G., Meiyun, H. & Luo, Z. (1991). Mater. Res. Bull. 26, 1085-1089.]).

[Figure 4]
Figure 4
Summary of (a) unit-cell parameter a, (b) unit-cell parameter c, (c) unit-cell volume (V), and (d) density (ρ) as a function of the average ionic crystal radii of the RE in the crystal structures (coordination number = 6) from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

3. Synthesis and crystallization

The REAB single crystals were synthesized using Tb2O3 (Alfa Aesar, 99.9%), Dy2O3 (Alfa Aesar, 99.9%), Ho2O3 (Alfa Aesar, 99.9%), Al(OH)3 (Almatis, 99.5%), B2O3 (Alfa Aesar, 99.98%), and K2Mo3O10 flux. All the rare-earth oxides, Al(OH)3, and B2O3 were used as received; the B2O3 was stored and handled in a nitro­gen glovebox to prevent hydration (M-Braun, Inc., < 0.1 ppm of O2 and H2O). The K2Mo3O10 flux was synthesized using K2CO3 (Alfa Aesar, 99%) and MoO3 (Alfa Aesar, 99.5%). For the flux, appropriate amounts of K2CO3 and MoO3 were mixed in a mortar and pestle and placed into a Pt/10%Rh crucible. The crucible was heated to 520°C at 5°C min−1, maintained at that temperature for 8 h, and then cooled down to room temperature at 5°C min−1. For the synthesis of the REAB crystals, the rare-earth oxide was mixed with Al(OH)3 and B2O3 in a 1:6:5 molar ratio, and then K2Mo3O10 was added at 40 mass% of the total precursor mass. The mixed powder of each rare-earth element was put into a Pt/10%Rh crucible, tightly covered with a Pt/10%Rh lid, and placed in a Thermolyne box furnace. The furnace was heated to 900°C at 5°C min−1, maintained at that temperature for 4 h, cooled to 400°C at 5°C h−1, and then shut off to cool naturally. The synthesized products were washed with deionized water in a sonic bath, and the crystals were recovered with vacuum filtration using a Büchner funnel. The REAB crystals along with KRE(MoO4)2 were synthesized by this process as expected from previous studies (Leonyuk et al., 1998[Leonyuk, N. I., Koporulina, E. V., Barilo, S. N., Kurnevich, L. A. & Bychkov, G. L. (1998). J. Cryst. Growth, 191, 135-142.]; Teshima et al., 2006[Teshima, K., Kikuchi, Y., Suzuki, T. & Oishi, S. (2006). Cryst. Growth Des. 6, 1766-1768.]; Leonyuk, 2017[Leonyuk, N. I. (2017). J. Cryst. Growth, 476, 69-77.]; Kuz'micheva et al., 2019[Kuz'micheva, G. M., Kaurova, I. A., Rybakov, V. B. & Podbel'skiy, V. V. (2019). Crystals, 9, 100.]).

The REAB crystals generally have hexa­gonal prismatic shapes, and they were often agglomerated (Fig. 5[link]), as observed with scanning electron microscopy (JSM-7001F field emission gun SEM; JEOL USA, Inc.). Crystals of SmAl3(BO3)4 and LuAl3(BO3)4 were also grown using the same procedure as described above and these are shown in Fig. 5[link] for comparison; however, the crystal structures are not reported due to the poor diffraction of SmAl3(BO3)4 and unresolvable displacement parameters during structural refinement for LuAl3(BO3)4. Finally, for the crystal growth conditions used here, the average crystallite sizes for the different REAl3(BO3)4 crystals herein (RE = Sm, Tb, Dy, Ho, Lu) are shown in Fig. 6[link] with standard deviations based on measurements of ≥ 7 crystals from each sample.

[Figure 5]
Figure 5
Back-scattered electron SEM micrographs of REAl3(BO3)4 crystals including (a) and(b) SmAl3(BO3)4, (c) TbAl3(BO3)4, (d) DyAl3(BO3)4, (e) HoAl3(BO3)4, and (f) LuAl3(BO3)4. Note that some KLu(MoO4)2 crystals are seen in (a) and (d) as the smaller and brighter crystallites.
[Figure 6]
Figure 6
Summary of crystal size in terms of average length and width as a function of the average ionic crystal radii of the RE in the crystal structures (coordination number = 6) from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Suitable crystals were selected for SC-XRD and were placed on cryoloops in oil (Parabar 10312, Hampton Research). Data were collected with a scan width of 0.5° in φ and ω with a 10 sec dwell time per frame at 100 K. All the REAB crystals had chiral structures and were refined with inversion twinning. The final refinements for TbAl3(BO3)4, DyAl3(BO3)4, and HoAl3(BO3)4 converged at R1 = 1.97% with goodness-of-fit of 1.08, R1 = 0.80% with goodness-of-fit of 1.14, and R1 = 1.15% with goodness-of-fit of 1.08, respectively.

Table 1
Experimental details

  Tb-borate Dy-borate Ho-borate
Crystal data
Chemical formula TbAl3(BO3)4 DyAl3(BO3)4 HoAl3(BO3)4
Mr 475.1 478.7 481.1
Crystal system, space group Trigonal, R32 Trigonal, R32 Trigonal, R32
Temperature (K) 100 100 100
a, c (Å) 9.2992 (8), 7.2588 (7) 9.2938 (5), 7.2348 (4) 9.2832 (3), 7.2345 (3)
V3) 543.61 (8) 541.18 (5) 539.93 (3)
Z 3 3 3
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.21 10.81 11.45
Crystal size (mm) 0.03 × 0.03 × 0.02 0.05 × 0.05 × 0.03 0.05 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST CMOS area detector Bruker D8 QUEST CMOS area detector Bruker D8 QUEST CMOS area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.530, 0.747 0.588, 0.723 0.570, 0.709
No. of measured, independent and observed [I > 2σ(I)] reflections 6957, 270, 270 7295, 420, 420 5662, 381, 381
Rint 0.113 0.044 0.047
 
Refinement
R[F > 3σ(F)], wR(F), S 0.020, 0.021, 1.08 0.010, 0.010, 1.14 0.012, 0.015, 1.08
No. of reflections 270 420 381
No. of parameters 32 35 35
Δρmax, Δρmin (e Å−3) 0.59, −0.88 0.29, −0.39 0.54, −0.65
Absolute structure Refined as an inversion twin with a twin ratio of 0.51 (2):0.49 (2) Refined as an inversion twin with a twin ratio of 0.509 (8):0.491 (8) Refined as an inversion twin with a twin ratio of 0.558 (12):0.442 (12)
Absolute structure parameter 0.49 (2) 0.491 (8) 0.442 (12)
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2012); cell refinement: JANA2006 (Petříček et al., 2014); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Terbium trialuminium tetrakis(borate) (Tb-borate) top
Crystal data top
TbAl3(BO3)4Dx = 4.354 Mg m3
Mr = 475.1Mo Kα radiation, λ = 0.71075 Å
Trigonal, R32Cell parameters from 6957 reflections
Hall symbol: R 3 2"θ = 3.8–33.2°
a = 9.2992 (8) ŵ = 10.21 mm1
c = 7.2588 (7) ÅT = 100 K
V = 543.61 (8) Å3Hexagonal prism, light white
Z = 30.03 × 0.03 × 0.02 mm
F(000) = 660
Data collection top
Bruker D8 QUEST CMOS area detector
diffractometer
270 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.113
φ and ω scansθmax = 33.2°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1314
Tmin = 0.530, Tmax = 0.747k = 1413
6957 measured reflectionsl = 1111
270 independent reflections
Refinement top
Refinement on FPrimary atom site location: iterative
R[F > 3σ(F)] = 0.020Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.021(Δ/σ)max = 0.041
S = 1.08Δρmax = 0.59 e Å3
270 reflectionsΔρmin = 0.88 e Å3
32 parametersAbsolute structure: Data was refined with inversion twinning in JANA2006, and the twin ratio was 0.51(2):0.49(2).
0 restraintsAbsolute structure parameter: 0.49 (2)
0 constraints
Special details top

Refinement. Data was refined with inversion twinning, and the twin ratio was 0.51 (2):0.49 (2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10000.01126 (13)
Al10.5557 (2)000.0052 (6)
B10.6666670.3333330.1666670.0054 (19)
O10.7418 (7)0.0752 (7)0.1666670.012 (2)
O20.3668 (5)0.1151 (5)0.1448 (5)0.0098 (12)
O30.8151 (5)0.4818 (5)0.1666670.0091 (14)
B20.8912 (11)0.2245 (11)0.1666670.0066 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01027 (16)0.01027 (16)0.0133 (2)0.00513 (8)00
Al10.0040 (6)0.0036 (8)0.0078 (9)0.0018 (4)0.0005 (3)0.0010 (6)
B10.004 (2)0.004 (2)0.008 (3)0.0021 (12)00
O10.007 (2)0.007 (2)0.017 (3)0.000 (2)0.0008 (9)0.0008 (9)
O20.0082 (16)0.0086 (15)0.0123 (15)0.0039 (13)0.0003 (12)0.0013 (12)
O30.0075 (15)0.0075 (15)0.011 (2)0.0031 (18)0.0010 (8)0.0010 (8)
Geometric parameters (Å, º) top
Tb1—O2i2.336 (4)B1—O31.381 (4)
Tb1—O2ii2.336 (4)B1—O3vii1.381 (6)
Tb1—O2iii2.336 (6)B1—O3viii1.381 (6)
Tb1—O2iv2.336 (4)O1—B21.389 (8)
Tb1—O2v2.336 (4)O2—B2ix1.362 (12)
Tb1—O2vi2.336 (6)
O2i—Tb1—O2ii89.15 (16)O2iii—Tb1—O2vi144.93 (12)
O2i—Tb1—O2iii89.15 (16)O2iv—Tb1—O2v89.15 (16)
O2i—Tb1—O2iv119.88 (12)O2iv—Tb1—O2vi89.15 (16)
O2i—Tb1—O2v144.93 (19)O2v—Tb1—O2vi89.15 (16)
O2i—Tb1—O2vi73.32 (15)O3—B1—O3vii120.0 (4)
O2ii—Tb1—O2iii89.15 (16)O3—B1—O3viii120.0 (4)
O2ii—Tb1—O2iv144.93 (19)O3vii—B1—O3viii120.0 (4)
O2ii—Tb1—O2v73.32 (14)Tb1x—O2—B2ix105.0 (3)
O2ii—Tb1—O2vi119.88 (18)O1—B2—O2xi117.7 (9)
O2iii—Tb1—O2iv73.32 (15)O1—B2—O2xii117.7 (9)
O2iii—Tb1—O2v119.88 (18)O2xi—B2—O2xii124.7 (6)
Symmetry codes: (i) x1/3, y+1/3, z+1/3; (ii) y1/3, xy2/3, z+1/3; (iii) x+y+2/3, x+1/3, z+1/3; (iv) y+1/3, x1/3, z1/3; (v) xy2/3, y1/3, z1/3; (vi) x+1/3, x+y+2/3, z1/3; (vii) y+1, xy, z; (viii) x+y+1, x+1, z; (ix) x2/3, y1/3, z1/3; (x) x+1/3, y1/3, z1/3; (xi) x+2/3, y+1/3, z+1/3; (xii) y+1, x, z.
Dysprosium trialuminium tetrakis(borate) (Dy-borate) top
Crystal data top
DyAl3(BO3)4Dx = 4.406 Mg m3
Mr = 478.7Mo Kα radiation, λ = 0.71075 Å
Trigonal, R32Cell parameters from 7295 reflections
Hall symbol: R 3 2"θ = 3.8–31.5°
a = 9.2938 (5) ŵ = 10.81 mm1
c = 7.2348 (4) ÅT = 100 K
V = 541.18 (5) Å3Hexagonal prism, light white
Z = 30.05 × 0.05 × 0.03 mm
F(000) = 663
Data collection top
Bruker D8 QUEST CMOS area detector
diffractometer
420 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.044
φ and ω scansθmax = 31.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1213
Tmin = 0.588, Tmax = 0.723k = 1313
7295 measured reflectionsl = 1010
420 independent reflections
Refinement top
Refinement on FPrimary atom site location: iterative
R[F > 3σ(F)] = 0.010Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.010(Δ/σ)max = 0.017
S = 1.14Δρmax = 0.29 e Å3
420 reflectionsΔρmin = 0.39 e Å3
35 parametersAbsolute structure: The crystal had chiral structure. Data was refined with inversion twinning in JANA2006, and the twin ratio was 0.509(8):0.491(8).
0 restraintsAbsolute structure parameter: 0.491 (8)
0 constraints
Special details top

Refinement. Data was refined with inversion twinning, and the twin ratio was 0.509 (8):0.491 (8).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10000.00585 (4)
Al10.55590 (10)000.0031 (2)
O10.7422 (3)0.0755 (3)0.1666670.0084 (9)
B10.6666670.3333330.1666670.0062 (7)
O30.36691 (18)0.11579 (17)0.14502 (18)0.0065 (4)
O20.8159 (2)0.4825 (2)0.1666670.0067 (5)
B20.8916 (5)0.2249 (5)0.1666670.0063 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.00546 (6)0.00546 (6)0.00665 (6)0.00273 (3)00
Al10.0027 (2)0.0023 (3)0.0042 (3)0.00114 (15)0.00007 (10)0.0001 (2)
O10.0075 (11)0.0075 (11)0.0082 (10)0.0022 (11)0.0006 (4)0.0006 (4)
B10.0068 (9)0.0068 (9)0.0051 (13)0.0034 (4)00
O30.0058 (6)0.0063 (5)0.0072 (5)0.0029 (4)0.0011 (4)0.0013 (4)
O20.0060 (6)0.0060 (6)0.0071 (7)0.0022 (7)0.0004 (3)0.0004 (3)
B20.0083 (11)0.0083 (11)0.0058 (9)0.0068 (15)0.0001 (5)0.0001 (5)
Geometric parameters (Å, º) top
Dy1—O3i2.3260 (16)Al1—Al1viii2.9992 (7)
Dy1—O3ii2.3260 (13)O1—B21.388 (4)
Dy1—O3iii2.326 (2)B1—O21.3866 (13)
Dy1—O3iv2.3260 (16)B1—O2ix1.387 (2)
Dy1—O3v2.3260 (13)B1—O2x1.387 (2)
Dy1—O3vi2.326 (2)O3—B2xi1.364 (6)
Al1—Al1vii2.9992 (7)
O3i—Dy1—O3ii89.16 (6)O3iv—Dy1—O3v89.16 (6)
O3i—Dy1—O3iii89.16 (6)O3iv—Dy1—O3vi89.16 (6)
O3i—Dy1—O3iv119.78 (5)O3v—Dy1—O3vi89.16 (6)
O3i—Dy1—O3v145.03 (7)Al1vii—Al1—Al1viii118.02 (3)
O3i—Dy1—O3vi73.33 (6)O2—B1—O2ix120.00 (13)
O3ii—Dy1—O3iii89.16 (6)O2—B1—O2x120.00 (13)
O3ii—Dy1—O3iv145.03 (7)O2ix—B1—O2x120.00 (13)
O3ii—Dy1—O3v73.33 (5)Dy1xii—O3—B2xi105.29 (15)
O3ii—Dy1—O3vi119.78 (7)O1—B2—O3xiii117.3 (4)
O3iii—Dy1—O3iv73.33 (6)O1—B2—O3xiv117.3 (4)
O3iii—Dy1—O3v119.78 (7)O3xiii—B2—O3xiv125.4 (3)
O3iii—Dy1—O3vi145.03 (5)
Symmetry codes: (i) x1/3, y+1/3, z+1/3; (ii) y1/3, xy2/3, z+1/3; (iii) x+y+2/3, x+1/3, z+1/3; (iv) y+1/3, x1/3, z1/3; (v) xy2/3, y1/3, z1/3; (vi) x+1/3, x+y+2/3, z1/3; (vii) y+2/3, xy2/3, z+1/3; (viii) x+y+4/3, x+2/3, z1/3; (ix) y+1, xy, z; (x) x+y+1, x+1, z; (xi) x2/3, y1/3, z1/3; (xii) x+1/3, y1/3, z1/3; (xiii) x+2/3, y+1/3, z+1/3; (xiv) y+1, x, z.
Holmium trialuminium tetrakis(borate) (Ho-borate) top
Crystal data top
HoAl3(BO3)4Dx = 4.439 Mg m3
Mr = 481.1Mo Kα radiation, λ = 0.71075 Å
Trigonal, R32Cell parameters from 5662 reflections
Hall symbol: R 3 2"θ = 3.8–30.5°
a = 9.2832 (3) ŵ = 11.45 mm1
c = 7.2345 (3) ÅT = 100 K
V = 539.93 (3) Å3Hexagonal prism, light pink
Z = 30.05 × 0.05 × 0.03 mm
F(000) = 666
Data collection top
Bruker D8 QUEST CMOS area detector
diffractometer
381 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.047
φ and ω scansθmax = 30.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.570, Tmax = 0.709k = 1312
5662 measured reflectionsl = 1010
381 independent reflections
Refinement top
Refinement on FPrimary atom site location: iterative
R[F > 3σ(F)] = 0.012Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.015(Δ/σ)max = 0.036
S = 1.08Δρmax = 0.54 e Å3
381 reflectionsΔρmin = 0.65 e Å3
35 parametersAbsolute structure: The crystal had chiral structure. Data was refined with inversion twinning in JANA2006, and the twin ratio was 0.558(12):0.442(12).
0 restraintsAbsolute structure parameter: 0.442 (12)
0 constraints
Special details top

Refinement. Data was refined with inversion twinning, and the twin ratio was 0.558 (12):0.442 (12).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10000.01041 (7)
Al10.55519 (15)000.0062 (3)
B10.6666670.3333330.1666670.0090 (12)
O10.7428 (5)0.0762 (5)0.1666670.0123 (14)
O30.3668 (3)0.1161 (3)0.1461 (3)0.0101 (7)
O20.8155 (3)0.4822 (3)0.1666670.0094 (8)
B20.8911 (8)0.2245 (8)0.1666670.0105 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.00996 (9)0.00996 (9)0.01130 (10)0.00498 (4)00
Al10.0058 (4)0.0056 (5)0.0071 (5)0.0028 (2)0.00023 (15)0.0005 (3)
B10.0105 (15)0.0105 (15)0.0060 (18)0.0053 (8)00
O10.0107 (17)0.0107 (17)0.0140 (16)0.0044 (17)0.0021 (7)0.0021 (7)
O30.0100 (10)0.0098 (9)0.0106 (7)0.0050 (7)0.0004 (6)0.0009 (7)
O20.0078 (9)0.0078 (9)0.0119 (10)0.0033 (11)0.0000 (5)0.0000 (5)
B20.0131 (18)0.0131 (18)0.0090 (15)0.009 (2)0.0006 (9)0.0006 (9)
Geometric parameters (Å, º) top
Ho1—O3i2.318 (3)B1—O21.382 (2)
Ho1—O3ii2.318 (2)B1—O2vii1.382 (4)
Ho1—O3iii2.318 (3)B1—O2viii1.382 (4)
Ho1—O3iv2.318 (3)O1—B21.377 (6)
Ho1—O3v2.318 (2)O3—B2ix1.364 (9)
Ho1—O3vi2.318 (3)
O3i—Ho1—O3ii89.28 (9)O3iii—Ho1—O3vi144.97 (7)
O3i—Ho1—O3iii89.28 (9)O3iv—Ho1—O3v89.28 (9)
O3i—Ho1—O3iv119.73 (7)O3iv—Ho1—O3vi89.28 (9)
O3i—Ho1—O3v144.97 (12)O3v—Ho1—O3vi89.28 (9)
O3i—Ho1—O3vi73.16 (9)O2—B1—O2vii120.0 (2)
O3ii—Ho1—O3iii89.28 (9)O2—B1—O2viii120.0 (2)
O3ii—Ho1—O3iv144.97 (12)O2vii—B1—O2viii120.0 (2)
O3ii—Ho1—O3v73.16 (8)Ho1x—O3—B2ix105.5 (2)
O3ii—Ho1—O3vi119.73 (11)O1—B2—O3xi117.4 (7)
O3iii—Ho1—O3iv73.16 (9)O1—B2—O3xii117.4 (7)
O3iii—Ho1—O3v119.73 (11)O3xi—B2—O3xii125.3 (4)
Symmetry codes: (i) x1/3, y+1/3, z+1/3; (ii) y1/3, xy2/3, z+1/3; (iii) x+y+2/3, x+1/3, z+1/3; (iv) y+1/3, x1/3, z1/3; (v) xy2/3, y1/3, z1/3; (vi) x+1/3, x+y+2/3, z1/3; (vii) y+1, xy, z; (viii) x+y+1, x+1, z; (ix) x2/3, y1/3, z1/3; (x) x+1/3, y1/3, z1/3; (xi) x+2/3, y+1/3, z+1/3; (xii) y+1, x, z.
 

Acknowledgements

The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.

Funding information

The authors acknowledge financial support from the US Department of Energy Office of Nuclear Energy (DOE-NE).

References

First citationBelokoneva, E. L. (1994). Russ. Chem. Rev. 63, 533–549.  CrossRef Google Scholar
First citationBelokoneva, E. L., Azizov, A. V., Leonyuk, N. I., Simonov, M. A. & Belov, N. V. (1981). J. Struct. Chem. 22, 476–478.  CrossRef Web of Science Google Scholar
First citationBelokoneva, E. L., Leonyuk, N. I., Pashkova, A. V. & Timchenko, T. I. (1988). Kristallografiya, 33, 1287–1288.  CAS Google Scholar
First citationBelokoneva, E. L. & Timchenko, T. I. (1983). Kristallografiya, 28, 1118–1123.  CAS Google Scholar
First citationBruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChani, V. I., Shimamura, K., Inoue, K., Sasaki, T. & Fukuda, T. (1994). Jpn. J. Appl. Phys. 33, 247–250.  CrossRef CAS Web of Science Google Scholar
First citationChen, Y., Lin, Y., Gong, X., Huang, J., Luo, Z. & Huang, Y. (2012). Opt. Lett. 37, 1565–1567.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFöldvári, I., Beregi, E., Baraldi, A., Capelletti, R., Ryba-Romanowski, W., Dominiak-Dzik, G., Munoz, A. & Sosa, R. (2003). J. Lumin. 102–103, 395–401.  Google Scholar
First citationHe, J., Zhang, S., Zhou, J., Zhong, J., Liang, H., Sun, S., Huang, Y. & Tao, Y. (2015). Opt. Mater. 39, 81–85.  Web of Science CrossRef CAS Google Scholar
First citationHong, H.-P. & Dwight, K. (1974). Mater. Res. Bull. 9, 1661–1665.  CrossRef ICSD CAS Web of Science Google Scholar
First citationJia, G., Tu, C., Li, J., You, Z., Zhu, Z. & Wu, B. (2006). Inorg. Chem. 45, 9326–9331.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationJung, S. T., Choi, D. Y., Kang, J. K. & Chung, S. J. (1995). J. Cryst. Growth, 148, 207–210.  CrossRef CAS Web of Science Google Scholar
First citationKoporulina, E. V., Leonyuk, N. I., Mokhov, A. V., Pilipenko, O. V., Bocelli, G. & Righi, L. (2000). J. Cryst. Growth, 211, 491–496.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuroda, R., Mason, S. F. & Rosini, C. (1981). J. Chem. Soc. Faraday Trans. 2, 77, 2125–2140.  Google Scholar
First citationKuz'micheva, G. M., Kaurova, I. A., Rybakov, V. B. & Podbel'skiy, V. V. (2019). Crystals, 9, 100.  Google Scholar
First citationLeonyuk, N. I. (2017). J. Cryst. Growth, 476, 69–77.  Web of Science CrossRef CAS Google Scholar
First citationLeonyuk, N. I., Koporulina, E. V., Barilo, S. N., Kurnevich, L. A. & Bychkov, G. L. (1998). J. Cryst. Growth, 191, 135–142.  Web of Science CrossRef CAS Google Scholar
First citationLeonyuk, N. I. & Leonyuk, L. I. (1995). Prog. Cryst. Growth Charact. Mater. 31, 179–278.  CrossRef CAS Web of Science Google Scholar
First citationLeonyuk, N. I., Maltsev, V. V., Volkova, E. A., Pilipenko, O. V., Koporulina, E. V., Kisel, V. E., Tolstik, N. A., Kurilchik, S. V. & Kuleshov, N. V. (2007). Opt. Mater. 30, 161–163.  Web of Science CrossRef CAS Google Scholar
First citationLi, X. & Wang, Y. (2007). J. Lumin. 122–123, 1000–1002.  Web of Science CrossRef CAS Google Scholar
First citationLiang, K. C., Chaudhury, R. P., Lorenz, B., Sun, Y. Y., Bezmaternykh, L. N., Gudim, I. A., Temerov, V. L. & Chu, C. W. (2012). J. Phys. Conf. Ser. 400, 032046.  CrossRef Google Scholar
First citationLiang, K.-C., Chaudhury, R. P., Lorenz, B., Sun, Y. Y., Bezmaternykh, L. N., Temerov, V. L. & Chu, C. W. (2011). Phys. Rev. B, 83, 180417.  Web of Science CrossRef Google Scholar
First citationMalakhovskii, A. V., Kutsak, T. V., Sukhachev, A. L., Aleksandrovsky, A. S., Krylov, A. S., Gudim, I. A. & Molokeev, M. S. (2014). Chem. Phys. 428, 137–143.  Web of Science CrossRef ICSD CAS Google Scholar
First citationMészáros, G., Sváb, E., Beregi, E., Watterich, A. & Tóth, M. (2000). Physica B, 276–278, 310–311.  Google Scholar
First citationMills, A. (1962). Inorg. Chem. 1, 960–961.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationPlachinda, P. A. & Belokoneva, E. L. (2008). Cryst. Res. Technol. 43, 157–165.  Web of Science CrossRef ICSD CAS Google Scholar
First citationProkhorov, A. D., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P. & Szymczak, H. (2014). Phys. Status Solidi B, 251, 201–205.  Web of Science CrossRef ICSD CAS Google Scholar
First citationProkhorov, A. D., Zubov, E. E., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P. & Szymczak, H. (2013). Phys. Status Solidi B, 250, 1331–1338.  Web of Science CrossRef ICSD CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSváb, E., Beregi, E., Fábián, M. & Mészáros, G. (2012). Opt. Mater. 34, 1473–1476.  Google Scholar
First citationTeshima, K., Kikuchi, Y., Suzuki, T. & Oishi, S. (2006). Cryst. Growth Des. 6, 1766–1768.  Web of Science CrossRef CAS Google Scholar
First citationTu, C., Luo, Z., Chen, G. & Wang, G. (1994). Cryst. Res. Technol. 29, K47–K50.  CrossRef CAS Web of Science Google Scholar
First citationWang, G., Gallagher, H. G., Han, T. P. J. & Henderson, B. (1995). J. Cryst. Growth, 153, 169–174.  CrossRef CAS Web of Science Google Scholar
First citationWang, G., Meiyun, H. & Luo, Z. (1991). Mater. Res. Bull. 26, 1085–1089.  CrossRef ICSD CAS Web of Science Google Scholar
First citationWang, G.-F. (2012). Structure–Property Relationships in Non-Linear Optical Crystals I, pp. 105-119. Berlin, Heidelberg: Springer.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y. Y., Chen, Y. J., Luo, Z. D., Chen, J. T. & Huang, Y. D. (2002). Chin. J. Struct. Chem. 21, 402–404.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds