research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the mixed methanol and ethanol solvate of bis­­{3,4,5-trimeth­­oxy-N′-[1-(pyridin-2-yl)ethyl­­idene]benzohydrazidato}zinc(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine, and bUkrOrgSyntez Ltd, Chervonotkatska Street 67, Kyiv 02094, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 23 December 2019; accepted 22 January 2020; online 6 February 2020)

The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol­ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth­oxy-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by ππ inter­actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter­actions.

1. Chemical context

Aroylhydrazones are an attractive class of ligands exhibiting coordination versatility toward a wide range of metals, particularly 3d transition metal ions (Bernhardt et al., 2006[Bernhardt, P. V., Mattsson, J. & Richardson, D. R. (2006). Inorg. Chem. 45, 752-760.]; Deng et al., 2016[Deng, J., Gou, Y., Chen, W., Fu, X. & Deng, H. (2016). Bioorg. Med. Chem. 24, 2190-2198.]; Peng et al., 2017[Peng, Y., Mereacre, V., Anson, C. E., Zhang, Y., Bodenstein, T., Fink, K. & Powell, A. K. (2017). Inorg. Chem. 56, 6056-6066.]). Remarkable chelating ability together with synthetic accessibility led to the exploration of aroylhydrazones as potential metal-chelating drugs (Link et al., 2003[Link, G., Ponka, P., Konijn, A. M., Breuer, W., Cabantchik, Z. I. & Hershko, C. (2003). Blood, 101, 4172-4179.]; Bernhardt et al., 2007[Bernhardt, P. V., Chin, P., Sharpe, P. C. & Richardson, D. R. (2007). Dalton Trans. pp. 3232-3244.]). Another field of application includes utilization of some aroylhydrazones as fluorescent probes and as metal-ion fluorescence chemosensors (Xiang et al., 2006[Xiang, Y., Tong, A., Jin, P. & Ju, Y. (2006). Org. Lett. 8, 2863-2866.]; Wu et al., 2007[Wu, D., Huang, W., Duan, C., Lin, Z. & Meng, Q. (2007). Inorg. Chem. 46, 1538-1540.]).

The aroylhydrazone ligands can form charged complexes or can easily be deprotonated due to tautomerism, thus forming neutral species. These dynamic reversible properties have led to the exploration of charged and neutral spin-crossover iron(II) and iron(III) complexes, some with multifunctional properties (Zhang et al., 2010[Zhang, L., Xu, G. C., Xu, H. B., Zhang, T., Wang, Z. M., Yuan, M. & Gao, S. (2010). Chem. Commun. 46, 2554-2556.]; Shongwe et al., 2012[Shongwe, M. S., Al-Rahbi, S. H., Al-Azani, M. A., Al-Muharbi, A. A., Al-Mjeni, F., Matoga, D., Gismelseed, A., Al-Omari, I. A., Yousif, A., Adams, H., Morris, M. J. & Mikuriya, M. (2012). Dalton Trans. 41, 2500-2514.]; Romero-Morcillo et al., 2015[Romero-Morcillo, T., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2015). Angew. Chem. Int. Ed. 54, 14777-14781.]; Yuan et al., 2019[Yuan, J., Liu, M.-J., Wu, S.-Q., Zhu, X., Zhang, N., Sato, O. & Kou, H.-Z. (2019). Inorg. Chem. Front. 6, 1170-1176.]). As part of our contin­uing inter­est in studying 3d metal complexes formed by polydentate ligands bearing alk­oxy substituents (Seredyuk, 2012[Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65-71.]; Seredyuk et al., 2006[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385-390.], 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.], 2016[Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627-39635.]) and those based on polydentate ligands (Seredyuk et al., 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2015[Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424-7432.]), we report here the synthesis and crystal structure of a neutral ZnII complex formed with the tridentate ligand 3,4,5-trimeth­oxy-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide.

[Scheme 1]

2. Structural commentary

In the complex, the ZnII ion possesses a distorted octa­hedral N4O2 coordination environment, which is generated by the two deprotonated ligands (Fig. 1[link]). The average bond lengths [Zn—N = 2.145 (3) Å and Zn—O = 2.141 (2) Å] are typical for such ZnII complexes (Jang et al., 2005[Jang, Y.-J., Lee, U. & Koo, B.-K. (2005). Bull. Korean Chem. Soc. 26, 925-929.]; Barbazán et al., 2007[Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668-675.]; Singh et al., 2015[Singh, P., Singh, D. P., Tiwari, K., Mishra, M., Singh, A. K. & Singh, V. P. (2015). RSC Adv. 5, 45217-45230.]; Kane et al., 2016[Kane, C. H., Tinguiano, D., Tamboura, F. B., Thiam, I. E., Barry, A. H., Gaye, M. & Retailleau, P. (2016). Bull. Chem. Soc. Ethiop. 30, 101-110.]; Wang et al., 2019[Wang, L.-H., Qiu, X.-Y. & Liu, S.-J. (2019). J. Coord. Chem. 72, 962-971.]). The N2—Zn—N5 angle, formed by the ketimine N atoms of the two ligand mol­ecules, is 164.81 (10)°, showing the deviation of the coordination polyhedron from an ideal octa­hedral geometry. The average trigonal distortion parameters Σ = Σ124(60 − θi)/24, where θi is the angle generated by superposition of two opposite faces of the octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]) and Φ = Σ112(|φi − 90|)/12, where φi is the deviation from 90° of the cis-N—Zn—N angles in the coordination sphere (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), are 18.38 and 11.65°, respectively, which correspond to a moderate distortion. The volume of the coordination polyhedron is 12.008 Å3.

[Figure 1]
Figure 1
The title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

The ligand mol­ecules exhibit slipped parallel ππ stacking between coplanar ligands of neighbouring mol­ecules, thus forming a dimeric structure; the closest C4⋯C6i/C6⋯C4i contacts, below the sum of the van der Waals radii, are 3.374 (5) Å. In the dimer, the Zn⋯Zni separation is 7.612 (2) Å [symmetry code: (i) −x, −y + 1, −z + 1] (Fig. 2[link]). Neighbouring dimers are bound along [010] by weak hydrogen bonds between the pyridine rings and meth­oxy groups, C18⋯O3ii [symmetry code: (ii) −x, −y, −z + 1] = 3.100 (5) Å (Table 1[link]), with the closest Zn⋯Znii inter­dimer separation of 6.965 (5) Å. It is worth noting that a related FeII pyridine-based complex with butyl substituents consisting of uniform supra­molecular chains with Fe⋯Fe separation of 7.676 Å has previously been described (Romero-Morcillo et al., 2015[Romero-Morcillo, T., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2015). Angew. Chem. Int. Ed. 54, 14777-14781.]). The supra­molecular chains of the title compound are packed in the lattice with the closest inter­chain separations coinciding with the unit-cell parameters a = 11.0402 (4) Å and b = 13.8056 (8) Å. There are inter­chain contacts C33⋯C34iii/C34⋯C33iii [symmetry code: (iii) −x + 1, −y + 2, −z], below the sum of the van der Waals radii, between the meth­oxy groups of neighbouring supra­molecular chains at 3.385 (5) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16C⋯O5 0.96 2.58 3.097 (7) 114
C17—H17B⋯O8i 0.96 2.59 3.457 (6) 150
C18—H18⋯O3ii 0.93 2.42 3.100 (5) 130
C24—H24B⋯O7iii 0.96 2.55 3.414 (5) 149
C24—H24C⋯O1iv 0.96 2.38 3.281 (4) 157
C33—H33B⋯O6 0.96 2.54 3.075 (5) 115
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z+1; (iii) x-1, y, z; (iv) -x, -y+1, -z.
[Figure 2]
Figure 2
The packing of mol­ecules, showing as dashed lines the inter­actions below the sum of the van der Waals radii. The supra­molecular dimer is also highlighted.

4. Co-crystallized methanol and ethanol

The neutral nature of the complex mol­ecule and therefore the absence of anions and, on the other hand, the relatively large size of the planar rigid substituents prevent the formation of a tightly packed lattice. Therefore, inter­molecular voids are filled by the co-crystallized mol­ecules of ethanol, which act as bridges connecting the closest complex mol­ecules by O—H⋯N hydrogen bonding, with the distance between the donor and acceptor atoms O10⋯N6 equal to 2.825 (5) Å. The contact C15⋯C37iv [symmetry code: (iv) −x, −y + 1, −z + 1] between the ethanol methyl group and a meth­oxy methyl group is 3.300 (5)Å. Additionally, neighbouring mol­ecules of ethanol are mutually bound forming dimers with C36⋯C37v and O10⋯C37v [symmetry code: (v) −x, −y + 2, −z] contacts with distances of 3.227 (5) and 2.751 (2) Å, respectively. Furthermore, the co-crystallized mol­ecules of methanol form O—H⋯O hydrogen bonds with the meth­oxy group of the ligand, with an O9⋯O2 separation between the O atoms of 2.776 (4) Å.

5. Hirshfeld surface and 2D fingerprint plots

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were undertaken using CrystalExplorer17.5 software (Turner et al., 2018[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer17.5. University of Western Australia.]), using standard surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.2580 (red) to 2.2951 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3[link]. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, and C⋯C contacts, and the two-dimensional fingerprint plots are presented in Fig. 4[link], associated with their relative contributions to the Hirshfeld surface. At 44.8%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute to 22.2% to the Hirshfeld surface, resulting in two pairs of characteristic wings. The pair of tips of H⋯O/O⋯H contacts make a 18.7% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the fingerprint plot. The C⋯C contacts contribute only to 3.9% to the Hirshfeld surface.

[Figure 3]
Figure 3
Two projections of dnorm mapped on Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent contacts shorter than the sum of the van der Waals radii, while blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are zones close to the sum of van der Waals radii.
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed four structurally similar Zn complexes based on ligands without or with substituents on the phenyl ring: N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide (PATXAK; Jang et al., 2005[Jang, Y.-J., Lee, U. & Koo, B.-K. (2005). Bull. Korean Chem. Soc. 26, 925-929.]), 2-amino-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide (MAKLES; Kane et al., 2016[Kane, C. H., Tinguiano, D., Tamboura, F. B., Thiam, I. E., Barry, A. H., Gaye, M. & Retailleau, P. (2016). Bull. Chem. Soc. Ethiop. 30, 101-110.]), 2-hy­droxy-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide (HIGPOD; Barbazán et al., 2007[Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668-675.]) and 3-methyl-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide (POKPAJ; Wang et al., 2019[Wang, L.-H., Qiu, X.-Y. & Liu, S.-J. (2019). J. Coord. Chem. 72, 962-971.]). PATXAK crystallizes in the space group C2/c, both MAKLES and POKPAJ in P21/c and HIGPOD in Aba2. The N—Zn—N angle, formed by the apical ketimine N atoms and the central Zn atom, varies from 163.05 (POKPAJ) to 177.76° (MAKLES), while inter­mediate values of 168.09 and 170.56° are observed for PATXAK and HIGPOD, respectively.

7. Synthesis and crystallization

The complex was obtained by condensation of 3,4,5-tri­meth­oxy­benzohydrazide (1 mmol) and acetyl pyridine (1.1 mmol) in a mixture of absolute MeOH and EtOH (1:1) overnight in the presence of two drops of glacial acetic acid. The ligand obtained in situ was subsequently reacted with solid ZnCl2·6H2O (0.5 mmol) to give a colourless complex. A pale-yellow solution was obtained after deprotonation with NEt3 (1 mmol). The neutral complex was isolated by slow cooling the solution to ambient temperature and subsequently by filtering off the yellowish crystals. Elemental analysis calculated (%) for C37H46N6O10Zn: C 55.54, H 5.79, N 10.50; found: C 55.86, H 5.31, N 10.84. IR νKBr (cm−1): 1617 (N=C—O), 1588, 1461 (C=Npy + C=CAr), 1252 (C—O). MS ESI m/z (relative intensity): theoretically calculated 721.19 [M + H+] (100.0%). Found 721.21 [M + H+] (100.0%). TGA (up to 400 K) expected weight loss for EtOH + MeOH: 9.8%; found: 9.5%.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions using idealized geometries, with C—H = 0.97 Å for mthyl goups and 0.93 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C). None of the hydrogen atoms of the methanol or ethanol molecules could be located.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C17H18N3O4)2]·CH4O·C2H6O
Mr 790.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 11.0402 (4), 13.8056 (8), 14.4190 (7)
α, β, γ (°) 63.256 (5), 74.098 (4), 75.307 (4)
V3) 1865.63 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.09 × 0.02 × 0.02
 
Data collection
Diffractometer Agilent SuperNova Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.768, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18302, 9361, 7343
Rint 0.040
(sin θ/λ)max−1) 0.701
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.192, 0.90
No. of reflections 9361
No. of parameters 487
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.11, −0.73
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b).

Bis{3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II) top
Crystal data top
[Zn(C17H18N3O4)2]·CH4O·C2H6OZ = 2
Mr = 790.11F(000) = 836
Triclinic, P1Dx = 1.421 Mg m3
a = 11.0402 (4) ÅMo Kα radiation, λ = 0.71069 Å
b = 13.8056 (8) ÅCell parameters from 5835 reflections
c = 14.4190 (7) Åθ = 4.7–20.1°
α = 63.256 (5)°µ = 0.72 mm1
β = 74.098 (4)°T = 120 K
γ = 75.307 (4)°Prismatic, yellow
V = 1865.63 (18) Å30.09 × 0.02 × 0.02 mm
Data collection top
Agilent SuperNova Sapphire3
diffractometer
7343 reflections with I > 2σ(I)
φ scans and ω scans with κ offsetRint = 0.040
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
θmax = 29.9°, θmin = 3.0°
Tmin = 0.768, Tmax = 1.000h = 1415
18302 measured reflectionsk = 1918
9361 independent reflectionsl = 1920
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1156P)2 + 3.6309P]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
9361 reflectionsΔρmax = 2.11 e Å3
487 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.00210 (3)0.45634 (3)0.25703 (3)0.02225 (12)
N10.1206 (2)0.5723 (2)0.3324 (2)0.0240 (5)
N20.0307 (2)0.3641 (2)0.4169 (2)0.0211 (5)
N30.0174 (2)0.2545 (2)0.4518 (2)0.0224 (5)
N40.1512 (3)0.4591 (2)0.1888 (2)0.0260 (5)
N50.0250 (2)0.5836 (2)0.1077 (2)0.0224 (5)
N60.1200 (3)0.6457 (2)0.0775 (2)0.0250 (5)
O10.0860 (2)0.29614 (18)0.27196 (17)0.0255 (5)
O20.1803 (2)0.51141 (18)0.23406 (17)0.0244 (4)
O30.2036 (3)0.1382 (2)0.6353 (2)0.0374 (6)
O40.2942 (3)0.2172 (2)0.4875 (2)0.0384 (6)
O50.2874 (3)0.0886 (2)0.2824 (2)0.0368 (6)
O60.5751 (2)0.6309 (2)0.2440 (2)0.0324 (5)
O70.6340 (2)0.7917 (2)0.0516 (2)0.0314 (5)
O80.4815 (3)0.8724 (2)0.0894 (2)0.0352 (6)
C10.1619 (4)0.6792 (3)0.2871 (3)0.0320 (7)
H10.15020.71300.21370.038*
C20.2216 (4)0.7429 (3)0.3436 (3)0.0360 (8)
H20.24830.81770.30880.043*
C30.2405 (3)0.6932 (3)0.4520 (3)0.0333 (8)
H30.27950.73410.49180.040*
C40.2005 (3)0.5812 (3)0.5015 (3)0.0264 (6)
H40.21330.54580.57480.032*
C50.1408 (3)0.5225 (3)0.4396 (2)0.0224 (6)
C60.0939 (3)0.4027 (3)0.4855 (2)0.0211 (6)
C70.1203 (3)0.3345 (3)0.6013 (3)0.0293 (7)
H7A0.08260.25970.61530.035*
H7B0.21070.33840.62620.035*
H7C0.08470.36160.63720.035*
C80.0760 (3)0.2301 (2)0.3693 (2)0.0215 (6)
C90.1334 (3)0.1117 (2)0.3994 (2)0.0215 (6)
C100.1370 (3)0.0439 (3)0.5047 (3)0.0256 (6)
H100.10230.07170.55590.031*
C110.1919 (3)0.0652 (3)0.5340 (3)0.0273 (6)
C120.2428 (3)0.1075 (3)0.4567 (3)0.0280 (7)
C130.2372 (3)0.0390 (3)0.3511 (3)0.0276 (7)
C140.1839 (3)0.0712 (3)0.3217 (3)0.0246 (6)
H140.18200.11720.25100.030*
C150.1521 (4)0.0971 (3)0.7155 (3)0.0363 (8)
H15A0.16530.15460.78300.044*
H15B0.06250.07200.71680.044*
H15C0.19400.03730.70050.044*
C160.4298 (5)0.2361 (4)0.4685 (5)0.0631 (15)
H16A0.45950.31350.49190.076*
H16B0.45960.20760.50660.076*
H16C0.46170.19980.39430.076*
C170.2735 (4)0.0242 (3)0.1750 (3)0.0362 (8)
H17A0.31230.06690.13430.043*
H17B0.31430.03960.14710.043*
H17C0.18460.00170.17130.043*
C180.2358 (3)0.3898 (3)0.2326 (3)0.0351 (8)
H180.23340.33590.30070.042*
C190.3270 (4)0.3949 (3)0.1806 (4)0.0431 (10)
H190.38510.34560.21300.052*
C200.3301 (4)0.4750 (4)0.0795 (4)0.0429 (10)
H200.39000.47970.04260.051*
C210.2432 (3)0.5486 (3)0.0331 (3)0.0335 (8)
H210.24410.60310.03490.040*
C220.1551 (3)0.5390 (3)0.0903 (3)0.0248 (6)
C230.0583 (3)0.6128 (3)0.0487 (2)0.0238 (6)
C240.0616 (3)0.7115 (3)0.0537 (3)0.0309 (7)
H24A0.00760.74970.06850.037*
H24B0.14100.75920.04890.037*
H24C0.05360.68900.10940.037*
C250.1960 (3)0.5981 (2)0.1491 (2)0.0213 (6)
C260.3095 (3)0.6523 (3)0.1235 (2)0.0226 (6)
C270.3861 (3)0.6143 (3)0.1989 (3)0.0243 (6)
H270.36610.55690.26410.029*
C280.4926 (3)0.6627 (3)0.1762 (3)0.0260 (6)
C290.5235 (3)0.7488 (3)0.0781 (3)0.0261 (6)
C300.4442 (3)0.7873 (3)0.0029 (3)0.0274 (7)
C310.3379 (3)0.7390 (3)0.0254 (3)0.0260 (6)
H310.28590.76410.02430.031*
C320.5417 (4)0.5483 (4)0.3476 (3)0.0409 (9)
H32A0.60610.53230.38780.049*
H32B0.53520.48300.34230.049*
H32C0.46130.57430.38210.049*
C330.6268 (3)0.8663 (3)0.0971 (3)0.0313 (7)
H33A0.70660.89300.07550.038*
H33B0.60850.82920.17280.038*
H33C0.56030.92690.07380.038*
C340.3957 (4)0.9227 (3)0.1632 (3)0.0412 (9)
H34A0.43130.98130.22480.049*
H34B0.31550.95140.13080.049*
H34C0.38300.86900.18320.049*
C350.3927 (6)0.2790 (6)0.2348 (7)0.085 (2)
C360.0330 (5)0.8853 (4)0.1189 (5)0.0566 (12)
O100.0012 (6)0.8601 (4)0.0529 (5)0.1041 (17)
O90.3710 (3)0.3347 (3)0.3011 (3)0.0568 (8)
C370.0639 (9)0.9623 (6)0.1313 (7)0.109 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0247 (2)0.02143 (19)0.01899 (19)0.00006 (13)0.00520 (13)0.00800 (14)
N10.0235 (12)0.0243 (13)0.0246 (13)0.0014 (10)0.0062 (10)0.0118 (11)
N20.0193 (11)0.0221 (12)0.0204 (12)0.0003 (9)0.0037 (9)0.0093 (10)
N30.0212 (12)0.0203 (12)0.0218 (12)0.0005 (10)0.0015 (9)0.0086 (10)
N40.0262 (13)0.0233 (12)0.0296 (14)0.0014 (10)0.0051 (11)0.0131 (11)
N50.0220 (12)0.0267 (13)0.0196 (12)0.0025 (10)0.0048 (9)0.0104 (11)
N60.0251 (13)0.0262 (13)0.0225 (13)0.0055 (10)0.0044 (10)0.0081 (11)
O10.0325 (12)0.0212 (10)0.0194 (10)0.0023 (9)0.0060 (9)0.0080 (9)
O20.0245 (11)0.0251 (11)0.0210 (10)0.0025 (9)0.0057 (8)0.0071 (9)
O30.0494 (15)0.0250 (12)0.0233 (12)0.0014 (11)0.0034 (11)0.0031 (10)
O40.0468 (15)0.0206 (11)0.0363 (14)0.0005 (10)0.0006 (12)0.0086 (11)
O50.0500 (15)0.0259 (12)0.0300 (13)0.0016 (11)0.0004 (11)0.0152 (11)
O60.0263 (11)0.0366 (13)0.0325 (13)0.0071 (10)0.0101 (10)0.0085 (11)
O70.0249 (11)0.0335 (12)0.0404 (14)0.0089 (10)0.0009 (10)0.0206 (11)
O80.0454 (15)0.0297 (12)0.0293 (13)0.0155 (11)0.0050 (11)0.0072 (11)
C10.0395 (18)0.0274 (16)0.0268 (16)0.0049 (14)0.0116 (14)0.0111 (14)
C20.047 (2)0.0244 (16)0.0361 (19)0.0095 (15)0.0166 (16)0.0142 (15)
C30.0341 (18)0.0354 (18)0.0371 (19)0.0090 (14)0.0118 (15)0.0250 (16)
C40.0248 (15)0.0310 (16)0.0253 (15)0.0009 (12)0.0049 (12)0.0157 (14)
C50.0191 (13)0.0274 (15)0.0230 (14)0.0023 (11)0.0044 (11)0.0125 (12)
C60.0175 (13)0.0250 (14)0.0232 (14)0.0033 (11)0.0018 (11)0.0130 (12)
C70.0319 (17)0.0303 (16)0.0224 (15)0.0013 (13)0.0008 (12)0.0121 (13)
C80.0207 (13)0.0215 (13)0.0222 (14)0.0011 (11)0.0053 (11)0.0091 (12)
C90.0195 (13)0.0202 (13)0.0239 (14)0.0035 (11)0.0030 (11)0.0085 (12)
C100.0260 (15)0.0247 (15)0.0241 (15)0.0024 (12)0.0035 (12)0.0098 (13)
C110.0281 (15)0.0240 (15)0.0233 (15)0.0051 (12)0.0014 (12)0.0054 (13)
C120.0290 (16)0.0192 (14)0.0300 (16)0.0020 (12)0.0008 (13)0.0086 (13)
C130.0300 (16)0.0232 (15)0.0297 (16)0.0042 (12)0.0014 (13)0.0129 (13)
C140.0273 (15)0.0208 (14)0.0233 (14)0.0040 (12)0.0039 (12)0.0072 (12)
C150.043 (2)0.0354 (18)0.0214 (16)0.0015 (15)0.0073 (14)0.0051 (14)
C160.046 (3)0.033 (2)0.082 (4)0.0092 (19)0.002 (2)0.014 (2)
C170.042 (2)0.0381 (19)0.0288 (17)0.0025 (16)0.0030 (15)0.0183 (16)
C180.0287 (17)0.0268 (16)0.047 (2)0.0019 (13)0.0064 (15)0.0142 (16)
C190.0298 (18)0.039 (2)0.069 (3)0.0082 (16)0.0088 (18)0.028 (2)
C200.0281 (17)0.050 (2)0.068 (3)0.0022 (16)0.0181 (18)0.039 (2)
C210.0303 (17)0.0400 (19)0.0384 (19)0.0067 (14)0.0134 (14)0.0254 (17)
C220.0214 (14)0.0273 (15)0.0300 (16)0.0018 (12)0.0044 (12)0.0185 (13)
C230.0259 (15)0.0280 (15)0.0186 (14)0.0005 (12)0.0040 (11)0.0128 (12)
C240.0309 (16)0.0376 (18)0.0206 (15)0.0027 (14)0.0086 (12)0.0079 (14)
C250.0206 (13)0.0228 (14)0.0206 (13)0.0017 (11)0.0019 (11)0.0109 (12)
C260.0236 (14)0.0230 (14)0.0218 (14)0.0009 (11)0.0032 (11)0.0118 (12)
C270.0225 (14)0.0259 (15)0.0240 (15)0.0020 (12)0.0033 (11)0.0111 (13)
C280.0224 (14)0.0290 (16)0.0291 (16)0.0009 (12)0.0051 (12)0.0156 (14)
C290.0223 (14)0.0276 (15)0.0306 (16)0.0035 (12)0.0003 (12)0.0166 (14)
C300.0341 (17)0.0227 (14)0.0248 (15)0.0062 (13)0.0009 (13)0.0109 (13)
C310.0294 (15)0.0256 (15)0.0226 (15)0.0029 (12)0.0052 (12)0.0101 (13)
C320.0336 (18)0.056 (2)0.0279 (18)0.0115 (17)0.0112 (14)0.0069 (17)
C330.0333 (17)0.0299 (17)0.0351 (18)0.0082 (14)0.0087 (14)0.0140 (15)
C340.057 (2)0.0334 (19)0.0326 (19)0.0132 (18)0.0104 (17)0.0085 (16)
C350.055 (3)0.091 (4)0.136 (6)0.028 (3)0.025 (3)0.084 (5)
C360.071 (3)0.039 (2)0.066 (3)0.006 (2)0.019 (3)0.024 (2)
O100.120 (4)0.081 (3)0.104 (4)0.006 (3)0.028 (3)0.032 (3)
O90.0526 (19)0.0516 (19)0.0488 (19)0.0089 (15)0.0077 (15)0.0154 (16)
C370.132 (7)0.074 (4)0.080 (5)0.018 (4)0.003 (5)0.027 (4)
Geometric parameters (Å, º) top
Zn—O12.106 (2)C1—C21.390 (5)
Zn—O22.176 (2)C2—C31.373 (5)
Zn—N12.289 (3)C3—C41.389 (5)
Zn—N22.049 (3)C4—C51.395 (4)
Zn—N42.164 (3)C5—C61.486 (4)
Zn—N52.076 (3)C6—C71.489 (4)
N1—C11.328 (4)C8—C91.500 (4)
N1—C51.358 (4)C9—C141.393 (4)
N2—C61.288 (4)C9—C101.385 (4)
N2—N31.370 (4)C10—C111.385 (4)
N3—C81.333 (4)C11—C121.407 (5)
N4—C181.331 (5)C12—C131.393 (5)
N4—C221.354 (4)C13—C141.394 (4)
N5—C231.290 (4)C18—C191.383 (5)
N5—N61.377 (4)C19—C201.380 (7)
N6—C251.336 (4)C20—C211.390 (6)
O1—C81.276 (4)C21—C221.385 (4)
O2—C251.278 (4)C22—C231.480 (5)
O3—C111.370 (4)C23—C241.494 (5)
O3—C151.431 (4)C25—C261.497 (4)
O4—C121.382 (4)C26—C311.398 (4)
O4—C161.423 (6)C26—C271.393 (4)
O5—C131.371 (4)C27—C281.387 (4)
O5—C171.426 (4)C28—C291.400 (5)
O6—C281.369 (4)C29—C301.410 (5)
O6—C321.430 (5)C30—C311.386 (5)
O7—C291.377 (4)C35—O91.416 (7)
O7—C331.427 (4)C36—O101.315 (7)
O8—C301.364 (4)C36—C371.339 (9)
O8—C341.437 (5)
O1—Zn—O295.27 (9)C7—C6—C5121.9 (3)
O1—Zn—N1149.55 (9)O1—C8—N3126.6 (3)
N2—Zn—O176.21 (9)O1—C8—C9119.7 (3)
O1—Zn—N493.40 (9)N3—C8—C9113.7 (3)
N5—Zn—O1118.14 (9)C14—C9—C10120.7 (3)
N2—Zn—O2101.58 (9)C14—C9—C8120.1 (3)
N4—Zn—O2148.23 (10)C10—C9—C8119.2 (3)
N5—Zn—O273.41 (9)C9—C10—C11120.3 (3)
N2—Zn—N173.66 (10)O3—C11—C10124.9 (3)
N4—Zn—N192.84 (10)O3—C11—C12115.3 (3)
N5—Zn—N192.26 (10)C10—C11—C12119.8 (3)
N2—Zn—N4110.17 (11)O4—C12—C13121.4 (3)
N2—Zn—N5164.81 (10)O4—C12—C11119.1 (3)
N5—Zn—N475.54 (10)C13—C12—C11119.4 (3)
O2—Zn—N194.93 (9)O5—C13—C12114.8 (3)
C1—N1—C5118.2 (3)O5—C13—C14124.6 (3)
C1—N1—Zn129.5 (2)C12—C13—C14120.6 (3)
C5—N1—Zn112.0 (2)C9—C14—C13119.2 (3)
C6—N2—N3118.6 (3)N4—C18—C19122.4 (4)
C6—N2—Zn124.0 (2)C20—C19—C18118.6 (4)
N3—N2—Zn117.41 (19)C19—C20—C21119.7 (3)
C8—N3—N2109.5 (2)C22—C21—C20118.5 (4)
C18—N4—C22119.4 (3)N4—C22—C21121.5 (3)
C18—N4—Zn126.6 (3)N4—C22—C23115.4 (3)
C22—N4—Zn114.0 (2)C21—C22—C23123.1 (3)
C23—N5—N6119.8 (3)N5—C23—C22114.3 (3)
C23—N5—Zn120.1 (2)N5—C23—C24125.1 (3)
N6—N5—Zn119.52 (19)C22—C23—C24120.6 (3)
C25—N6—N5109.0 (3)O2—C25—N6125.6 (3)
C8—O1—Zn110.20 (19)O2—C25—C26119.0 (3)
C25—O2—Zn111.36 (18)N6—C25—C26115.3 (3)
C11—O3—C15116.3 (3)C31—C26—C27120.9 (3)
C12—O4—C16113.5 (3)C31—C26—C25120.4 (3)
C13—O5—C17116.7 (3)C27—C26—C25118.7 (3)
C28—O6—C32116.7 (3)C28—C27—C26119.6 (3)
C29—O7—C33113.9 (3)O6—C28—C27124.3 (3)
C30—O8—C34116.6 (3)O6—C28—C29115.3 (3)
N1—C1—C2123.4 (3)C27—C28—C29120.4 (3)
C1—C2—C3118.6 (3)O7—C29—C28120.9 (3)
C2—C3—C4119.2 (3)O7—C29—C30119.5 (3)
C5—C4—C3119.0 (3)C28—C29—C30119.5 (3)
N1—C5—C4121.6 (3)O8—C30—C31125.0 (3)
N1—C5—C6115.6 (3)O8—C30—C29114.8 (3)
C4—C5—C6122.8 (3)C31—C30—C29120.2 (3)
N2—C6—C7123.7 (3)C26—C31—C30119.4 (3)
N2—C6—C5114.3 (3)O10—C36—C37102.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O50.962.583.097 (7)114
C17—H17B···O8i0.962.593.457 (6)150
C18—H18···O3ii0.932.423.100 (5)130
C24—H24B···O7iii0.962.553.414 (5)149
C24—H24C···O1iv0.962.383.281 (4)157
C33—H33B···O60.962.543.075 (5)115
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y+1, z.
 

Funding information

Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBarbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668–675.  Google Scholar
First citationBernhardt, P. V., Chin, P., Sharpe, P. C. & Richardson, D. R. (2007). Dalton Trans. pp. 3232–3244.  Web of Science CSD CrossRef Google Scholar
First citationBernhardt, P. V., Mattsson, J. & Richardson, D. R. (2006). Inorg. Chem. 45, 752–760.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeng, J., Gou, Y., Chen, W., Fu, X. & Deng, H. (2016). Bioorg. Med. Chem. 24, 2190–2198.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJang, Y.-J., Lee, U. & Koo, B.-K. (2005). Bull. Korean Chem. Soc. 26, 925–929.  CAS Google Scholar
First citationKane, C. H., Tinguiano, D., Tamboura, F. B., Thiam, I. E., Barry, A. H., Gaye, M. & Retailleau, P. (2016). Bull. Chem. Soc. Ethiop. 30, 101–110.  CAS Google Scholar
First citationLink, G., Ponka, P., Konijn, A. M., Breuer, W., Cabantchik, Z. I. & Hershko, C. (2003). Blood, 101, 4172–4179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, Y., Mereacre, V., Anson, C. E., Zhang, Y., Bodenstein, T., Fink, K. & Powell, A. K. (2017). Inorg. Chem. 56, 6056–6066.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRomero-Morcillo, T., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2015). Angew. Chem. Int. Ed. 54, 14777–14781.  CAS Google Scholar
First citationSeredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.  Web of Science CrossRef Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShongwe, M. S., Al-Rahbi, S. H., Al-Azani, M. A., Al-Muharbi, A. A., Al-Mjeni, F., Matoga, D., Gismelseed, A., Al-Omari, I. A., Yousif, A., Adams, H., Morris, M. J. & Mikuriya, M. (2012). Dalton Trans. 41, 2500–2514.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSingh, P., Singh, D. P., Tiwari, K., Mishra, M., Singh, A. K. & Singh, V. P. (2015). RSC Adv. 5, 45217–45230.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationWang, L.-H., Qiu, X.-Y. & Liu, S.-J. (2019). J. Coord. Chem. 72, 962–971.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, D., Huang, W., Duan, C., Lin, Z. & Meng, Q. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiang, Y., Tong, A., Jin, P. & Ju, Y. (2006). Org. Lett. 8, 2863–2866.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYuan, J., Liu, M.-J., Wu, S.-Q., Zhu, X., Zhang, N., Sato, O. & Kou, H.-Z. (2019). Inorg. Chem. Front. 6, 1170–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Xu, G. C., Xu, H. B., Zhang, T., Wang, Z. M., Yuan, M. & Gao, S. (2010). Chem. Commun. 46, 2554–2556.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds