research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-allyl-2-meth­­oxy-6-nitro­phenol

CROSSMARK_Color_square_no_text.svg

aLaboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University, BP 9154, Casablanca 20250, Morocco, bLaboratory of Organic and Analytical Chemistry, University Sultan Moulay, Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco, and cLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: y_ghallab@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 29 January 2020; accepted 25 February 2020; online 28 February 2020)

The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-meth­oxy­phenol) with a mixture of nitric acid and sulfuric acid, consists of three independent mol­ecules of similar geometry. Each mol­ecule displays an intra­molecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by inter­molecular C—H⋯O hydrogen bonds in addition to ππ stacking inter­actions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H⋯H (39.6%), O⋯H/H⋯O (37.7%), C⋯H/H⋯C (12.5%) and C⋯C (4%) are the most important contributors towards the crystal packing.

1. Chemical context

Eugenol, the main constituent of clove essential oil, has many inter­esting biological properties and participates in the synthesis of bioactive compounds (Kaufman, 2015[Kaufman, T. S. (2015). J. Braz. Chem. Soc. 26, 1055-1085.]). The nitro­eugenol isomers were tested for their anti­fungal activity, growth inhibitory activity on human tumor cell lines (Carrasco et al., 2012[Carrasco, H., Raimondi, M., Svetaz, L., Di Liberto, M., Rodriguez, M. V., Espinoza, L., Madrid, A. & Zacchino, S. (2012). Molecules, 17, 1002-1024.], 2008[Carrasco, A. H., Espinoza, C. L., Cardile, V., Gallardo, C., Cardona, W., Lombardo, L., Catalán, M. K., Cuellar, F. M. & Russo, A. (2008). J. Braz. Chem. Soc. 19, 543-548.]), and anti­oxidant activity (Hidalgo et al., 2009[Hidalgo, M. E., De la Rosa, C., Carrasco, H., Cardona, W., Gallardo, C. & Espinoza, L. (2009). Quím. Nova, 32, 1467-1470.]). We report here the synthesis, structure, spectrometric and spectroscopic characterization of the title compound along with an analysis of the calculated Hirshfeld surface and the two-dimensional fingerprint plots.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains three independent mol­ecules of similar geometry hereafter referred as Mol-N1 (N1/O1–O4/C1–C10), Mol-N2 (N2/O5–O8/C11–C20) and Mol-N3 (N3/O9–O12/C21–C30). The planes through the nitro groups are almost coplanar with those of the attached benzene rings, forming dihedral angles ranging from 2.1 (3)° in Mol-N3 to 6.38 (13)° in Mol-N2. The mean planes though the allyl group C1/C2/C3 (mol­ecule Mol-N1) and the disordered allyl groups C11A/C11B/C12A/C12B/C13 (mol­ecule Mol-N2) and C21A/C21B/C22A/C22B/C23 (mol­ecule Mol-N3) are oriented with dihedral angles of 67.5 (3), 80.8 (3) and 86.1 (4)°, respectively, to the attached benzene rings. The benzene rings of mol­ecules Mol-N2 and Mol-N3 are approximately parallel to each other [dihedral angle 10.60 (7)°], and roughly perpendicular to that of Mol-N1 [dihedral angles of 83.65 (7) and 79.22 (6)°, respectively]. A strong intra­molecular O—H⋯O hydrogen bond involving a nitro O atom and the H atom of the hydroxide group forming an S(6) motif is observed in each mol­ecule (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O11 0.86 (3) 1.81 (3) 2.594 (2) 149 (2)
O6—H6⋯O7 0.83 (2) 1.83 (2) 2.584 (2) 152 (2)
O2—H2O⋯O3 0.91 (3) 1.78 (3) 2.587 (2) 146 (2)
C12A—H12A⋯O12 0.93 2.58 3.382 (4) 145
C12B—H12B⋯O3i 0.93 2.56 3.325 (8) 140
C9—H9⋯O7ii 0.93 2.59 3.394 (2) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of the title compound with the displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles. Intra- and inter­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, the mol­ecules are connected by inter­molecular C12A—H12A⋯O12, C12B—H12B⋯O3 and C9—H9⋯O7 hydrogen bonds (Table 1[link]; Figs. 2[link] and 3[link]). In addition, centrosymmetrically related pairs of Mol-N1 mol­ecules are connected by ππ inter­actions to form dimeric units [centroid–centroid distance = 3.7213 (15) Å] (Fig. 2[link]), whereas the Mol-N2 and Mol-N3 mol­ecules are stacked through ππ inter­actions to form chains running parallel to the b axis [Cg2⋯Cg2i = 3.6583 (17) Å; Cg2⋯Cg3ii = 3.6613 (18) Å; Cg3⋯Cg3iii = 4.0624 (16) Å; symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) 1 + x, y, z; (iii) −x, −y, 1 − z].

[Figure 2]
Figure 2
Partial crystal packing of the title compound showing mol­ecules connected by hydrogen bonds (dashed cyan lines) and ππ inter­actions (dashed green lines).
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the a axis showing mol­ecules linked by hydrogen bonds (dashed cyan lines).

4. Hirshfeld surface analysis

In order to explore the nature of the inter­molecular contacts and their role in the crystal packing, Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were calculated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. & Spackman, M. (2017). CrystalExplorer17. University of Western Australia.]). The three-dimensional mol­ecular Hirshfeld surfaces of the three mol­ecules Mol-N1, Mol-N2 and Mol-N3 and the overall surface were generated using a high standard surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii (Fig. 4[link]a and 5[link]a). The shape-index of the Hirshfeld surface is a tool to visualize the ππ stacking inter­actions (Fig. 4[link]b and 5b). The red spots in Fig. 4[link]a correspond to the strong C—H⋯O hydrogen-bond inter­actions in the crystal structure; in Mol-N1 two of them involve the O atoms of the meth­oxy (O1) and nitro (O3) groups as acceptors with allyl H atoms (C22B– H22B⋯O1 and C12B—H12B⋯O3), while the other is due to the inter­atomic inter­action between the aromatic H9 donor atom and the nitro O7 oxygen atom (C9—H9⋯O7). The longer O—H⋯O hydrogen bonds and O⋯O inter­actions are characterized by smaller red spots close to each other on the surface, where the faint red spot indicating the O—H⋯O inter­actions is associated with the longest O⋯O contact of 2.96 (3) Å in Mol-N1 and Mol-N3. In Mol-N2, the red spots correspond to C—H⋯O (C9—H9⋯O7 and C12A—H12A⋯O12) and C—H⋯C (C20—H20B⋯C11A) hydrogen-bond inter­actions. The corresponding fingerprint plots for each of the independent mol­ecules and for the entire asymmetric unit, showing characteristic pseudo-symmetric wings in the de and di diagonal axes, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are illustrated in Fig. 6[link]. The result of the qu­anti­tative analysis of all types of inter­molecular contacts present in the title compound is summarized in Fig. 7[link]. The most important inter­action is H⋯H, contributing 45.4% to the overall crystal packing (Fig. 6[link]b), which is reflected in the widely scattered points of high density due to the large hydrogen-atom content of the mol­ecule. The contribution from the O⋯H/H⋯O contacts (31.7%), corresponding to C—H⋯O and O—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action with de + di ≃ 2.5Å (Fig. 6[link]c). In the absence of weak C—H⋯π inter­actions in the crystal, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (7.7% contribution) have a symmetrical distribution of points (Fig. 6[link]d), with the tips at de + di ≃ 2.65 Å. The distribution of points in the de = di ≃ 1.6 Å range in the fingerprint plot delineated into C⋯C contacts (Fig. 6[link]e) indicates the existence of weak ππ stacking inter­actions between the phenyl rings, which are indicated by adjacent red and blue triangles in the shape-index map (Fig. 4[link]b and Fig. 5[link]c). The small contribution of the other weak inter­molecular O⋯O, N⋯H/H⋯N, C⋯O/O⋯C, C⋯N/N⋯C and N⋯O/O⋯N contacts has a negligible effect on the packing.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound (symmetry-independent mol­ecules Mol-N1, Mol-N2 and Mol-N3), with (a) dnorm with the inter­action of neighbouring mol­ecules and (b) shape-index.
[Figure 5]
Figure 5
Views of the Hirshfeld surface for a reference mol­ecule of the title compound mapped over (a) dnorm, (b) shape-index and (c) the shape-index property highlighting the ππ inter­actions as black dashed lines.
[Figure 6]
Figure 6
Fingerprint plots representative of specific inter­atomic contacts in the title compound (symmetry-independent mol­ecules Mol-N1, Mol-N2, Mol-N3 and overall), delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C inter­actions.
[Figure 7]
Figure 7
Percentage contribution of various inter­molecular inter­actions in the title compound obtained from decomposed fingerprint plots.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of eugenol derivatives revealed two compounds with very similar structures but with a different position of the nitro group or with the hydroxide group substituted by an acetate group, viz. 4-allyl-2-meth­oxy-5-nitro­phenyl acetate (refcode: TEJREG; Carrasco-Altamirano et al., 2006[Carrasco-Altamirano, H., Espinoza-Catalán, L., Gallardo-Araya, C., Cardona-Villada, W., Ibañez, A. & Alvarez-Thon, L. (2006). Acta Cryst. E62, o1782-o1784.]) and 4-hy­droxy-3-meth­oxy-5-nitro­aceto­phenone (5-nitro­apocynin) (MUCDOE; Babu et al., 2009[Babu, S., Raghavamenon, A. C., Fronczek, F. R. & Uppu, R. M. (2009). Acta Cryst. E65, o2292-o2293.]). A third related compound, 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde, has recently been reported (Vusak et al., 2020[Vusak, V., Vusak, D., Molcanov, K. & Ernest, M. (2020). Acta Cryst. E76, 239-244.]). All of these compounds exhibit intra­molecular hydrogen bonds involving the nitro O atoms with the H atoms of the hydroxide group, and other inter­molecular hydrogen bonds, in addition to ππ inter­actions, which assure the crystal cohesion.

6. Synthesis and crystallization

In a 250 mL flat-bottom flask containing a stirred solution of eugenol (2.12 g, 12.9 mmol) and di­chloro­methane (60 mL), a mixture of concentrated sulfuric acid (0.78 mL) and concentrated nitric acid (0.80 mL) was added dropwise for 30 min at 273 K. The complete disappearance of the starting product was confirmed by means of thin layer chromatography using n-hexa­ne/AcOEt (9:1 v/v) as eluent. The reaction mixture was diluted with di­chloro­methane, washed with brine (3 × 10 mL), dried over anhydrous Na2SO4 and concentrated under vacuum. The crude product was subjected to chromatography on a silica-gel column with n-hexa­ne/AcOEt (9:1 v/v) as eluent to afford the title compound as a reddish-orange liquid. Reddish-orange crystals formed spontaneously with a yield of 56%. Good quality crystals suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of an n-hexa­ne:AcOEt solution, m.p. = 317–319 K.

IR (cm−1): 3235, 3080, 3016, 2971, 2910, 1638, 1537, 1392, 1331, 1262, 1128, 1059, 909, 763. The FT–IR spectrum (Fig. 8[link]) illustrates several bands characteristic of 4-allyl-2-meth­oxy-6-nitro­phenol. The absorption band at 3235 cm−1 was assigned to the O—H stretching vibration. The bands located at 3080 and 3016 cm−1 correspond to the C=CH bond of the aromatic ring and CH=CH2 bond of the allyl group, respectively. The remarkably strong band at 1537 cm−1 was attributed to the stretching vibration of the nitro group. Other C=C stretching vibrations are at 2971, 2910 and 1638 cm−1. The FT–IR spectrum peaks are in agreement with the reported data for similar compounds (Carrasco et al., 2008[Carrasco, A. H., Espinoza, C. L., Cardile, V., Gallardo, C., Cardona, W., Lombardo, L., Catalán, M. K., Cuellar, F. M. & Russo, A. (2008). J. Braz. Chem. Soc. 19, 543-548.]; Egorov et al., 2014[Egorov, M., Delpech, B., Aubert, G., Cresteil, T., Garcia-Alvarez, M. C., Collin, P. & Marazano, C. (2014). Org. Biomol. Chem. 12, 1518-1524.]; Heredia et al., 2016[Heredia, D. A., Larghi, E. L. & Kaufman, T. S. (2016). Eur. J. Org. Chem. pp. 1397-1404.]).

[Figure 8]
Figure 8
The FT–IR spectrum of the title compound.

1H NMR (CDCl3, 300 MHz) δ 10.7 (s, 1H, OH conjugated), 7.53 (s, 1H, Ar-H), 6.99 (s, 1H, Ar-H), 6.01–5.88 (m, 1H), 5.19–5.13 (m, 2H), 3.96 (s, 3H), 3.39–3.37 (d, 2H). 13C NMR (CDCl3, 75.5 MHz) δ 149.87, 144.90, 135.95, 133.66, 131.24, 118.63, 117.16, 115.11, 114.29, 56.72, 39.41. FTMS–ESI, m/z: 208.04616 (100%) [C10H11NO4].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were located in a difference-Fourier map and refined as riding with C—H = 0.93–0.97 Å, and Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. The hydroxyl H atoms were located in a difference-Fourier map and refined freely. The two allyl groups of Mol-N2 and Mol-N3 are disordered over two sets of sites with refined occupancy ratios of 0.648 (8):0.352 (8) and 0.668 (9):0.332 (9) respectively. One outlier (100) was omitted in the cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C10H11NO4
Mr 209.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.706 (3), 13.753 (5), 14.683 (5)
α, β, γ (°) 116.142 (11), 93.871 (12), 96.985 (12)
V3) 1552.0 (9)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.31 × 0.28 × 0.26
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.707, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 54955, 6334, 4687
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.02
No. of reflections 6334
No. of parameters 460
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Allyl-2-methoxy-6-nitrophenol top
Crystal data top
C10H11NO4Z = 6
Mr = 209.20F(000) = 660
Triclinic, P1Dx = 1.343 Mg m3
a = 8.706 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.753 (5) ÅCell parameters from 6334 reflections
c = 14.683 (5) Åθ = 2.7–26.4°
α = 116.142 (11)°µ = 0.11 mm1
β = 93.871 (12)°T = 296 K
γ = 96.985 (12)°Block, orange
V = 1552.0 (9) Å30.31 × 0.28 × 0.26 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
6334 independent reflections
Radiation source: INCOATEC IµS micro-focus source4687 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 26.4°, θmin = 2.7°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.707, Tmax = 0.746l = 1818
54955 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4096P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.41 e Å3
6334 reflectionsΔρmin = 0.20 e Å3
460 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.021 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7703 (5)0.1282 (3)0.9575 (3)0.1442 (14)
H1A0.6697410.0878210.9351520.173*
H1B0.8561410.0923340.9432660.173*
C20.7907 (4)0.2334 (3)1.0082 (2)0.1086 (9)
H20.8937250.2694091.0286220.130*
C30.6708 (3)0.30301 (19)1.03745 (18)0.0862 (7)
H3A0.6810150.3419561.1115720.103*
H3B0.5687720.2566991.0132010.103*
C40.6796 (2)0.38578 (15)0.99543 (14)0.0619 (5)
C50.5910 (2)0.36410 (16)0.90633 (14)0.0628 (5)
H50.5230120.2976870.8704810.075*
C60.60267 (19)0.44162 (15)0.86912 (13)0.0564 (4)
C70.7021 (2)0.54237 (14)0.92020 (13)0.0533 (4)
C80.79192 (19)0.56398 (14)1.01284 (12)0.0516 (4)
C90.7813 (2)0.48670 (15)1.04822 (13)0.0576 (4)
H90.8428500.5014271.1085780.069*
C100.9739 (3)0.69329 (18)1.15663 (15)0.0763 (6)
H10A0.9047550.6926011.2046470.115*
H10B1.0340760.7655331.1818610.115*
H10C1.0429180.6414011.1481160.115*
N10.50602 (19)0.41416 (17)0.77400 (13)0.0741 (5)
O10.88445 (16)0.66397 (10)1.06010 (10)0.0687 (4)
O20.71821 (19)0.62197 (12)0.89023 (11)0.0745 (4)
O30.5206 (2)0.47908 (17)0.73564 (13)0.1008 (6)
O40.41380 (18)0.32741 (15)0.73302 (13)0.0988 (6)
C11A0.4789 (14)0.2126 (11)0.2212 (9)0.107 (4)0.648 (8)
H11A0.5045470.2634380.1965420.128*0.648 (8)
H11B0.4290130.1417110.1765730.128*0.648 (8)
C12A0.5127 (4)0.2406 (3)0.3175 (3)0.0775 (16)0.648 (8)
H12A0.4847200.1869240.3384270.093*0.648 (8)
C11B0.472 (2)0.1982 (15)0.2141 (18)0.094 (7)0.352 (8)
H11C0.4412180.1413920.2305070.113*0.352 (8)
H11D0.4537490.1866750.1466150.113*0.352 (8)
C12B0.5447 (7)0.3007 (8)0.2904 (7)0.075 (3)0.352 (8)
H12B0.5704140.3514680.2657670.090*0.352 (8)
C130.5863 (3)0.3424 (3)0.3925 (2)0.1000 (8)
H13A0.5278790.3637960.4503270.120*0.648 (8)
H13B0.5810700.3953400.3658800.120*0.648 (8)
H13C0.5224860.2977420.4162940.120*0.352 (8)
H13D0.5596270.4155250.4246140.120*0.352 (8)
C140.7560 (2)0.35083 (16)0.43148 (15)0.0619 (5)
C150.8104 (2)0.39916 (15)0.53351 (15)0.0610 (5)
H150.7428140.4276030.5814810.073*
C160.9676 (2)0.40594 (13)0.56597 (13)0.0532 (4)
C171.07440 (19)0.36536 (13)0.49776 (13)0.0493 (4)
C181.01636 (19)0.31557 (14)0.39249 (12)0.0507 (4)
C190.8614 (2)0.30891 (15)0.36115 (14)0.0568 (4)
H190.8253390.2757280.2914280.068*
C201.0751 (3)0.2270 (2)0.22242 (15)0.0808 (6)
H20A0.9959750.1639940.2039370.121*
H20B1.1622500.2044570.1861060.121*
H20C1.0332490.2788690.2048440.121*
N21.0193 (2)0.45748 (14)0.67507 (12)0.0697 (4)
O51.12547 (14)0.27684 (12)0.32966 (9)0.0664 (4)
O61.22701 (14)0.36805 (12)0.52235 (11)0.0641 (4)
O71.1606 (2)0.47349 (13)0.70603 (11)0.0850 (4)
O80.9228 (2)0.48412 (17)0.73412 (12)0.1068 (6)
C21A0.2510 (12)0.0879 (7)0.0621 (5)0.121 (4)0.668 (9)
H21A0.2469260.1608990.0457480.145*0.668 (9)
H21B0.2327770.0620930.0143020.145*0.668 (9)
C22A0.2799 (4)0.0266 (4)0.1454 (3)0.0764 (14)0.668 (9)
H22A0.2814430.0447480.1548880.092*0.668 (9)
C21B0.233 (2)0.0934 (12)0.0612 (16)0.119 (8)0.332 (9)
H21C0.2334520.0281610.0565640.143*0.332 (9)
H21D0.2068870.1541520.0073190.143*0.332 (9)
C22B0.2705 (8)0.0999 (9)0.1445 (7)0.078 (3)0.332 (9)
H22B0.2641450.1703930.1359780.094*0.332 (9)
C230.3132 (3)0.0433 (2)0.23518 (18)0.0893 (7)
H23A0.3239040.1212500.2156620.107*0.668 (9)
H23B0.4128870.0211860.2533180.107*0.668 (9)
H23C0.3853210.0938400.2482130.107*0.332 (9)
H23D0.3719410.0099530.2298320.107*0.332 (9)
C240.1915 (2)0.01826 (14)0.32956 (14)0.0575 (4)
C250.0350 (2)0.01984 (14)0.32198 (13)0.0547 (4)
H250.0019610.0159920.2582990.066*
C260.07431 (18)0.07529 (13)0.40997 (13)0.0483 (4)
C270.03114 (18)0.13021 (13)0.50680 (12)0.0468 (4)
C280.13073 (18)0.12718 (13)0.51315 (13)0.0494 (4)
C290.23785 (19)0.07271 (14)0.42663 (13)0.0538 (4)
H290.3436720.0718240.4324120.065*
C300.3235 (2)0.1869 (2)0.62435 (17)0.0773 (6)
H30A0.3642620.2263790.5908850.116*
H30B0.3313200.2241620.6961880.116*
H30C0.3825190.1138480.5954370.116*
N30.23790 (17)0.07279 (13)0.39773 (13)0.0618 (4)
O90.16410 (14)0.18116 (12)0.61035 (9)0.0671 (4)
O100.12736 (15)0.18700 (11)0.59525 (10)0.0635 (3)
O110.33723 (15)0.11885 (14)0.47501 (12)0.0795 (4)
O120.27365 (17)0.02443 (14)0.31208 (13)0.0892 (5)
H2O0.658 (3)0.593 (2)0.829 (2)0.110 (9)*
H61.236 (3)0.3989 (19)0.5856 (19)0.083 (8)*
H100.218 (3)0.180 (2)0.5758 (19)0.095 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.187 (4)0.103 (2)0.156 (3)0.034 (2)0.036 (3)0.066 (2)
C20.104 (2)0.135 (3)0.124 (2)0.0102 (19)0.0140 (18)0.094 (2)
C30.1077 (18)0.0779 (14)0.0734 (14)0.0027 (13)0.0214 (13)0.0380 (12)
C40.0659 (11)0.0605 (11)0.0546 (10)0.0049 (9)0.0180 (9)0.0220 (9)
C50.0520 (10)0.0601 (11)0.0576 (11)0.0001 (8)0.0113 (8)0.0118 (9)
C60.0435 (9)0.0666 (11)0.0460 (9)0.0157 (8)0.0047 (7)0.0124 (8)
C70.0523 (9)0.0584 (10)0.0486 (9)0.0199 (8)0.0120 (7)0.0203 (8)
C80.0486 (9)0.0534 (9)0.0450 (9)0.0077 (7)0.0091 (7)0.0151 (7)
C90.0595 (10)0.0661 (11)0.0434 (9)0.0078 (8)0.0075 (7)0.0220 (8)
C100.0808 (14)0.0703 (13)0.0558 (11)0.0058 (10)0.0092 (10)0.0160 (10)
N10.0526 (9)0.0891 (13)0.0605 (10)0.0260 (9)0.0019 (8)0.0139 (10)
O10.0777 (9)0.0581 (7)0.0579 (7)0.0041 (6)0.0057 (6)0.0210 (6)
O20.0933 (11)0.0682 (9)0.0649 (9)0.0219 (7)0.0013 (8)0.0320 (7)
O30.0982 (12)0.1215 (14)0.0802 (11)0.0284 (10)0.0179 (9)0.0452 (11)
O40.0648 (9)0.1008 (12)0.0829 (11)0.0057 (9)0.0214 (8)0.0052 (9)
C11A0.071 (7)0.169 (11)0.086 (6)0.015 (6)0.001 (5)0.066 (7)
C12A0.0454 (17)0.089 (3)0.109 (4)0.0035 (17)0.0061 (18)0.058 (3)
C11B0.047 (8)0.072 (6)0.116 (13)0.002 (5)0.011 (7)0.005 (7)
C12B0.048 (3)0.098 (6)0.095 (6)0.006 (3)0.009 (3)0.063 (5)
C130.0515 (12)0.129 (2)0.0964 (19)0.0272 (13)0.0084 (12)0.0283 (16)
C140.0487 (10)0.0655 (11)0.0684 (12)0.0144 (8)0.0089 (8)0.0262 (9)
C150.0617 (11)0.0596 (10)0.0645 (11)0.0196 (8)0.0200 (9)0.0267 (9)
C160.0638 (11)0.0497 (9)0.0492 (9)0.0134 (8)0.0077 (8)0.0243 (8)
C170.0489 (9)0.0491 (9)0.0547 (9)0.0089 (7)0.0046 (7)0.0281 (8)
C180.0457 (9)0.0558 (9)0.0537 (10)0.0080 (7)0.0093 (7)0.0274 (8)
C190.0479 (9)0.0638 (11)0.0542 (10)0.0076 (8)0.0029 (7)0.0237 (8)
C200.0663 (13)0.1128 (18)0.0546 (11)0.0144 (12)0.0145 (9)0.0295 (12)
N20.0902 (13)0.0670 (10)0.0547 (9)0.0267 (9)0.0126 (9)0.0265 (8)
O50.0479 (7)0.0950 (10)0.0525 (7)0.0144 (6)0.0107 (5)0.0287 (7)
O60.0518 (7)0.0819 (9)0.0592 (8)0.0140 (6)0.0006 (6)0.0327 (7)
O70.0913 (11)0.0988 (11)0.0571 (8)0.0192 (9)0.0071 (8)0.0300 (8)
O80.1188 (14)0.1410 (16)0.0609 (9)0.0613 (12)0.0319 (9)0.0334 (10)
C21A0.134 (6)0.142 (7)0.042 (3)0.033 (5)0.013 (3)0.021 (4)
C22A0.075 (2)0.061 (3)0.072 (3)0.0025 (17)0.0183 (16)0.0174 (19)
C21B0.112 (11)0.054 (7)0.160 (19)0.039 (8)0.008 (9)0.019 (8)
C22B0.070 (4)0.069 (6)0.071 (5)0.001 (4)0.005 (3)0.014 (4)
C230.0632 (13)0.1015 (17)0.0703 (14)0.0118 (12)0.0097 (11)0.0184 (13)
C240.0488 (9)0.0548 (10)0.0595 (10)0.0009 (7)0.0012 (8)0.0207 (8)
C250.0538 (10)0.0506 (9)0.0537 (10)0.0057 (7)0.0103 (8)0.0188 (8)
C260.0398 (8)0.0496 (9)0.0610 (10)0.0078 (7)0.0099 (7)0.0297 (8)
C270.0411 (8)0.0489 (9)0.0534 (9)0.0048 (7)0.0012 (7)0.0274 (7)
C280.0450 (9)0.0517 (9)0.0540 (9)0.0097 (7)0.0087 (7)0.0256 (8)
C290.0385 (8)0.0576 (10)0.0636 (11)0.0048 (7)0.0055 (7)0.0270 (8)
C300.0586 (12)0.0989 (16)0.0749 (13)0.0302 (11)0.0247 (10)0.0333 (12)
N30.0459 (8)0.0723 (10)0.0775 (11)0.0128 (7)0.0157 (8)0.0415 (9)
O90.0515 (7)0.0899 (9)0.0549 (7)0.0189 (6)0.0122 (6)0.0260 (7)
O100.0462 (7)0.0841 (9)0.0559 (7)0.0035 (6)0.0022 (6)0.0309 (7)
O110.0399 (7)0.1124 (12)0.0902 (10)0.0106 (7)0.0049 (7)0.0505 (9)
O120.0636 (9)0.1155 (13)0.0860 (11)0.0232 (8)0.0337 (8)0.0380 (9)
Geometric parameters (Å, º) top
C1—C21.285 (4)C16—N21.448 (2)
C1—H1A0.9300C17—O61.345 (2)
C1—H1B0.9300C17—C181.411 (2)
C2—C31.460 (4)C18—O51.359 (2)
C2—H20.9300C18—C191.374 (2)
C3—C41.512 (3)C19—H190.9300
C3—H3A0.9700C20—O51.423 (2)
C3—H3B0.9700C20—H20A0.9600
C4—C51.363 (3)C20—H20B0.9600
C4—C91.404 (3)C20—H20C0.9600
C5—C61.393 (3)N2—O81.219 (2)
C5—H50.9300N2—O71.240 (2)
C6—C71.392 (3)O6—H60.83 (2)
C6—N11.449 (2)C21A—C22A1.206 (8)
C7—O21.344 (2)C21A—H21A0.9300
C7—C81.412 (2)C21A—H21B0.9300
C8—O11.355 (2)C22A—C231.475 (5)
C8—C91.370 (2)C22A—H22A0.9300
C9—H90.9300C21B—C22B1.32 (2)
C10—O11.432 (2)C21B—H21C0.9300
C10—H10A0.9600C21B—H21D0.9300
C10—H10B0.9600C22B—C231.320 (9)
C10—H10C0.9600C22B—H22B0.9300
N1—O41.224 (2)C23—C241.520 (3)
N1—O31.247 (2)C23—H23A0.9700
O2—H2O0.91 (3)C23—H23B0.9700
C11A—C12A1.293 (12)C23—H23C0.9700
C11A—H11A0.9300C23—H23D0.9700
C11A—H11B0.9300C24—C251.373 (2)
C12A—C131.383 (5)C24—C291.402 (3)
C12A—H12A0.9300C25—C261.395 (2)
C11B—C12B1.39 (2)C25—H250.9300
C11B—H11C0.9300C26—C271.389 (2)
C11B—H11D0.9300C26—N31.450 (2)
C12B—C131.351 (9)C27—O101.341 (2)
C12B—H12B0.9300C27—C281.415 (2)
C13—C141.520 (3)C28—O91.359 (2)
C13—H13A0.9700C28—C291.370 (2)
C13—H13B0.9700C29—H290.9300
C13—H13C0.9700C30—O91.423 (2)
C13—H13D0.9700C30—H30A0.9600
C14—C151.364 (3)C30—H30B0.9600
C14—C191.404 (3)C30—H30C0.9600
C15—C161.397 (3)N3—O121.219 (2)
C15—H150.9300N3—O111.240 (2)
C16—C171.392 (2)O10—H100.86 (3)
C2—C1—H1A120.0O6—C17—C16126.40 (16)
C2—C1—H1B120.0O6—C17—C18116.84 (15)
H1A—C1—H1B120.0C16—C17—C18116.75 (15)
C1—C2—C3127.5 (3)O5—C18—C19125.52 (16)
C1—C2—H2116.2O5—C18—C17114.12 (14)
C3—C2—H2116.2C19—C18—C17120.36 (16)
C2—C3—C4113.5 (2)C18—C19—C14121.83 (17)
C2—C3—H3A108.9C18—C19—H19119.1
C4—C3—H3A108.9C14—C19—H19119.1
C2—C3—H3B108.9O5—C20—H20A109.5
C4—C3—H3B108.9O5—C20—H20B109.5
H3A—C3—H3B107.7H20A—C20—H20B109.5
C5—C4—C9118.99 (18)O5—C20—H20C109.5
C5—C4—C3121.19 (18)H20A—C20—H20C109.5
C9—C4—C3119.81 (18)H20B—C20—H20C109.5
C4—C5—C6119.87 (17)O8—N2—O7121.72 (18)
C4—C5—H5120.1O8—N2—C16119.09 (19)
C6—C5—H5120.1O7—N2—C16119.18 (17)
C7—C6—C5122.23 (16)C18—O5—C20117.02 (14)
C7—C6—N1120.24 (18)C17—O6—H6101.5 (17)
C5—C6—N1117.52 (17)C22A—C21A—H21A120.0
O2—C7—C6125.82 (16)C22A—C21A—H21B120.0
O2—C7—C8116.97 (16)H21A—C21A—H21B120.0
C6—C7—C8117.20 (16)C21A—C22A—C23132.2 (6)
O1—C8—C9125.18 (16)C21A—C22A—H22A113.9
O1—C8—C7114.62 (16)C23—C22A—H22A113.9
C9—C8—C7120.19 (16)C22B—C21B—H21C120.0
C8—C9—C4121.50 (17)C22B—C21B—H21D120.0
C8—C9—H9119.3H21C—C21B—H21D120.0
C4—C9—H9119.3C23—C22B—C21B143.2 (12)
O1—C10—H10A109.5C23—C22B—H22B108.4
O1—C10—H10B109.5C21B—C22B—H22B108.4
H10A—C10—H10B109.5C22B—C23—C24120.4 (4)
O1—C10—H10C109.5C22A—C23—C24115.5 (2)
H10A—C10—H10C109.5C22A—C23—H23A108.4
H10B—C10—H10C109.5C24—C23—H23A108.4
O4—N1—O3121.93 (19)C22A—C23—H23B108.4
O4—N1—C6119.1 (2)C24—C23—H23B108.4
O3—N1—C6118.96 (19)H23A—C23—H23B107.5
C8—O1—C10117.66 (15)C22B—C23—H23C107.2
C7—O2—H2O105.1 (17)C24—C23—H23C107.2
C12A—C11A—H11A120.0C22B—C23—H23D107.2
C12A—C11A—H11B120.0C24—C23—H23D107.2
H11A—C11A—H11B120.0H23C—C23—H23D106.9
C11A—C12A—C13126.5 (7)C25—C24—C29118.75 (16)
C11A—C12A—H12A116.8C25—C24—C23120.96 (18)
C13—C12A—H12A116.8C29—C24—C23120.28 (17)
C12B—C11B—H11C120.0C24—C25—C26119.89 (16)
C12B—C11B—H11D120.0C24—C25—H25120.1
H11C—C11B—H11D120.0C26—C25—H25120.1
C13—C12B—C11B134.0 (11)C27—C26—C25122.34 (15)
C13—C12B—H12B113.0C27—C26—N3120.08 (15)
C11B—C12B—H12B113.0C25—C26—N3117.58 (15)
C12B—C13—C14118.1 (3)O10—C27—C26126.64 (15)
C12A—C13—C14116.4 (2)O10—C27—C28116.39 (15)
C12A—C13—H13A108.2C26—C27—C28116.96 (14)
C14—C13—H13A108.2O9—C28—C29125.80 (15)
C12A—C13—H13B108.2O9—C28—C27113.62 (14)
C14—C13—H13B108.2C29—C28—C27120.58 (16)
H13A—C13—H13B107.3C28—C29—C24121.47 (15)
C12B—C13—H13C107.8C28—C29—H29119.3
C14—C13—H13C107.8C24—C29—H29119.3
C12B—C13—H13D107.8O9—C30—H30A109.5
C14—C13—H13D107.8O9—C30—H30B109.5
H13C—C13—H13D107.1H30A—C30—H30B109.5
C15—C14—C19118.49 (17)O9—C30—H30C109.5
C15—C14—C13121.91 (18)H30A—C30—H30C109.5
C19—C14—C13119.59 (18)H30B—C30—H30C109.5
C14—C15—C16120.02 (17)O12—N3—O11121.95 (16)
C14—C15—H15120.0O12—N3—C26119.16 (16)
C16—C15—H15120.0O11—N3—C26118.88 (16)
C17—C16—C15122.55 (16)C28—O9—C30117.87 (14)
C17—C16—N2119.58 (16)C27—O10—H10102.6 (17)
C15—C16—N2117.87 (16)
C1—C2—C3—C4120.5 (3)O6—C17—C18—C19179.56 (15)
C2—C3—C4—C595.0 (3)C16—C17—C18—C190.2 (2)
C2—C3—C4—C984.5 (3)O5—C18—C19—C14179.73 (17)
C9—C4—C5—C60.1 (3)C17—C18—C19—C140.1 (3)
C3—C4—C5—C6179.48 (18)C15—C14—C19—C180.1 (3)
C4—C5—C6—C70.3 (3)C13—C14—C19—C18179.3 (2)
C4—C5—C6—N1179.90 (16)C17—C16—N2—O8173.68 (18)
C5—C6—C7—O2178.92 (16)C15—C16—N2—O86.3 (3)
N1—C6—C7—O20.8 (3)C17—C16—N2—O76.4 (3)
C5—C6—C7—C80.3 (2)C15—C16—N2—O7173.57 (17)
N1—C6—C7—C8179.51 (14)C19—C18—O5—C201.2 (3)
O2—C7—C8—O10.1 (2)C17—C18—O5—C20179.13 (16)
C6—C7—C8—O1178.89 (14)C21B—C22B—C23—C2492.5 (19)
O2—C7—C8—C9179.89 (15)C21A—C22A—C23—C24113.8 (7)
C6—C7—C8—C91.1 (2)C22B—C23—C24—C252.5 (7)
O1—C8—C9—C4178.59 (16)C22A—C23—C24—C2545.2 (4)
C7—C8—C9—C41.4 (3)C22B—C23—C24—C29176.1 (7)
C5—C4—C9—C80.8 (3)C22A—C23—C24—C29136.1 (3)
C3—C4—C9—C8179.65 (18)C29—C24—C25—C260.2 (3)
C7—C6—N1—O4176.42 (16)C23—C24—C25—C26178.83 (18)
C5—C6—N1—O43.4 (2)C24—C25—C26—C270.1 (3)
C7—C6—N1—O34.4 (3)C24—C25—C26—N3179.01 (15)
C5—C6—N1—O3175.79 (17)C25—C26—C27—O10178.86 (15)
C9—C8—O1—C102.6 (3)N3—C26—C27—O102.0 (2)
C7—C8—O1—C10177.44 (16)C25—C26—C27—C280.4 (2)
C11B—C12B—C13—C14100.3 (13)N3—C26—C27—C28178.66 (14)
C11A—C12A—C13—C14105.3 (7)O10—C27—C28—O91.6 (2)
C12B—C13—C14—C15175.2 (5)C26—C27—C28—O9179.02 (14)
C12A—C13—C14—C15132.1 (3)O10—C27—C28—C29178.92 (15)
C12B—C13—C14—C194.2 (5)C26—C27—C28—C290.5 (2)
C12A—C13—C14—C1948.6 (4)O9—C28—C29—C24179.25 (16)
C19—C14—C15—C160.1 (3)C27—C28—C29—C240.1 (3)
C13—C14—C15—C16179.5 (2)C25—C24—C29—C280.2 (3)
C14—C15—C16—C170.3 (3)C23—C24—C29—C28178.83 (19)
C14—C15—C16—N2179.68 (17)C27—C26—N3—O12179.78 (16)
C15—C16—C17—O6179.69 (16)C25—C26—N3—O121.1 (2)
N2—C16—C17—O60.3 (3)C27—C26—N3—O111.1 (2)
C15—C16—C17—C180.4 (2)C25—C26—N3—O11178.04 (16)
N2—C16—C17—C18179.66 (15)C29—C28—O9—C303.2 (3)
O6—C17—C18—O50.1 (2)C27—C28—O9—C30177.35 (16)
C16—C17—C18—O5179.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O110.86 (3)1.81 (3)2.594 (2)149 (2)
O6—H6···O70.83 (2)1.83 (2)2.584 (2)152 (2)
O2—H2O···O30.91 (3)1.78 (3)2.587 (2)146 (2)
C12A—H12A···O120.932.583.382 (4)145
C12B—H12B···O3i0.932.563.325 (8)140
C9—H9···O7ii0.932.593.394 (2)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank the Faculty of Science Mohammed V University in Rabat, Morocco, for the X-ray measurements.

References

First citationBabu, S., Raghavamenon, A. C., Fronczek, F. R. & Uppu, R. M. (2009). Acta Cryst. E65, o2292–o2293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarrasco, A. H., Espinoza, C. L., Cardile, V., Gallardo, C., Cardona, W., Lombardo, L., Catalán, M. K., Cuellar, F. M. & Russo, A. (2008). J. Braz. Chem. Soc. 19, 543–548.  Google Scholar
First citationCarrasco, H., Raimondi, M., Svetaz, L., Di Liberto, M., Rodriguez, M. V., Espinoza, L., Madrid, A. & Zacchino, S. (2012). Molecules, 17, 1002–1024.  CrossRef CAS PubMed Google Scholar
First citationCarrasco-Altamirano, H., Espinoza-Catalán, L., Gallardo-Araya, C., Cardona-Villada, W., Ibañez, A. & Alvarez-Thon, L. (2006). Acta Cryst. E62, o1782–o1784.  CrossRef IUCr Journals Google Scholar
First citationEgorov, M., Delpech, B., Aubert, G., Cresteil, T., Garcia-Alvarez, M. C., Collin, P. & Marazano, C. (2014). Org. Biomol. Chem. 12, 1518–1524.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeredia, D. A., Larghi, E. L. & Kaufman, T. S. (2016). Eur. J. Org. Chem. pp. 1397–1404.  CrossRef Google Scholar
First citationHidalgo, M. E., De la Rosa, C., Carrasco, H., Cardona, W., Gallardo, C. & Espinoza, L. (2009). Quím. Nova, 32, 1467–1470.  CAS Google Scholar
First citationKaufman, T. S. (2015). J. Braz. Chem. Soc. 26, 1055–1085.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. & Spackman, M. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationVusak, V., Vusak, D., Molcanov, K. & Ernest, M. (2020). Acta Cryst. E76, 239–244.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds