research communications
N′-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II)
of the mixed methanol and ethanol solvate of bis{3,4,5-trimethoxy-aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine, and bUkrOrgSyntez Ltd, Chervonotkatska Street 67, Kyiv 02094, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com
The 17H18N3O4)2]·CH4O·C2H6O, contains two complex molecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimethoxy-N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π interactions between the planar ligand moieties, which are further connected by C⋯O and C⋯C interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) interactions.
of the title compound, [Zn(CCCDC reference: 1979477
1. Chemical context
Aroylhydrazones are an attractive class of ligands exhibiting coordination versatility toward a wide range of metals, particularly 3d transition metal ions (Bernhardt et al., 2006; Deng et al., 2016; Peng et al., 2017). Remarkable chelating ability together with synthetic accessibility led to the exploration of aroylhydrazones as potential metal-chelating drugs (Link et al., 2003; Bernhardt et al., 2007). Another field of application includes utilization of some aroylhydrazones as fluorescent probes and as metal-ion fluorescence chemosensors (Xiang et al., 2006; Wu et al., 2007).
The aroylhydrazone ligands can form charged complexes or can easily be deprotonated due to et al., 2010; Shongwe et al., 2012; Romero-Morcillo et al., 2015; Yuan et al., 2019). As part of our continuing interest in studying 3d metal complexes formed by polydentate ligands bearing alkoxy substituents (Seredyuk, 2012; Seredyuk et al., 2006, 2011, 2016) and those based on polydentate ligands (Seredyuk et al., 2007, 2015), we report here the synthesis and of a neutral ZnII complex formed with the tridentate ligand 3,4,5-trimethoxy-N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide.
thus forming neutral species. These dynamic reversible properties have led to the exploration of charged and neutral spin-crossover iron(II) and iron(III) complexes, some with multifunctional properties (Zhang2. Structural commentary
In the complex, the ZnII ion possesses a distorted octahedral N4O2 coordination environment, which is generated by the two deprotonated ligands (Fig. 1). The average bond lengths [Zn—N = 2.145 (3) Å and Zn—O = 2.141 (2) Å] are typical for such ZnII complexes (Jang et al., 2005; Barbazán et al., 2007; Singh et al., 2015; Kane et al., 2016; Wang et al., 2019). The N2—Zn—N5 angle, formed by the ketimine N atoms of the two ligand molecules, is 164.81 (10)°, showing the deviation of the from an ideal octahedral geometry. The average trigonal distortion parameters Σ = Σ124(60 − θi)/24, where θi is the angle generated by superposition of two opposite faces of the octahedron (Chang et al., 1990) and Φ = Σ112(|φi − 90|)/12, where φi is the deviation from 90° of the cis-N—Zn—N angles in the coordination sphere (Drew et al., 1995), are 18.38 and 11.65°, respectively, which correspond to a moderate distortion. The volume of the is 12.008 Å3.
3. Supramolecular features
The ligand molecules exhibit slipped parallel π–π stacking between coplanar ligands of neighbouring molecules, thus forming a dimeric structure; the closest C4⋯C6i/C6⋯C4i contacts, below the sum of the van der Waals radii, are 3.374 (5) Å. In the dimer, the Zn⋯Zni separation is 7.612 (2) Å [symmetry code: (i) −x, −y + 1, −z + 1] (Fig. 2). Neighbouring dimers are bound along [010] by weak hydrogen bonds between the pyridine rings and methoxy groups, C18⋯O3ii [symmetry code: (ii) −x, −y, −z + 1] = 3.100 (5) Å (Table 1), with the closest Zn⋯Znii interdimer separation of 6.965 (5) Å. It is worth noting that a related FeII pyridine-based complex with butyl substituents consisting of uniform supramolecular chains with Fe⋯Fe separation of 7.676 Å has previously been described (Romero-Morcillo et al., 2015). The supramolecular chains of the title compound are packed in the lattice with the closest interchain separations coinciding with the unit-cell parameters a = 11.0402 (4) Å and b = 13.8056 (8) Å. There are interchain contacts C33⋯C34iii/C34⋯C33iii [symmetry code: (iii) −x + 1, −y + 2, −z], below the sum of the van der Waals radii, between the methoxy groups of neighbouring supramolecular chains at 3.385 (5) Å.
4. Co-crystallized methanol and ethanol
The neutral nature of the complex molecule and therefore the absence of anions and, on the other hand, the relatively large size of the planar rigid substituents prevent the formation of a tightly packed lattice. Therefore, intermolecular voids are filled by the co-crystallized molecules of ethanol, which act as bridges connecting the closest complex molecules by O—H⋯N hydrogen bonding, with the distance between the donor and acceptor atoms O10⋯N6 equal to 2.825 (5) Å. The contact C15⋯C37iv [symmetry code: (iv) −x, −y + 1, −z + 1] between the ethanol methyl group and a methoxy methyl group is 3.300 (5)Å. Additionally, neighbouring molecules of ethanol are mutually bound forming dimers with C36⋯C37v and O10⋯C37v [symmetry code: (v) −x, −y + 2, −z] contacts with distances of 3.227 (5) and 2.751 (2) Å, respectively. Furthermore, the co-crystallized molecules of methanol form O—H⋯O hydrogen bonds with the methoxy group of the ligand, with an O9⋯O2 separation between the O atoms of 2.776 (4) Å.
5. Hirshfeld surface and 2D fingerprint plots
The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were undertaken using CrystalExplorer17.5 software (Turner et al., 2018), using standard surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.2580 (red) to 2.2951 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, and C⋯C contacts, and the two-dimensional fingerprint plots are presented in Fig. 4, associated with their relative contributions to the Hirshfeld surface. At 44.8%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute to 22.2% to the Hirshfeld surface, resulting in two pairs of characteristic wings. The pair of tips of H⋯O/O⋯H contacts make a 18.7% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the fingerprint plot. The C⋯C contacts contribute only to 3.9% to the Hirshfeld surface.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016) revealed four structurally similar Zn complexes based on ligands without or with substituents on the phenyl ring: N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide (PATXAK; Jang et al., 2005), 2-amino-N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide (MAKLES; Kane et al., 2016), 2-hydroxy-N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide (HIGPOD; Barbazán et al., 2007) and 3-methyl-N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide (POKPAJ; Wang et al., 2019). PATXAK crystallizes in the C2/c, both MAKLES and POKPAJ in P21/c and HIGPOD in Aba2. The N—Zn—N angle, formed by the apical ketimine N atoms and the central Zn atom, varies from 163.05 (POKPAJ) to 177.76° (MAKLES), while intermediate values of 168.09 and 170.56° are observed for PATXAK and HIGPOD, respectively.
7. Synthesis and crystallization
The complex was obtained by condensation of 3,4,5-trimethoxybenzohydrazide (1 mmol) and acetyl pyridine (1.1 mmol) in a mixture of absolute MeOH and EtOH (1:1) overnight in the presence of two drops of glacial acetic acid. The ligand obtained in situ was subsequently reacted with solid ZnCl2·6H2O (0.5 mmol) to give a colourless complex. A pale-yellow solution was obtained after deprotonation with NEt3 (1 mmol). The neutral complex was isolated by slow cooling the solution to ambient temperature and subsequently by filtering off the yellowish crystals. Elemental analysis calculated (%) for C37H46N6O10Zn: C 55.54, H 5.79, N 10.50; found: C 55.86, H 5.31, N 10.84. IR νKBr (cm−1): 1617 (N=C—O), 1588, 1461 (C=Npy + C=CAr), 1252 (C—O). MS ESI m/z (relative intensity): theoretically calculated 721.19 [M + H+] (100.0%). Found 721.21 [M + H+] (100.0%). TGA (up to 400 K) expected weight loss for EtOH + MeOH: 9.8%; found: 9.5%.
8. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions using idealized geometries, with C—H = 0.97 Å for mthyl goups and 0.93 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C). None of the hydrogen atoms of the methanol or ethanol molecules could be located.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1979477
https://doi.org/10.1107/S2056989020000857/tx2017sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000857/tx2017Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020000857/tx2017Isup3.cdx
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b).[Zn(C17H18N3O4)2]·CH4O·C2H6O | Z = 2 |
Mr = 790.11 | F(000) = 836 |
Triclinic, P1 | Dx = 1.421 Mg m−3 |
a = 11.0402 (4) Å | Mo Kα radiation, λ = 0.71069 Å |
b = 13.8056 (8) Å | Cell parameters from 5835 reflections |
c = 14.4190 (7) Å | θ = 4.7–20.1° |
α = 63.256 (5)° | µ = 0.72 mm−1 |
β = 74.098 (4)° | T = 120 K |
γ = 75.307 (4)° | Prismatic, yellow |
V = 1865.63 (18) Å3 | 0.09 × 0.02 × 0.02 mm |
Agilent SuperNova Sapphire3 diffractometer | 7343 reflections with I > 2σ(I) |
φ scans and ω scans with κ offset | Rint = 0.040 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | θmax = 29.9°, θmin = 3.0° |
Tmin = 0.768, Tmax = 1.000 | h = −14→15 |
18302 measured reflections | k = −19→18 |
9361 independent reflections | l = −19→20 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.192 | w = 1/[σ2(Fo2) + (0.1156P)2 + 3.6309P] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max < 0.001 |
9361 reflections | Δρmax = 2.11 e Å−3 |
487 parameters | Δρmin = −0.73 e Å−3 |
0 restraints |
Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.00210 (3) | 0.45634 (3) | 0.25703 (3) | 0.02225 (12) | |
N1 | −0.1206 (2) | 0.5723 (2) | 0.3324 (2) | 0.0240 (5) | |
N2 | −0.0307 (2) | 0.3641 (2) | 0.4169 (2) | 0.0211 (5) | |
N3 | 0.0174 (2) | 0.2545 (2) | 0.4518 (2) | 0.0224 (5) | |
N4 | −0.1512 (3) | 0.4591 (2) | 0.1888 (2) | 0.0260 (5) | |
N5 | 0.0250 (2) | 0.5836 (2) | 0.1077 (2) | 0.0224 (5) | |
N6 | 0.1200 (3) | 0.6457 (2) | 0.0775 (2) | 0.0250 (5) | |
O1 | 0.0860 (2) | 0.29614 (18) | 0.27196 (17) | 0.0255 (5) | |
O2 | 0.1803 (2) | 0.51141 (18) | 0.23406 (17) | 0.0244 (4) | |
O3 | 0.2036 (3) | −0.1382 (2) | 0.6353 (2) | 0.0374 (6) | |
O4 | 0.2942 (3) | −0.2172 (2) | 0.4875 (2) | 0.0384 (6) | |
O5 | 0.2874 (3) | −0.0886 (2) | 0.2824 (2) | 0.0368 (6) | |
O6 | 0.5751 (2) | 0.6309 (2) | 0.2440 (2) | 0.0324 (5) | |
O7 | 0.6340 (2) | 0.7917 (2) | 0.0516 (2) | 0.0314 (5) | |
O8 | 0.4815 (3) | 0.8724 (2) | −0.0894 (2) | 0.0352 (6) | |
C1 | −0.1619 (4) | 0.6792 (3) | 0.2871 (3) | 0.0320 (7) | |
H1 | −0.1502 | 0.7130 | 0.2137 | 0.038* | |
C2 | −0.2216 (4) | 0.7429 (3) | 0.3436 (3) | 0.0360 (8) | |
H2 | −0.2483 | 0.8177 | 0.3088 | 0.043* | |
C3 | −0.2405 (3) | 0.6932 (3) | 0.4520 (3) | 0.0333 (8) | |
H3 | −0.2795 | 0.7341 | 0.4918 | 0.040* | |
C4 | −0.2005 (3) | 0.5812 (3) | 0.5015 (3) | 0.0264 (6) | |
H4 | −0.2133 | 0.5458 | 0.5748 | 0.032* | |
C5 | −0.1408 (3) | 0.5225 (3) | 0.4396 (2) | 0.0224 (6) | |
C6 | −0.0939 (3) | 0.4027 (3) | 0.4855 (2) | 0.0211 (6) | |
C7 | −0.1203 (3) | 0.3345 (3) | 0.6013 (3) | 0.0293 (7) | |
H7A | −0.0826 | 0.2597 | 0.6153 | 0.035* | |
H7B | −0.2107 | 0.3384 | 0.6262 | 0.035* | |
H7C | −0.0847 | 0.3616 | 0.6372 | 0.035* | |
C8 | 0.0760 (3) | 0.2301 (2) | 0.3693 (2) | 0.0215 (6) | |
C9 | 0.1334 (3) | 0.1117 (2) | 0.3994 (2) | 0.0215 (6) | |
C10 | 0.1370 (3) | 0.0439 (3) | 0.5047 (3) | 0.0256 (6) | |
H10 | 0.1023 | 0.0717 | 0.5559 | 0.031* | |
C11 | 0.1919 (3) | −0.0652 (3) | 0.5340 (3) | 0.0273 (6) | |
C12 | 0.2428 (3) | −0.1075 (3) | 0.4567 (3) | 0.0280 (7) | |
C13 | 0.2372 (3) | −0.0390 (3) | 0.3511 (3) | 0.0276 (7) | |
C14 | 0.1839 (3) | 0.0712 (3) | 0.3217 (3) | 0.0246 (6) | |
H14 | 0.1820 | 0.1172 | 0.2510 | 0.030* | |
C15 | 0.1521 (4) | −0.0971 (3) | 0.7155 (3) | 0.0363 (8) | |
H15A | 0.1653 | −0.1546 | 0.7830 | 0.044* | |
H15B | 0.0625 | −0.0720 | 0.7168 | 0.044* | |
H15C | 0.1940 | −0.0373 | 0.7005 | 0.044* | |
C16 | 0.4298 (5) | −0.2361 (4) | 0.4685 (5) | 0.0631 (15) | |
H16A | 0.4595 | −0.3135 | 0.4919 | 0.076* | |
H16B | 0.4596 | −0.2076 | 0.5066 | 0.076* | |
H16C | 0.4617 | −0.1998 | 0.3943 | 0.076* | |
C17 | 0.2735 (4) | −0.0242 (3) | 0.1750 (3) | 0.0362 (8) | |
H17A | 0.3123 | −0.0669 | 0.1343 | 0.043* | |
H17B | 0.3143 | 0.0396 | 0.1471 | 0.043* | |
H17C | 0.1846 | −0.0017 | 0.1713 | 0.043* | |
C18 | −0.2358 (3) | 0.3898 (3) | 0.2326 (3) | 0.0351 (8) | |
H18 | −0.2334 | 0.3359 | 0.3007 | 0.042* | |
C19 | −0.3270 (4) | 0.3949 (3) | 0.1806 (4) | 0.0431 (10) | |
H19 | −0.3851 | 0.3456 | 0.2130 | 0.052* | |
C20 | −0.3301 (4) | 0.4750 (4) | 0.0795 (4) | 0.0429 (10) | |
H20 | −0.3900 | 0.4797 | 0.0426 | 0.051* | |
C21 | −0.2432 (3) | 0.5486 (3) | 0.0331 (3) | 0.0335 (8) | |
H21 | −0.2441 | 0.6031 | −0.0349 | 0.040* | |
C22 | −0.1551 (3) | 0.5390 (3) | 0.0903 (3) | 0.0248 (6) | |
C23 | −0.0583 (3) | 0.6128 (3) | 0.0487 (2) | 0.0238 (6) | |
C24 | −0.0616 (3) | 0.7115 (3) | −0.0537 (3) | 0.0309 (7) | |
H24A | 0.0076 | 0.7497 | −0.0685 | 0.037* | |
H24B | −0.1410 | 0.7592 | −0.0489 | 0.037* | |
H24C | −0.0536 | 0.6890 | −0.1094 | 0.037* | |
C25 | 0.1960 (3) | 0.5981 (2) | 0.1491 (2) | 0.0213 (6) | |
C26 | 0.3095 (3) | 0.6523 (3) | 0.1235 (2) | 0.0226 (6) | |
C27 | 0.3861 (3) | 0.6143 (3) | 0.1989 (3) | 0.0243 (6) | |
H27 | 0.3661 | 0.5569 | 0.2641 | 0.029* | |
C28 | 0.4926 (3) | 0.6627 (3) | 0.1762 (3) | 0.0260 (6) | |
C29 | 0.5235 (3) | 0.7488 (3) | 0.0781 (3) | 0.0261 (6) | |
C30 | 0.4442 (3) | 0.7873 (3) | 0.0029 (3) | 0.0274 (7) | |
C31 | 0.3379 (3) | 0.7390 (3) | 0.0254 (3) | 0.0260 (6) | |
H31 | 0.2859 | 0.7641 | −0.0243 | 0.031* | |
C32 | 0.5417 (4) | 0.5483 (4) | 0.3476 (3) | 0.0409 (9) | |
H32A | 0.6061 | 0.5323 | 0.3878 | 0.049* | |
H32B | 0.5352 | 0.4830 | 0.3423 | 0.049* | |
H32C | 0.4613 | 0.5743 | 0.3821 | 0.049* | |
C33 | 0.6268 (3) | 0.8663 (3) | 0.0971 (3) | 0.0313 (7) | |
H33A | 0.7066 | 0.8930 | 0.0755 | 0.038* | |
H33B | 0.6085 | 0.8292 | 0.1728 | 0.038* | |
H33C | 0.5603 | 0.9269 | 0.0738 | 0.038* | |
C34 | 0.3957 (4) | 0.9227 (3) | −0.1632 (3) | 0.0412 (9) | |
H34A | 0.4313 | 0.9813 | −0.2248 | 0.049* | |
H34B | 0.3155 | 0.9514 | −0.1308 | 0.049* | |
H34C | 0.3830 | 0.8690 | −0.1832 | 0.049* | |
C35 | 0.3927 (6) | 0.2790 (6) | 0.2348 (7) | 0.085 (2) | |
C36 | 0.0330 (5) | 0.8853 (4) | 0.1189 (5) | 0.0566 (12) | |
O10 | −0.0012 (6) | 0.8601 (4) | 0.0529 (5) | 0.1041 (17) | |
O9 | 0.3710 (3) | 0.3347 (3) | 0.3011 (3) | 0.0568 (8) | |
C37 | −0.0639 (9) | 0.9623 (6) | 0.1313 (7) | 0.109 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0247 (2) | 0.02143 (19) | 0.01899 (19) | −0.00006 (13) | −0.00520 (13) | −0.00800 (14) |
N1 | 0.0235 (12) | 0.0243 (13) | 0.0246 (13) | 0.0014 (10) | −0.0062 (10) | −0.0118 (11) |
N2 | 0.0193 (11) | 0.0221 (12) | 0.0204 (12) | 0.0003 (9) | −0.0037 (9) | −0.0093 (10) |
N3 | 0.0212 (12) | 0.0203 (12) | 0.0218 (12) | 0.0005 (10) | −0.0015 (9) | −0.0086 (10) |
N4 | 0.0262 (13) | 0.0233 (12) | 0.0296 (14) | −0.0014 (10) | −0.0051 (11) | −0.0131 (11) |
N5 | 0.0220 (12) | 0.0267 (13) | 0.0196 (12) | −0.0025 (10) | −0.0048 (9) | −0.0104 (11) |
N6 | 0.0251 (13) | 0.0262 (13) | 0.0225 (13) | −0.0055 (10) | −0.0044 (10) | −0.0081 (11) |
O1 | 0.0325 (12) | 0.0212 (10) | 0.0194 (10) | 0.0023 (9) | −0.0060 (9) | −0.0080 (9) |
O2 | 0.0245 (11) | 0.0251 (11) | 0.0210 (10) | −0.0025 (9) | −0.0057 (8) | −0.0071 (9) |
O3 | 0.0494 (15) | 0.0250 (12) | 0.0233 (12) | 0.0014 (11) | −0.0034 (11) | −0.0031 (10) |
O4 | 0.0468 (15) | 0.0206 (11) | 0.0363 (14) | 0.0005 (10) | −0.0006 (12) | −0.0086 (11) |
O5 | 0.0500 (15) | 0.0259 (12) | 0.0300 (13) | 0.0016 (11) | −0.0004 (11) | −0.0152 (11) |
O6 | 0.0263 (11) | 0.0366 (13) | 0.0325 (13) | −0.0071 (10) | −0.0101 (10) | −0.0085 (11) |
O7 | 0.0249 (11) | 0.0335 (12) | 0.0404 (14) | −0.0089 (10) | 0.0009 (10) | −0.0206 (11) |
O8 | 0.0454 (15) | 0.0297 (12) | 0.0293 (13) | −0.0155 (11) | −0.0050 (11) | −0.0072 (11) |
C1 | 0.0395 (18) | 0.0274 (16) | 0.0268 (16) | 0.0049 (14) | −0.0116 (14) | −0.0111 (14) |
C2 | 0.047 (2) | 0.0244 (16) | 0.0361 (19) | 0.0095 (15) | −0.0166 (16) | −0.0142 (15) |
C3 | 0.0341 (18) | 0.0354 (18) | 0.0371 (19) | 0.0090 (14) | −0.0118 (15) | −0.0250 (16) |
C4 | 0.0248 (15) | 0.0310 (16) | 0.0253 (15) | 0.0009 (12) | −0.0049 (12) | −0.0157 (14) |
C5 | 0.0191 (13) | 0.0274 (15) | 0.0230 (14) | −0.0023 (11) | −0.0044 (11) | −0.0125 (12) |
C6 | 0.0175 (13) | 0.0250 (14) | 0.0232 (14) | −0.0033 (11) | −0.0018 (11) | −0.0130 (12) |
C7 | 0.0319 (17) | 0.0303 (16) | 0.0224 (15) | −0.0013 (13) | −0.0008 (12) | −0.0121 (13) |
C8 | 0.0207 (13) | 0.0215 (13) | 0.0222 (14) | −0.0011 (11) | −0.0053 (11) | −0.0091 (12) |
C9 | 0.0195 (13) | 0.0202 (13) | 0.0239 (14) | −0.0035 (11) | −0.0030 (11) | −0.0085 (12) |
C10 | 0.0260 (15) | 0.0247 (15) | 0.0241 (15) | −0.0024 (12) | −0.0035 (12) | −0.0098 (13) |
C11 | 0.0281 (15) | 0.0240 (15) | 0.0233 (15) | −0.0051 (12) | −0.0014 (12) | −0.0054 (13) |
C12 | 0.0290 (16) | 0.0192 (14) | 0.0300 (16) | −0.0020 (12) | −0.0008 (13) | −0.0086 (13) |
C13 | 0.0300 (16) | 0.0232 (15) | 0.0297 (16) | −0.0042 (12) | −0.0014 (13) | −0.0129 (13) |
C14 | 0.0273 (15) | 0.0208 (14) | 0.0233 (14) | −0.0040 (12) | −0.0039 (12) | −0.0072 (12) |
C15 | 0.043 (2) | 0.0354 (18) | 0.0214 (16) | −0.0015 (15) | −0.0073 (14) | −0.0051 (14) |
C16 | 0.046 (3) | 0.033 (2) | 0.082 (4) | 0.0092 (19) | −0.002 (2) | −0.014 (2) |
C17 | 0.042 (2) | 0.0381 (19) | 0.0288 (17) | −0.0025 (16) | −0.0030 (15) | −0.0183 (16) |
C18 | 0.0287 (17) | 0.0268 (16) | 0.047 (2) | −0.0019 (13) | −0.0064 (15) | −0.0142 (16) |
C19 | 0.0298 (18) | 0.039 (2) | 0.069 (3) | −0.0082 (16) | −0.0088 (18) | −0.028 (2) |
C20 | 0.0281 (17) | 0.050 (2) | 0.068 (3) | 0.0022 (16) | −0.0181 (18) | −0.039 (2) |
C21 | 0.0303 (17) | 0.0400 (19) | 0.0384 (19) | 0.0067 (14) | −0.0134 (14) | −0.0254 (17) |
C22 | 0.0214 (14) | 0.0273 (15) | 0.0300 (16) | 0.0018 (12) | −0.0044 (12) | −0.0185 (13) |
C23 | 0.0259 (15) | 0.0280 (15) | 0.0186 (14) | 0.0005 (12) | −0.0040 (11) | −0.0128 (12) |
C24 | 0.0309 (16) | 0.0376 (18) | 0.0206 (15) | −0.0027 (14) | −0.0086 (12) | −0.0079 (14) |
C25 | 0.0206 (13) | 0.0228 (14) | 0.0206 (13) | −0.0017 (11) | −0.0019 (11) | −0.0109 (12) |
C26 | 0.0236 (14) | 0.0230 (14) | 0.0218 (14) | −0.0009 (11) | −0.0032 (11) | −0.0118 (12) |
C27 | 0.0225 (14) | 0.0259 (15) | 0.0240 (15) | −0.0020 (12) | −0.0033 (11) | −0.0111 (13) |
C28 | 0.0224 (14) | 0.0290 (16) | 0.0291 (16) | −0.0009 (12) | −0.0051 (12) | −0.0156 (14) |
C29 | 0.0223 (14) | 0.0276 (15) | 0.0306 (16) | −0.0035 (12) | −0.0003 (12) | −0.0166 (14) |
C30 | 0.0341 (17) | 0.0227 (14) | 0.0248 (15) | −0.0062 (13) | −0.0009 (13) | −0.0109 (13) |
C31 | 0.0294 (15) | 0.0256 (15) | 0.0226 (15) | −0.0029 (12) | −0.0052 (12) | −0.0101 (13) |
C32 | 0.0336 (18) | 0.056 (2) | 0.0279 (18) | −0.0115 (17) | −0.0112 (14) | −0.0069 (17) |
C33 | 0.0333 (17) | 0.0299 (17) | 0.0351 (18) | −0.0082 (14) | −0.0087 (14) | −0.0140 (15) |
C34 | 0.057 (2) | 0.0334 (19) | 0.0326 (19) | −0.0132 (18) | −0.0104 (17) | −0.0085 (16) |
C35 | 0.055 (3) | 0.091 (4) | 0.136 (6) | −0.028 (3) | 0.025 (3) | −0.084 (5) |
C36 | 0.071 (3) | 0.039 (2) | 0.066 (3) | −0.006 (2) | −0.019 (3) | −0.024 (2) |
O10 | 0.120 (4) | 0.081 (3) | 0.104 (4) | −0.006 (3) | −0.028 (3) | −0.032 (3) |
O9 | 0.0526 (19) | 0.0516 (19) | 0.0488 (19) | 0.0089 (15) | −0.0077 (15) | −0.0154 (16) |
C37 | 0.132 (7) | 0.074 (4) | 0.080 (5) | 0.018 (4) | 0.003 (5) | −0.027 (4) |
Zn—O1 | 2.106 (2) | C1—C2 | 1.390 (5) |
Zn—O2 | 2.176 (2) | C2—C3 | 1.373 (5) |
Zn—N1 | 2.289 (3) | C3—C4 | 1.389 (5) |
Zn—N2 | 2.049 (3) | C4—C5 | 1.395 (4) |
Zn—N4 | 2.164 (3) | C5—C6 | 1.486 (4) |
Zn—N5 | 2.076 (3) | C6—C7 | 1.489 (4) |
N1—C1 | 1.328 (4) | C8—C9 | 1.500 (4) |
N1—C5 | 1.358 (4) | C9—C14 | 1.393 (4) |
N2—C6 | 1.288 (4) | C9—C10 | 1.385 (4) |
N2—N3 | 1.370 (4) | C10—C11 | 1.385 (4) |
N3—C8 | 1.333 (4) | C11—C12 | 1.407 (5) |
N4—C18 | 1.331 (5) | C12—C13 | 1.393 (5) |
N4—C22 | 1.354 (4) | C13—C14 | 1.394 (4) |
N5—C23 | 1.290 (4) | C18—C19 | 1.383 (5) |
N5—N6 | 1.377 (4) | C19—C20 | 1.380 (7) |
N6—C25 | 1.336 (4) | C20—C21 | 1.390 (6) |
O1—C8 | 1.276 (4) | C21—C22 | 1.385 (4) |
O2—C25 | 1.278 (4) | C22—C23 | 1.480 (5) |
O3—C11 | 1.370 (4) | C23—C24 | 1.494 (5) |
O3—C15 | 1.431 (4) | C25—C26 | 1.497 (4) |
O4—C12 | 1.382 (4) | C26—C31 | 1.398 (4) |
O4—C16 | 1.423 (6) | C26—C27 | 1.393 (4) |
O5—C13 | 1.371 (4) | C27—C28 | 1.387 (4) |
O5—C17 | 1.426 (4) | C28—C29 | 1.400 (5) |
O6—C28 | 1.369 (4) | C29—C30 | 1.410 (5) |
O6—C32 | 1.430 (5) | C30—C31 | 1.386 (5) |
O7—C29 | 1.377 (4) | C35—O9 | 1.416 (7) |
O7—C33 | 1.427 (4) | C36—O10 | 1.315 (7) |
O8—C30 | 1.364 (4) | C36—C37 | 1.339 (9) |
O8—C34 | 1.437 (5) | ||
O1—Zn—O2 | 95.27 (9) | C7—C6—C5 | 121.9 (3) |
O1—Zn—N1 | 149.55 (9) | O1—C8—N3 | 126.6 (3) |
N2—Zn—O1 | 76.21 (9) | O1—C8—C9 | 119.7 (3) |
O1—Zn—N4 | 93.40 (9) | N3—C8—C9 | 113.7 (3) |
N5—Zn—O1 | 118.14 (9) | C14—C9—C10 | 120.7 (3) |
N2—Zn—O2 | 101.58 (9) | C14—C9—C8 | 120.1 (3) |
N4—Zn—O2 | 148.23 (10) | C10—C9—C8 | 119.2 (3) |
N5—Zn—O2 | 73.41 (9) | C9—C10—C11 | 120.3 (3) |
N2—Zn—N1 | 73.66 (10) | O3—C11—C10 | 124.9 (3) |
N4—Zn—N1 | 92.84 (10) | O3—C11—C12 | 115.3 (3) |
N5—Zn—N1 | 92.26 (10) | C10—C11—C12 | 119.8 (3) |
N2—Zn—N4 | 110.17 (11) | O4—C12—C13 | 121.4 (3) |
N2—Zn—N5 | 164.81 (10) | O4—C12—C11 | 119.1 (3) |
N5—Zn—N4 | 75.54 (10) | C13—C12—C11 | 119.4 (3) |
O2—Zn—N1 | 94.93 (9) | O5—C13—C12 | 114.8 (3) |
C1—N1—C5 | 118.2 (3) | O5—C13—C14 | 124.6 (3) |
C1—N1—Zn | 129.5 (2) | C12—C13—C14 | 120.6 (3) |
C5—N1—Zn | 112.0 (2) | C9—C14—C13 | 119.2 (3) |
C6—N2—N3 | 118.6 (3) | N4—C18—C19 | 122.4 (4) |
C6—N2—Zn | 124.0 (2) | C20—C19—C18 | 118.6 (4) |
N3—N2—Zn | 117.41 (19) | C19—C20—C21 | 119.7 (3) |
C8—N3—N2 | 109.5 (2) | C22—C21—C20 | 118.5 (4) |
C18—N4—C22 | 119.4 (3) | N4—C22—C21 | 121.5 (3) |
C18—N4—Zn | 126.6 (3) | N4—C22—C23 | 115.4 (3) |
C22—N4—Zn | 114.0 (2) | C21—C22—C23 | 123.1 (3) |
C23—N5—N6 | 119.8 (3) | N5—C23—C22 | 114.3 (3) |
C23—N5—Zn | 120.1 (2) | N5—C23—C24 | 125.1 (3) |
N6—N5—Zn | 119.52 (19) | C22—C23—C24 | 120.6 (3) |
C25—N6—N5 | 109.0 (3) | O2—C25—N6 | 125.6 (3) |
C8—O1—Zn | 110.20 (19) | O2—C25—C26 | 119.0 (3) |
C25—O2—Zn | 111.36 (18) | N6—C25—C26 | 115.3 (3) |
C11—O3—C15 | 116.3 (3) | C31—C26—C27 | 120.9 (3) |
C12—O4—C16 | 113.5 (3) | C31—C26—C25 | 120.4 (3) |
C13—O5—C17 | 116.7 (3) | C27—C26—C25 | 118.7 (3) |
C28—O6—C32 | 116.7 (3) | C28—C27—C26 | 119.6 (3) |
C29—O7—C33 | 113.9 (3) | O6—C28—C27 | 124.3 (3) |
C30—O8—C34 | 116.6 (3) | O6—C28—C29 | 115.3 (3) |
N1—C1—C2 | 123.4 (3) | C27—C28—C29 | 120.4 (3) |
C1—C2—C3 | 118.6 (3) | O7—C29—C28 | 120.9 (3) |
C2—C3—C4 | 119.2 (3) | O7—C29—C30 | 119.5 (3) |
C5—C4—C3 | 119.0 (3) | C28—C29—C30 | 119.5 (3) |
N1—C5—C4 | 121.6 (3) | O8—C30—C31 | 125.0 (3) |
N1—C5—C6 | 115.6 (3) | O8—C30—C29 | 114.8 (3) |
C4—C5—C6 | 122.8 (3) | C31—C30—C29 | 120.2 (3) |
N2—C6—C7 | 123.7 (3) | C26—C31—C30 | 119.4 (3) |
N2—C6—C5 | 114.3 (3) | O10—C36—C37 | 102.0 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16C···O5 | 0.96 | 2.58 | 3.097 (7) | 114 |
C17—H17B···O8i | 0.96 | 2.59 | 3.457 (6) | 150 |
C18—H18···O3ii | 0.93 | 2.42 | 3.100 (5) | 130 |
C24—H24B···O7iii | 0.96 | 2.55 | 3.414 (5) | 149 |
C24—H24C···O1iv | 0.96 | 2.38 | 3.281 (4) | 157 |
C33—H33B···O6 | 0.96 | 2.54 | 3.075 (5) | 115 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z+1; (iii) x−1, y, z; (iv) −x, −y+1, −z. |
Funding information
Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668–675. Google Scholar
Bernhardt, P. V., Chin, P., Sharpe, P. C. & Richardson, D. R. (2007). Dalton Trans. pp. 3232–3244. Web of Science CSD CrossRef Google Scholar
Bernhardt, P. V., Mattsson, J. & Richardson, D. R. (2006). Inorg. Chem. 45, 752–760. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Deng, J., Gou, Y., Chen, W., Fu, X. & Deng, H. (2016). Bioorg. Med. Chem. 24, 2190–2198. Web of Science CSD CrossRef CAS PubMed Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jang, Y.-J., Lee, U. & Koo, B.-K. (2005). Bull. Korean Chem. Soc. 26, 925–929. CAS Google Scholar
Kane, C. H., Tinguiano, D., Tamboura, F. B., Thiam, I. E., Barry, A. H., Gaye, M. & Retailleau, P. (2016). Bull. Chem. Soc. Ethiop. 30, 101–110. CAS Google Scholar
Link, G., Ponka, P., Konijn, A. M., Breuer, W., Cabantchik, Z. I. & Hershko, C. (2003). Blood, 101, 4172–4179. Web of Science CrossRef PubMed CAS Google Scholar
Peng, Y., Mereacre, V., Anson, C. E., Zhang, Y., Bodenstein, T., Fink, K. & Powell, A. K. (2017). Inorg. Chem. 56, 6056–6066. Web of Science CSD CrossRef CAS PubMed Google Scholar
Romero-Morcillo, T., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2015). Angew. Chem. Int. Ed. 54, 14777–14781. CAS Google Scholar
Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390. Web of Science CrossRef Google Scholar
Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef PubMed Google Scholar
Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shongwe, M. S., Al-Rahbi, S. H., Al-Azani, M. A., Al-Muharbi, A. A., Al-Mjeni, F., Matoga, D., Gismelseed, A., Al-Omari, I. A., Yousif, A., Adams, H., Morris, M. J. & Mikuriya, M. (2012). Dalton Trans. 41, 2500–2514. Web of Science CSD CrossRef CAS PubMed Google Scholar
Singh, P., Singh, D. P., Tiwari, K., Mishra, M., Singh, A. K. & Singh, V. P. (2015). RSC Adv. 5, 45217–45230. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer17.5. University of Western Australia. Google Scholar
Wang, L.-H., Qiu, X.-Y. & Liu, S.-J. (2019). J. Coord. Chem. 72, 962–971. Web of Science CSD CrossRef CAS Google Scholar
Wu, D., Huang, W., Duan, C., Lin, Z. & Meng, Q. (2007). Inorg. Chem. 46, 1538–1540. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xiang, Y., Tong, A., Jin, P. & Ju, Y. (2006). Org. Lett. 8, 2863–2866. Web of Science CrossRef PubMed CAS Google Scholar
Yuan, J., Liu, M.-J., Wu, S.-Q., Zhu, X., Zhang, N., Sato, O. & Kou, H.-Z. (2019). Inorg. Chem. Front. 6, 1170–1176. Web of Science CSD CrossRef CAS Google Scholar
Zhang, L., Xu, G. C., Xu, H. B., Zhang, T., Wang, Z. M., Yuan, M. & Gao, S. (2010). Chem. Commun. 46, 2554–2556. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.