research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 22 January 2020; accepted 10 February 2020; online 21 February 2020)

The central thia­zolidine ring of the title salt, C16H16N3S+·Br, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.

1. Chemical context

Sulfur and nitro­gen-containing heterocycles maintain their importance as key fragments of drugs and medicinally active compounds (Pathania et al., 2019[Pathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486-508.]). Moreover, azomethine-containing structural motifs have been widely employed for industrial purposes as they exhibit a broad range of biological activities, and are used in synthesis, catalysis and the design of materials (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.], 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Mahmoudi et al., 2018a[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959-4971.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763-4772.],c[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812-2821.]; Mamedov et al., 2018[Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310-1314.]). Nowadays, N-ligands are key players in a wide diversity of fields, namely in coordination, metal–organic, pharmaceutical and medicinal chemistry, biologically active compounds, catalysis, non-covalent inter­actions and supra­molecular assemblies (Maharramov et al., 2011[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721.], 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.], 2014[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1-37.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54-72.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Mamedov et al., 2015[Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518-1527.]). In our previous studies we have reported on the mol­ecular structural properties of a series of 5-phenyl­thia­zolidin-2-imine derivatives (Akkurt et al., 2018a[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168-1172.],b[Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290-1294.]; Duruskari et al., 2019a[Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019a). Acta Cryst. E75, 1544-1547.],b[Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019b). Acta Cryst. E75, 1175-1179.]; Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]; Maharramov et al., 2019[Maharramov, A. M., Duruskari, G. Sh., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441-4447.]). Following further study in this field, herein we report the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide.

[Scheme 1]

2. Structural commentary

The thia­zolidine ring (S1/N2/C1–C3) in the cation of the title salt (Fig. 1[link]) adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom; the puckering parameters are Q(2) = 0.318 (3) Å and φ(2) = 42.0 (5)°. The mean plane of the thia­zolidine ring makes dihedral angles of 18.28 (15) and 83.19 (15)°, respectively, with the C5–C10 and C11–C16 phenyl rings of the 3-(benzyl­idene­amino) and 5-phenyl­thia­zolidin groups, while the dihedral angle between them is 82.54 (15)°. The torsion angle of the N2—N1—C4—C5 bridge that links the thia­zolidine and 3-(benzyl­idene­amino) units is −175.7 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The inter­ionic hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, adjacent cations and anions are linked by pairs of N—H⋯Br hydrogen bonds (Table 1[link], Fig. 2[link]), forming chains running parallel to the b-axis direction. C—H⋯π inter­actions or ππ stacking inter­actions contributing to the stabilization of the crystal packing are not observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1 0.90 2.37 3.258 (3) 168
N3—H3B⋯Br1i 0.90 2.55 3.399 (3) 158
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing showing the formation of chains parallel to the b axis through N—H⋯Br hydrogen bonds (dashed lines).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title compound was generated by CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]), and comprises dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). A dnorm surface plot of the title compound mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.3485 (red) to 1.3503 a.u. (blue) is shown in Fig. 3[link]. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts (Table 2[link]), while the other weaker inter­molecular inter­actions appear as light-red spots.

Table 2
Summary of short inter­atomic contacts (Å) in the title salt

Contact Distance Symmetry operation
Br1⋯H3A (N3) 2.37 x, y, z
Br1⋯H3B (N3) 2.55 1 − x, − [{1\over 2}] + y, [{3\over 2}] − z
Br1⋯H14A (C14) 3.14 x, 1 − y, 1 − z
Br1⋯H4A (C4) 2.96 x, [{3\over 2}] − y, [{1\over 2}] + z
Br1⋯H12A (C12) 3.02 x, [{1\over 2}] − y, [{1\over 2}] + z
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title salt plotted over dnorm.

The shape index of the Hirshfeld surface is a tool to visualize π–·π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 4[link] clearly suggests that there are no ππ inter­actions present in the title compound. Fig. 5[link](a) shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1[link] and 2[link]). The fingerprint plots delineated into H⋯H (46.4%), C⋯H/H⋯C (18.6%), H⋯Br/Br⋯H (17.5%), H⋯S/S⋯H (4.5%) and C⋯N/N⋯C (3.7%) contacts are shown in Fig. 5[link]bf.

