research communications
E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net
The central thiazolidine ring of the title salt, C16H16N3S+·Br−, adopts an with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) interactions.
Keywords: crystal structure; charge assisted hydrogen bonding; thiazolidine ring; envelope conformation; Hirshfeld surface analysis.
CCDC reference: 1837123
1. Chemical context
Sulfur and nitrogen-containing heterocycles maintain their importance as key fragments of drugs and medicinally active compounds (Pathania et al., 2019). Moreover, azomethine-containing structural motifs have been widely employed for industrial purposes as they exhibit a broad range of biological activities, and are used in synthesis, catalysis and the design of materials (Gurbanov et al., 2017, 2018; Mahmoudi et al., 2018a,b,c; Mamedov et al., 2018). Nowadays, N-ligands are key players in a wide diversity of fields, namely in coordination, metal–organic, pharmaceutical and medicinal chemistry, biologically active compounds, catalysis, non-covalent interactions and supramolecular assemblies (Maharramov et al., 2011, 2018; Mahmudov et al., 2013, 2014, 2017a,b, 2019; Mamedov et al., 2015). In our previous studies we have reported on the molecular structural properties of a series of 5-phenylthiazolidin-2-imine derivatives (Akkurt et al., 2018a,b; Duruskari et al., 2019a,b; Khalilov et al., 2019; Maharramov et al., 2019). Following further study in this field, herein we report the and Hirshfeld surface analysis of the title compound, (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide.
2. Structural commentary
The thiazolidine ring (S1/N2/C1–C3) in the cation of the title salt (Fig. 1) adopts an with the C atom bearing the phenyl ring as the flap atom; the puckering parameters are Q(2) = 0.318 (3) Å and φ(2) = 42.0 (5)°. The mean plane of the thiazolidine ring makes dihedral angles of 18.28 (15) and 83.19 (15)°, respectively, with the C5–C10 and C11–C16 phenyl rings of the 3-(benzylideneamino) and 5-phenylthiazolidin groups, while the dihedral angle between them is 82.54 (15)°. The torsion angle of the N2—N1—C4—C5 bridge that links the thiazolidine and 3-(benzylideneamino) units is −175.7 (3)°.
3. Supramolecular features
In the crystal, adjacent cations and anions are linked by pairs of N—H⋯Br hydrogen bonds (Table 1, Fig. 2), forming chains running parallel to the b-axis direction. C—H⋯π interactions or π–π stacking interactions contributing to the stabilization of the crystal packing are not observed.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) of the title compound was generated by CrystalExplorer 3.1 (Wolff et al., 2012), and comprises dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). A dnorm surface plot of the title compound mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.3485 (red) to 1.3503 a.u. (blue) is shown in Fig. 3. The dark-red spots on the dnorm surface arise as a result of short interatomic contacts (Table 2), while the other weaker intermolecular interactions appear as light-red spots.
|
The shape index of the Hirshfeld surface is a tool to visualize π–·π stacking interactions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 4 clearly suggests that there are no π–π interactions present in the title compound. Fig. 5(a) shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1 and 2). The fingerprint plots delineated into H⋯H (46.4%), C⋯H/H⋯C (18.6%), H⋯Br/Br⋯H (17.5%), H⋯S/S⋯H (4.5%) and C⋯N/N⋯C (3.7%) contacts are shown in Fig. 5b–f.
The most significant intermolecular interactions are the H⋯H interactions (46.4%) (Fig. 5b). All of the contributions to the Hirshfeld surface are given in Table 3. The large number of H⋯H, C⋯H/H⋯C and H⋯Br/Br⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016) for 2-thiazolidiniminium compounds gave ten hits, viz. MOJGUQ (Duruskari et al., 2019a), XOWXAL (Duruskari et al., 2019b), BOBWIB (Khalilov et al., 2019), UDELUN (Akkurt et al., 2018a), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem'yanova et al., 1993a), YITCAF (Martem'yanova et al., 1993b) and YOPLUK (Marthi et al., 1995).
In the crystal of MOJGUQ (Duruskari et al., 2019a), centrosymmetrically related cations and anions are linked into dimeric units via N—-H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. In the crystal of XOWXAL (Duruskari et al., 2019b), the thiazolidine ring adopts an N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking interactions between the phenyl rings of adjacent cations also contribute to the molecular packing. In the crystal of BOBWIB (Khalilov et al., 2019), the central thiazolidine ring adopts an In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018a), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor disorder component of the ring, also contribute to the molecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C-–Cl⋯π(ring) contacts. In the other structures, the 3-N atom carries a C–substituent instead of an N–substituent as found in the title compound. Three of them were determined to be racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2′-chloro-2′-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a), is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic nitrogen atom, while YITCAF (Martem'yanova et al., 1993b) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
6. Synthesis and crystallization
To the solution of 3-amino-5-phenylthiazolidin-2-iminium bromide (1 mmol) in 20 mL of ethanol was added benzaldehyde (1 mmol) and the mixture was refluxed for 2 h. After cooling down to room temperature, the reaction product precipitated as colourless single crystals, which were collected by filtration and washed with cold acetone (yield 76%), m.p. 519 K. Analysis calculated for C16H16BrN3S (Mr = 362.29): C, 53.04; H, 4.45; N, 11.60. Found: C, 53.01; H, 4.42; N, 11.56%. 1H NMR (300 MHz, DMSO-d6) : 4.58 (k, 1H, CH2, 3JH–H = 6.9); 4,89 (t, 1H, CH2, 3JH–H =8.1); 5.60 (t, 1H, CH-Ar, 3JH–H =7.5); 7.37–8.07 (m, 10H, 10Ar-H); 8.44 (s, 1H, CH=), 10.35 (s, 2H, NH=). 13C NMR (75 MHz, DMSO-d6): 45.36, 55.91, 127.76, 128.65, 128.82, 128.86, 129.09, 131.54, 132.85, 137.48, 151.11, 167.84. MS (ESI), m/z: 282.30 [C16H16N3S]+ and 79.88 Br−.
7. Refinement
Crystal data, data collection and structure . All H atoms were placed at calculated positions (N—H = 0.90 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(N, C). The distances between the carbon atoms of two phenyl groups were constrained with a DFIX instruction [DFIX 1.40 0.02 C C].
details are summarized in Table 4Supporting information
CCDC reference: 1837123
https://doi.org/10.1107/S2056989020001899/rz5269sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001899/rz5269Isup2.hkl
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H16N3S+·Br− | F(000) = 736 |
Mr = 362.29 | Dx = 1.502 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.138 (8) Å | Cell parameters from 9891 reflections |
b = 8.336 (5) Å | θ = 2.8–26.4° |
c = 15.872 (9) Å | µ = 2.69 mm−1 |
β = 93.910 (16)° | T = 296 K |
V = 1602.3 (17) Å3 | Plate, colourless |
Z = 4 | 0.21 × 0.18 × 0.13 mm |
Bruker APEXII CCD diffractometer | 2742 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.049 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.5°, θmin = 2.6° |
Tmin = 0.582, Tmax = 0.713 | h = −15→15 |
23979 measured reflections | k = −10→10 |
3314 independent reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0521P)2 + 1.4845P] where P = (Fo2 + 2Fc2)/3 |
3314 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.74 e Å−3 |
12 restraints | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.36371 (3) | 0.40930 (5) | 0.77766 (2) | 0.05996 (15) | |
S1 | 0.27771 (6) | 0.50993 (10) | 0.55109 (5) | 0.0478 (2) | |
N1 | 0.52247 (19) | 0.7685 (3) | 0.49030 (15) | 0.0411 (5) | |
N2 | 0.42403 (19) | 0.6853 (3) | 0.48814 (15) | 0.0438 (5) | |
N3 | 0.4551 (2) | 0.6390 (3) | 0.63168 (16) | 0.0500 (6) | |
H3A | 0.431514 | 0.589059 | 0.677388 | 0.060* | |
H3B | 0.509254 | 0.711959 | 0.640888 | 0.060* | |
C1 | 0.3432 (2) | 0.6653 (4) | 0.41558 (19) | 0.0467 (7) | |
H1A | 0.380449 | 0.651339 | 0.363896 | 0.056* | |
H1B | 0.295261 | 0.758163 | 0.409430 | 0.056* | |
C2 | 0.2763 (3) | 0.5140 (4) | 0.4348 (2) | 0.0489 (7) | |
H2A | 0.315568 | 0.419380 | 0.415778 | 0.059* | |
C3 | 0.3971 (2) | 0.6205 (3) | 0.56063 (18) | 0.0412 (6) | |
C4 | 0.5460 (2) | 0.8450 (4) | 0.42487 (19) | 0.0440 (6) | |
H4A | 0.495374 | 0.850348 | 0.378264 | 0.053* | |
C5 | 0.6520 (2) | 0.9241 (3) | 0.42299 (14) | 0.0416 (6) | |
C6 | 0.7284 (2) | 0.9221 (4) | 0.49283 (19) | 0.0513 (7) | |
H6A | 0.710541 | 0.874346 | 0.543049 | 0.062* | |
C7 | 0.8319 (2) | 0.9924 (4) | 0.4867 (2) | 0.0663 (10) | |
H7A | 0.883751 | 0.988871 | 0.532539 | 0.080* | |
C8 | 0.8581 (3) | 1.0679 (4) | 0.41226 (19) | 0.0652 (10) | |
H8A | 0.927072 | 1.114885 | 0.408687 | 0.078* | |
C9 | 0.7808 (2) | 1.0730 (4) | 0.3432 (2) | 0.0651 (10) | |
H9A | 0.797532 | 1.124866 | 0.293831 | 0.078* | |
C10 | 0.6782 (2) | 0.9998 (4) | 0.34862 (17) | 0.0551 (8) | |
H10A | 0.626928 | 1.001586 | 0.302329 | 0.066* | |
C11 | 0.1609 (2) | 0.5115 (3) | 0.39571 (17) | 0.0446 (6) | |
C12 | 0.1299 (2) | 0.3891 (4) | 0.3387 (2) | 0.0613 (9) | |
H12A | 0.180793 | 0.310914 | 0.325946 | 0.074* | |
C13 | 0.0225 (2) | 0.3838 (5) | 0.3009 (2) | 0.0690 (10) | |
H13A | 0.002162 | 0.302592 | 0.262799 | 0.083* | |
C14 | −0.0538 (3) | 0.5001 (4) | 0.3205 (2) | 0.0661 (10) | |
H14A | −0.124515 | 0.498545 | 0.293897 | 0.079* | |
C15 | −0.0251 (3) | 0.6186 (4) | 0.3794 (2) | 0.0683 (10) | |
H15A | −0.076995 | 0.693888 | 0.394077 | 0.082* | |
C16 | 0.0820 (2) | 0.6235 (4) | 0.4163 (2) | 0.0631 (9) | |
H16A | 0.101386 | 0.703134 | 0.455623 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0594 (2) | 0.0700 (3) | 0.0489 (2) | −0.01088 (16) | −0.00776 (15) | 0.01409 (15) |
S1 | 0.0461 (4) | 0.0511 (4) | 0.0467 (4) | −0.0073 (3) | 0.0065 (3) | 0.0068 (3) |
N1 | 0.0379 (12) | 0.0421 (13) | 0.0432 (13) | −0.0028 (10) | 0.0028 (10) | 0.0008 (10) |
N2 | 0.0387 (12) | 0.0496 (14) | 0.0429 (13) | −0.0054 (10) | 0.0013 (10) | 0.0085 (11) |
N3 | 0.0544 (15) | 0.0552 (15) | 0.0405 (13) | −0.0076 (12) | 0.0042 (11) | 0.0037 (11) |
C1 | 0.0426 (15) | 0.0550 (17) | 0.0418 (15) | −0.0053 (13) | −0.0020 (12) | 0.0096 (13) |
C2 | 0.0471 (16) | 0.0482 (17) | 0.0515 (17) | −0.0002 (13) | 0.0038 (13) | −0.0012 (14) |
C3 | 0.0406 (14) | 0.0414 (14) | 0.0419 (15) | 0.0029 (11) | 0.0062 (12) | 0.0012 (12) |
C4 | 0.0436 (15) | 0.0431 (15) | 0.0449 (15) | −0.0018 (12) | 0.0005 (12) | 0.0055 (12) |
C5 | 0.0422 (15) | 0.0334 (14) | 0.0497 (16) | −0.0004 (11) | 0.0063 (12) | −0.0022 (12) |
C6 | 0.0536 (18) | 0.0424 (16) | 0.0566 (18) | −0.0077 (13) | −0.0055 (15) | 0.0040 (14) |
C7 | 0.053 (2) | 0.055 (2) | 0.087 (3) | −0.0103 (16) | −0.0162 (18) | −0.0012 (19) |
C8 | 0.0486 (19) | 0.059 (2) | 0.089 (3) | −0.0127 (16) | 0.0169 (19) | −0.0111 (19) |
C9 | 0.070 (2) | 0.068 (2) | 0.059 (2) | −0.0205 (19) | 0.0244 (18) | −0.0054 (17) |
C10 | 0.059 (2) | 0.060 (2) | 0.0468 (17) | −0.0132 (16) | 0.0068 (15) | −0.0005 (15) |
C11 | 0.0407 (15) | 0.0474 (16) | 0.0457 (15) | −0.0051 (12) | 0.0039 (12) | 0.0059 (13) |
C12 | 0.061 (2) | 0.059 (2) | 0.065 (2) | 0.0023 (16) | 0.0165 (17) | −0.0059 (17) |
C13 | 0.063 (2) | 0.082 (3) | 0.061 (2) | −0.022 (2) | 0.0058 (18) | −0.0193 (19) |
C14 | 0.054 (2) | 0.083 (3) | 0.061 (2) | −0.0111 (19) | 0.0019 (17) | 0.010 (2) |
C15 | 0.055 (2) | 0.062 (2) | 0.088 (3) | 0.0063 (17) | 0.0043 (19) | 0.007 (2) |
C16 | 0.060 (2) | 0.0477 (18) | 0.083 (3) | −0.0009 (15) | 0.0096 (18) | −0.0116 (17) |
S1—C3 | 1.716 (3) | C6—H6A | 0.9300 |
S1—C2 | 1.844 (3) | C7—C8 | 1.394 (2) |
N1—C4 | 1.268 (4) | C7—H7A | 0.9300 |
N1—N2 | 1.380 (3) | C8—C9 | 1.394 (2) |
N2—C3 | 1.332 (4) | C8—H8A | 0.9300 |
N2—C1 | 1.470 (4) | C9—C10 | 1.394 (2) |
N3—C3 | 1.297 (4) | C9—H9A | 0.9300 |
N3—H3A | 0.9000 | C10—H10A | 0.9300 |
N3—H3B | 0.9001 | C11—C16 | 1.392 (2) |
C1—C2 | 1.542 (4) | C11—C12 | 1.398 (2) |
C1—H1A | 0.9700 | C12—C13 | 1.397 (2) |
C1—H1B | 0.9700 | C12—H12A | 0.9300 |
C2—C11 | 1.493 (4) | C13—C14 | 1.391 (2) |
C2—H2A | 0.9800 | C13—H13A | 0.9300 |
C4—C5 | 1.447 (4) | C14—C15 | 1.389 (2) |
C4—H4A | 0.9300 | C14—H14A | 0.9300 |
C5—C10 | 1.3944 (19) | C15—C16 | 1.390 (2) |
C5—C6 | 1.396 (2) | C15—H15A | 0.9300 |
C6—C7 | 1.395 (2) | C16—H16A | 0.9300 |
C3—S1—C2 | 91.65 (14) | C5—C6—H6A | 120.3 |
C4—N1—N2 | 118.4 (2) | C8—C7—C6 | 120.5 (3) |
C3—N2—N1 | 116.4 (2) | C8—C7—H7A | 119.8 |
C3—N2—C1 | 116.2 (2) | C6—C7—H7A | 119.8 |
N1—N2—C1 | 127.4 (2) | C9—C8—C7 | 120.0 (3) |
C3—N3—H3A | 117.5 | C9—C8—H8A | 120.0 |
C3—N3—H3B | 124.6 | C7—C8—H8A | 120.0 |
H3A—N3—H3B | 116.8 | C8—C9—C10 | 119.6 (3) |
N2—C1—C2 | 105.7 (2) | C8—C9—H9A | 120.2 |
N2—C1—H1A | 110.6 | C10—C9—H9A | 120.2 |
C2—C1—H1A | 110.6 | C9—C10—C5 | 120.4 (3) |
N2—C1—H1B | 110.6 | C9—C10—H10A | 119.8 |
C2—C1—H1B | 110.6 | C5—C10—H10A | 119.8 |
H1A—C1—H1B | 108.7 | C16—C11—C12 | 118.8 (3) |
C11—C2—C1 | 114.9 (3) | C16—C11—C2 | 122.2 (2) |
C11—C2—S1 | 111.1 (2) | C12—C11—C2 | 118.9 (2) |
C1—C2—S1 | 104.1 (2) | C13—C12—C11 | 120.2 (3) |
C11—C2—H2A | 108.8 | C13—C12—H12A | 119.9 |
C1—C2—H2A | 108.8 | C11—C12—H12A | 119.9 |
S1—C2—H2A | 108.8 | C14—C13—C12 | 119.9 (3) |
N3—C3—N2 | 123.5 (3) | C14—C13—H13A | 120.1 |
N3—C3—S1 | 123.1 (2) | C12—C13—H13A | 120.1 |
N2—C3—S1 | 113.4 (2) | C15—C14—C13 | 120.4 (3) |
N1—C4—C5 | 119.7 (3) | C15—C14—H14A | 119.8 |
N1—C4—H4A | 120.1 | C13—C14—H14A | 119.8 |
C5—C4—H4A | 120.1 | C14—C15—C16 | 119.3 (3) |
C10—C5—C6 | 120.0 (3) | C14—C15—H15A | 120.3 |
C10—C5—C4 | 118.6 (2) | C16—C15—H15A | 120.3 |
C6—C5—C4 | 121.4 (2) | C15—C16—C11 | 121.3 (3) |
C7—C6—C5 | 119.5 (3) | C15—C16—H16A | 119.3 |
C7—C6—H6A | 120.3 | C11—C16—H16A | 119.3 |
C4—N1—N2—C3 | −173.3 (3) | C5—C6—C7—C8 | 1.7 (5) |
C4—N1—N2—C1 | 4.2 (4) | C6—C7—C8—C9 | −0.3 (6) |
C3—N2—C1—C2 | −24.6 (4) | C7—C8—C9—C10 | −1.1 (6) |
N1—N2—C1—C2 | 157.9 (3) | C8—C9—C10—C5 | 1.0 (6) |
N2—C1—C2—C11 | 151.9 (3) | C6—C5—C10—C9 | 0.4 (5) |
N2—C1—C2—S1 | 30.1 (3) | C4—C5—C10—C9 | −177.9 (3) |
C3—S1—C2—C11 | −148.7 (2) | C1—C2—C11—C16 | −63.2 (4) |
C3—S1—C2—C1 | −24.5 (2) | S1—C2—C11—C16 | 54.7 (4) |
N1—N2—C3—N3 | 3.6 (4) | C1—C2—C11—C12 | 119.2 (3) |
C1—N2—C3—N3 | −174.1 (3) | S1—C2—C11—C12 | −122.9 (3) |
N1—N2—C3—S1 | −176.5 (2) | C16—C11—C12—C13 | 2.5 (5) |
C1—N2—C3—S1 | 5.8 (3) | C2—C11—C12—C13 | −179.9 (3) |
C2—S1—C3—N3 | −168.0 (3) | C11—C12—C13—C14 | −0.4 (6) |
C2—S1—C3—N2 | 12.1 (2) | C12—C13—C14—C15 | −2.1 (6) |
N2—N1—C4—C5 | −175.7 (3) | C13—C14—C15—C16 | 2.5 (6) |
N1—C4—C5—C10 | 176.5 (3) | C14—C15—C16—C11 | −0.3 (6) |
N1—C4—C5—C6 | −1.9 (5) | C12—C11—C16—C15 | −2.1 (6) |
C10—C5—C6—C7 | −1.8 (5) | C2—C11—C16—C15 | −179.7 (3) |
C4—C5—C6—C7 | 176.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1 | 0.90 | 2.37 | 3.258 (3) | 168 |
N3—H3B···Br1i | 0.90 | 2.55 | 3.399 (3) | 158 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Contact | Distance | Symmetry operation |
Br1···H3A (N3) | 2.37 | x, y, z |
Br1···H3B (N3) | 2.55 | 1 - x, - 1/2 + y, 3/2 - z |
Br1···H14A (C14) | 3.14 | - x, 1 - y, 1 - z |
Br1···H4A (C4) | 2.96 | x, 3/2 - y, 1/2 + z |
Br1···H12A (C12) | 3.02 | x, 1/2 - y, 1/2 + z |
Contact | Percentage contribution |
H···H | 46.4 |
C···H/H···C | 18.6 |
H···Br/Br···H | 17.5 |
H···S/S···H | 4.5 |
C···N/N···C | 3.7 |
C···S/S···C | 3.0 |
H···N/N···H | 2.6 |
C···C | 2.3 |
C···Br/Br···C | 0.9 |
N···S/S···N | 0.5 |
N···N | 0.2 |
References
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168–1172. CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290–1294. CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019a). Acta Cryst. E75, 1544–1547. CSD CrossRef IUCr Journals Google Scholar
Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019b). Acta Cryst. E75, 1175–1179. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Duruskari, G. Sh., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447. CSD CrossRef CAS Google Scholar
Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763–4772. Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. Web of Science CrossRef CAS Google Scholar
Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527. CAS Google Scholar
Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314. CAS Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419. Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425. Google Scholar
Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27. CSD CrossRef CAS Web of Science Google Scholar
Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486–508. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.