[Figure 4]
Figure 4
Hirshfeld surface of the title salt plotted over shape-index.
[Figure 5]
Figure 5
The Hirshfeld surface representations and the full two-dimensional fingerprint plots for the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) H⋯Br/Br⋯H, (e) H⋯S/S⋯H and (f) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The most significant inter­molecular inter­actions are the H⋯H inter­actions (46.4%) (Fig. 5[link]b). All of the contributions to the Hirshfeld surface are given in Table 3[link]. The large number of H⋯H, C⋯H/H⋯C and H⋯Br/Br⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 46.4
C⋯H/H⋯C 18.6
H⋯Br/Br⋯H 17.5
H⋯S/S⋯H 4.5
C⋯N/N⋯C 3.7
C⋯S/S⋯C 3.0
H⋯N/N⋯H 2.6
C⋯C 2.3
C⋯Br/Br⋯C 0.9
N⋯S/S⋯N 0.5
N⋯N 0.2

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-thia­zolidiniminium compounds gave ten hits, viz. MOJGUQ (Duruskari et al., 2019a[Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019a). Acta Cryst. E75, 1544-1547.]), XOWXAL (Duruskari et al., 2019b[Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019b). Acta Cryst. E75, 1175-1179.]), BOBWIB (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), UDELUN (Akkurt et al., 2018a[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168-1172.]), WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.]).

In the crystal of MOJGUQ (Duruskari et al., 2019a[Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019a). Acta Cryst. E75, 1544-1547.]), centrosymmetrically related cations and anions are linked into dimeric units via N—-H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, C—H⋯π inter­actions and ππ stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. In the crystal of XOWXAL (Duruskari et al., 2019b[Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019b). Acta Cryst. E75, 1175-1179.]), the thia­zolidine ring adopts an envelope conformation. N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak ππ stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. In the crystal of BOBWIB (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), the central thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018a[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168-1172.]), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C-–Cl⋯π(ring) contacts. In the other structures, the 3-N atom carries a C–substituent instead of an N–substituent as found in the title compound. Three of them were determined to be racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) of 3-(2′-chloro-2′-phenyl­eth­yl)-2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic nitro­gen atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

6. Synthesis and crystallization

To the solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide (1 mmol) in 20 mL of ethanol was added benzaldehyde (1 mmol) and the mixture was refluxed for 2 h. After cooling down to room temperature, the reaction product precipitated as colourless single crystals, which were collected by filtration and washed with cold acetone (yield 76%), m.p. 519 K. Analysis calculated for C16H16BrN3S (Mr = 362.29): C, 53.04; H, 4.45; N, 11.60. Found: C, 53.01; H, 4.42; N, 11.56%. 1H NMR (300 MHz, DMSO-d6) : 4.58 (k, 1H, CH2, 3JH–H = 6.9); 4,89 (t, 1H, CH2, 3JH–H =8.1); 5.60 (t, 1H, CH-Ar, 3JH–H =7.5); 7.37–8.07 (m, 10H, 10Ar-H); 8.44 (s, 1H, CH=), 10.35 (s, 2H, NH=). 13C NMR (75 MHz, DMSO-d6): 45.36, 55.91, 127.76, 128.65, 128.82, 128.86, 129.09, 131.54, 132.85, 137.48, 151.11, 167.84. MS (ESI), m/z: 282.30 [C16H16N3S]+ and 79.88 Br.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were placed at calculated positions (N—H = 0.90 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(N, C). The distances between the carbon atoms of two phenyl groups were constrained with a DFIX instruction [DFIX 1.40 0.02 C C].

Table 4
Experimental details

Crystal data
Chemical formula C16H16N3S+·Br
Mr 362.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.138 (8), 8.336 (5), 15.872 (9)
β (°) 93.910 (16)
V3) 1602.3 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.69
Crystal size (mm) 0.21 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.582, 0.713
No. of measured, independent and observed [I > 2σ(I)] reflections 23979, 3314, 2742
Rint 0.049
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06
No. of reflections 3314
No. of parameters 190
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.60
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-(Benzylideneamino)-5-phenylthiazolidin-2-iminium bromide top
Crystal data top
C16H16N3S+·BrF(000) = 736
Mr = 362.29Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.138 (8) ÅCell parameters from 9891 reflections
b = 8.336 (5) Åθ = 2.8–26.4°
c = 15.872 (9) ŵ = 2.69 mm1
β = 93.910 (16)°T = 296 K
V = 1602.3 (17) Å3Plate, colourless
Z = 40.21 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2742 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.5°, θmin = 2.6°
Tmin = 0.582, Tmax = 0.713h = 1515
23979 measured reflectionsk = 1010
3314 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.4845P]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.74 e Å3
12 restraintsΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36371 (3)0.40930 (5)0.77766 (2)0.05996 (15)
S10.27771 (6)0.50993 (10)0.55109 (5)0.0478 (2)
N10.52247 (19)0.7685 (3)0.49030 (15)0.0411 (5)
N20.42403 (19)0.6853 (3)0.48814 (15)0.0438 (5)
N30.4551 (2)0.6390 (3)0.63168 (16)0.0500 (6)
H3A0.4315140.5890590.6773880.060*
H3B0.5092540.7119590.6408880.060*
C10.3432 (2)0.6653 (4)0.41558 (19)0.0467 (7)
H1A0.3804490.6513390.3638960.056*
H1B0.2952610.7581630.4094300.056*
C20.2763 (3)0.5140 (4)0.4348 (2)0.0489 (7)
H2A0.3155680.4193800.4157780.059*
C30.3971 (2)0.6205 (3)0.56063 (18)0.0412 (6)
C40.5460 (2)0.8450 (4)0.42487 (19)0.0440 (6)
H4A0.4953740.8503480.3782640.053*
C50.6520 (2)0.9241 (3)0.42299 (14)0.0416 (6)
C60.7284 (2)0.9221 (4)0.49283 (19)0.0513 (7)
H6A0.7105410.8743460.5430490.062*
C70.8319 (2)0.9924 (4)0.4867 (2)0.0663 (10)
H7A0.8837510.9888710.5325390.080*
C80.8581 (3)1.0679 (4)0.41226 (19)0.0652 (10)
H8A0.9270721.1148850.4086870.078*
C90.7808 (2)1.0730 (4)0.3432 (2)0.0651 (10)
H9A0.7975321.1248660.2938310.078*
C100.6782 (2)0.9998 (4)0.34862 (17)0.0551 (8)
H10A0.6269281.0015860.3023290.066*
C110.1609 (2)0.5115 (3)0.39571 (17)0.0446 (6)
C120.1299 (2)0.3891 (4)0.3387 (2)0.0613 (9)
H12A0.1807930.3109140.3259460.074*
C130.0225 (2)0.3838 (5)0.3009 (2)0.0690 (10)
H13A0.0021620.3025920.2627990.083*
C140.0538 (3)0.5001 (4)0.3205 (2)0.0661 (10)
H14A0.1245150.4985450.2938970.079*
C150.0251 (3)0.6186 (4)0.3794 (2)0.0683 (10)
H15A0.0769950.6938880.3940770.082*
C160.0820 (2)0.6235 (4)0.4163 (2)0.0631 (9)
H16A0.1013860.7031340.4556230.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0594 (2)0.0700 (3)0.0489 (2)0.01088 (16)0.00776 (15)0.01409 (15)
S10.0461 (4)0.0511 (4)0.0467 (4)0.0073 (3)0.0065 (3)0.0068 (3)
N10.0379 (12)0.0421 (13)0.0432 (13)0.0028 (10)0.0028 (10)0.0008 (10)
N20.0387 (12)0.0496 (14)0.0429 (13)0.0054 (10)0.0013 (10)0.0085 (11)
N30.0544 (15)0.0552 (15)0.0405 (13)0.0076 (12)0.0042 (11)0.0037 (11)
C10.0426 (15)0.0550 (17)0.0418 (15)0.0053 (13)0.0020 (12)0.0096 (13)
C20.0471 (16)0.0482 (17)0.0515 (17)0.0002 (13)0.0038 (13)0.0012 (14)
C30.0406 (14)0.0414 (14)0.0419 (15)0.0029 (11)0.0062 (12)0.0012 (12)
C40.0436 (15)0.0431 (15)0.0449 (15)0.0018 (12)0.0005 (12)0.0055 (12)
C50.0422 (15)0.0334 (14)0.0497 (16)0.0004 (11)0.0063 (12)0.0022 (12)
C60.0536 (18)0.0424 (16)0.0566 (18)0.0077 (13)0.0055 (15)0.0040 (14)
C70.053 (2)0.055 (2)0.087 (3)0.0103 (16)0.0162 (18)0.0012 (19)
C80.0486 (19)0.059 (2)0.089 (3)0.0127 (16)0.0169 (19)0.0111 (19)
C90.070 (2)0.068 (2)0.059 (2)0.0205 (19)0.0244 (18)0.0054 (17)
C100.059 (2)0.060 (2)0.0468 (17)0.0132 (16)0.0068 (15)0.0005 (15)
C110.0407 (15)0.0474 (16)0.0457 (15)0.0051 (12)0.0039 (12)0.0059 (13)
C120.061 (2)0.059 (2)0.065 (2)0.0023 (16)0.0165 (17)0.0059 (17)
C130.063 (2)0.082 (3)0.061 (2)0.022 (2)0.0058 (18)0.0193 (19)
C140.054 (2)0.083 (3)0.061 (2)0.0111 (19)0.0019 (17)0.010 (2)
C150.055 (2)0.062 (2)0.088 (3)0.0063 (17)0.0043 (19)0.007 (2)
C160.060 (2)0.0477 (18)0.083 (3)0.0009 (15)0.0096 (18)0.0116 (17)
Geometric parameters (Å, º) top
S1—C31.716 (3)C6—H6A0.9300
S1—C21.844 (3)C7—C81.394 (2)
N1—C41.268 (4)C7—H7A0.9300
N1—N21.380 (3)C8—C91.394 (2)
N2—C31.332 (4)C8—H8A0.9300
N2—C11.470 (4)C9—C101.394 (2)
N3—C31.297 (4)C9—H9A0.9300
N3—H3A0.9000C10—H10A0.9300
N3—H3B0.9001C11—C161.392 (2)
C1—C21.542 (4)C11—C121.398 (2)
C1—H1A0.9700C12—C131.397 (2)
C1—H1B0.9700C12—H12A0.9300
C2—C111.493 (4)C13—C141.391 (2)
C2—H2A0.9800C13—H13A0.9300
C4—C51.447 (4)C14—C151.389 (2)
C4—H4A0.9300C14—H14A0.9300
C5—C101.3944 (19)C15—C161.390 (2)
C5—C61.396 (2)C15—H15A0.9300
C6—C71.395 (2)C16—H16A0.9300
C3—S1—C291.65 (14)C5—C6—H6A120.3
C4—N1—N2118.4 (2)C8—C7—C6120.5 (3)
C3—N2—N1116.4 (2)C8—C7—H7A119.8
C3—N2—C1116.2 (2)C6—C7—H7A119.8
N1—N2—C1127.4 (2)C9—C8—C7120.0 (3)
C3—N3—H3A117.5C9—C8—H8A120.0
C3—N3—H3B124.6C7—C8—H8A120.0
H3A—N3—H3B116.8C8—C9—C10119.6 (3)
N2—C1—C2105.7 (2)C8—C9—H9A120.2
N2—C1—H1A110.6C10—C9—H9A120.2
C2—C1—H1A110.6C9—C10—C5120.4 (3)
N2—C1—H1B110.6C9—C10—H10A119.8
C2—C1—H1B110.6C5—C10—H10A119.8
H1A—C1—H1B108.7C16—C11—C12118.8 (3)
C11—C2—C1114.9 (3)C16—C11—C2122.2 (2)
C11—C2—S1111.1 (2)C12—C11—C2118.9 (2)
C1—C2—S1104.1 (2)C13—C12—C11120.2 (3)
C11—C2—H2A108.8C13—C12—H12A119.9
C1—C2—H2A108.8C11—C12—H12A119.9
S1—C2—H2A108.8C14—C13—C12119.9 (3)
N3—C3—N2123.5 (3)C14—C13—H13A120.1
N3—C3—S1123.1 (2)C12—C13—H13A120.1
N2—C3—S1113.4 (2)C15—C14—C13120.4 (3)
N1—C4—C5119.7 (3)C15—C14—H14A119.8
N1—C4—H4A120.1C13—C14—H14A119.8
C5—C4—H4A120.1C14—C15—C16119.3 (3)
C10—C5—C6120.0 (3)C14—C15—H15A120.3
C10—C5—C4118.6 (2)C16—C15—H15A120.3
C6—C5—C4121.4 (2)C15—C16—C11121.3 (3)
C7—C6—C5119.5 (3)C15—C16—H16A119.3
C7—C6—H6A120.3C11—C16—H16A119.3
C4—N1—N2—C3173.3 (3)C5—C6—C7—C81.7 (5)
C4—N1—N2—C14.2 (4)C6—C7—C8—C90.3 (6)
C3—N2—C1—C224.6 (4)C7—C8—C9—C101.1 (6)
N1—N2—C1—C2157.9 (3)C8—C9—C10—C51.0 (6)
N2—C1—C2—C11151.9 (3)C6—C5—C10—C90.4 (5)
N2—C1—C2—S130.1 (3)C4—C5—C10—C9177.9 (3)
C3—S1—C2—C11148.7 (2)C1—C2—C11—C1663.2 (4)
C3—S1—C2—C124.5 (2)S1—C2—C11—C1654.7 (4)
N1—N2—C3—N33.6 (4)C1—C2—C11—C12119.2 (3)
C1—N2—C3—N3174.1 (3)S1—C2—C11—C12122.9 (3)
N1—N2—C3—S1176.5 (2)C16—C11—C12—C132.5 (5)
C1—N2—C3—S15.8 (3)C2—C11—C12—C13179.9 (3)
C2—S1—C3—N3168.0 (3)C11—C12—C13—C140.4 (6)
C2—S1—C3—N212.1 (2)C12—C13—C14—C152.1 (6)
N2—N1—C4—C5175.7 (3)C13—C14—C15—C162.5 (6)
N1—C4—C5—C10176.5 (3)C14—C15—C16—C110.3 (6)
N1—C4—C5—C61.9 (5)C12—C11—C16—C152.1 (6)
C10—C5—C6—C71.8 (5)C2—C11—C16—C15179.7 (3)
C4—C5—C6—C7176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br10.902.373.258 (3)168
N3—H3B···Br1i0.902.553.399 (3)158
Symmetry code: (i) x+1, y+1/2, z+3/2.
Summary of short interatomic contacts (Å) in the title salt top
ContactDistanceSymmetry operation
Br1···H3A (N3)2.37x, y, z
Br1···H3B (N3)2.551 - x, - 1/2 + y, 3/2 - z
Br1···H14A (C14)3.14- x, 1 - y, 1 - z
Br1···H4A (C4)2.96x, 3/2 - y, 1/2 + z
Br1···H12A (C12)3.02x, 1/2 - y, 1/2 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H46.4
C···H/H···C18.6
H···Br/Br···H17.5
H···S/S···H4.5
C···N/N···C3.7
C···S/S···C3.0
H···N/N···H2.6
C···C2.3
C···Br/Br···C0.9
N···S/S···N0.5
N···N0.2
 

References

First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168–1172.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290–1294.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019a). Acta Cryst. E75, 1544–1547.  CSD CrossRef IUCr Journals Google Scholar
First citationDuruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019b). Acta Cryst. E75, 1175–1179.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKhalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Duruskari, G. Sh., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.  CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763–4772.  Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527.  CAS Google Scholar
First citationMamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314.  CAS Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486–508.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds