research communications
E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate
characterization and Hirshfeld analysis of bis{(aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Algeria, bFaculté de Technologie, Université Mohamed Boudiaf M'sila, Algeria, cUniversité abd el Hafid Boussouf, Mila, 43000 Mila, Algeria, dLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, eEcole Nationale Polytechnique de Constantine, Constantine, Algeria, fLaboratoire de Chimie Appliquée et Environnement (LCAE), Département de Chimie, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, and gLaboratoire de Chimie, Faculté des Sciences, Département de Chimie Appliquée et Environnement, Université Mohammed Premier, Oujda, Morocco
*Correspondence e-mail: souheilachetioui@yahoo.fr
In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30.
Keywords: Crystal structure; Azo dyes; CuII complex; (N,O)-ligands.; crystal structure.
CCDC reference: 1983017
1. Chemical context
Azo dyes are an important class of organic compounds that are attractive to researchers because of their various applications (Zollinger, 1961; Nishihara, 2004; Sahoo et al., 2015). They constitute the largest group of and are the most widely used colorants in the industry. Applications of azo dyes include their use as coloring agents because of their affinity for wool and silk (Patel et al., 2011), in photoelectronics (Sekar, 1999), optical storage technology (Wang et al., 2000), biological reactions (Węglarz-Tomczak et al., 2012), printing systems (Abe et al., 1999; Dharmalingam et al., 2011), in analytical areas (Abdalla et al., 2013; Amin et al., 2003) and in the food industry (Almeida et al., 2010). Azo derivatives and their metal complexes are important homologue pigments for synthetic leather and vinyl polymers. Furthermore, are known to be involved in a number of biological reactions, such as inhibition of DNA, RNA, and protein synthesis, nitrogen fixation and carcinogenesis (Badea et al., 2004). In addition, high-density optical data storage has been the subject of extensive research over the past decade. In general, phthalocyanine dyes, and metal-azo dyes are used in the recording layer of DVD-R (digital versatile disc-recordable) discs. It was reported that the new technology, which employs 405 nm blue–violet diode lasers, will require a new optical-recording medium matching the 405 nm wavelength laser (Steed et al., 2007). In comparison with the dyes themselves, metal-azo dyes are light-stable, allow an easier control of the wavelength by selection of the appropriate substituent groups, and have good thermal stability (Geng et al., 2004; Bin et al., 2003; Fu-Xin et al., 2003; Hamada et al., 1997; Suzuki et al., 1999; Nejati et al., 2009; Li et al., 2010). Being interested in the synthesis and preparation of metal complexes bearing such ligands, we have synthesized and structurally characterized CuII complexes with N,O-bidentate phenylazo-naphtholate ligands (Chetioui et al., 2015a,b). In our previous work, we were interested by the colour-generation mechanism of azo pigments, usually characterized by the chromophore of the azo group (–N=N–) (Bougueria et al., 2013a,b,c, 2014; Chetioui et al., 2013a,b). Herein, we report the synthesis and of a CuII complex incorporating the ligand (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-ol, for which the structure is known (Chetioui et al., 2013a).
2. Structural commentary
The structure of the title compound is shown in Fig. 1. The consists of a CuII complex molecule and a DMSO solvent molecule. In the complex, the CuII atom is coordinated by two oxygen and two nitrogen atoms trans to each other. The Cu1—N2 and Cu1—N4 bond lengths [1.976 (4) and 1.971 (5) Å, respectively] are almost identical. The N—Cu—N bond angle is 177.8 (2)°. The two Cu—O distances are 1.882 (4) and 1.892 (4) Å. All bond lengths are similar to those observed in similar crystal structures (Chetioui et al., 2015a,b). The N—Cu—O bond angles range from 88.75 (18) to 93.06 (17)° and the O—Cu—O angle is 177.90 (16)°. Therefore, the copper atom can be considered to be in a slightly distorted square-planar geometry. The dihedral angle formed between the plane of the C1–C10 naphthalene ring system and the tribromobenzene ring is 51.4 (2)°.
3. Supramolecular features
In the crystal, the complex molecules and the DMSO molecules are linked by C3—H3⋯O3 and C23—H23⋯O3 hydrogen bonds (Table 1), forming parallel complex–solvate chains along the b-axis direction (see Fig. 2). π–π stacking interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å] are observed between complex molecules.
4. Analysis of the Hirshfeld surfaces
The program Crystal Explorer 3.1 (Wolff et al., 2012) was used to generate the Hirshfeld surface (Spackman & Jayatilaka, 2009) mapped over dnorm (Fig. 3). The bright-red spots correspond to the H⋯·O/O⋯H close contacts (C—H⋯O hydrogen bonds), while the faint-red spots, near the H⋯O contacts, are attributed to Br⋯H, Br⋯Br and C⋯H contacts. The white areas correspond to regions where the distances separating neighboring atoms are close or equal to the sum of the van der Waals radius of the atoms. The corresponding fingerprint plots (McKinnon et al., 2007) are shown in Fig. 4. The relative contributions from the different interatomic contacts to the Hirshfeld surfaces are as follows: O⋯H/H⋯O contacts 5.0%, H⋯Br/Br⋯H 23.7%, Br⋯Br 4.7%, Br⋯C/C⋯Br 11.6%, C⋯C 3.3%, C⋯H/H⋯C 17.5%, H⋯H 25.8%. The presence of π–π stacking interactions are indicated in the Hirshfeld surface mapped over shape-index (Fig. 5).
5. Synthesis and crystallization
The complex, bis-1-(2,4,6-tribromophenylazo)-2-naphtholatecopper(II), was obtained by mixing 1 mmol of 1-(2,4,6-tribromophenylazo)-2-naphthol dissolved in 20 ml of THF with 0.5 mmol of Cu(OAc)2·H2O dissolved in 20 ml of MeOH. The mixture was refluxed at 333 K for 8 h. Upon cooling, a dark-orange solid was observed, which was filtered off and washed with water, and then dried under vacuum. Crystallization in DMSO yielded 83% of a crystalline material. To confirm the formula of the solvate complex, an elementary analysis was carried out: calculated for C32H16Br6CuN4O2·C2H6OS, C 36.80%, N 5.05%, H 2.00%, found C 36,27%, N 4,81%, H 1,92%. The 1H NMR spectrum (paramagnetic complex) shows a multiplet around 7 and 8 ppm attributed to the aromatic protons. The IR spectrum of the complex shows the vibration bands: ν(N=N); 1360 cm−1, ν(C—N): 1149 cm −1, ν(C—Br): 645 cm−1, ν(C—O): 1207 cm−1 (aromatic), ν(C=C): 1498 cm−1 (aromatic), ν(C—H): 2945 cm−1 (aromatic), ν(Cu—N): 417 cm−1, ν(Cu-O): 558 cm−1. The UV–Vis spectrum measured in CH2Cl2 (10 −5 M), shows three absorption bands: an intense band at 268 nm (∊ = 29.94 108 M−1 cm−1) attributed to intra-ligand charge-transfer transition, a band at 382 nm (∊ = 79.21 107 M−1 cm−1) associated with the azo form of the ligand and a band at 462 nm (∊ = 63.84 107 M−1 cm−1) attributed to metal–ligand charge transfer.
6. Refinement
Crystal data, data collection and structure . The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C). An absorption correction was not applied in view of the very small size of the crystal [0.1 × 0.09 × 0.08 mm]. The DMSO solvent molecule shows disorder over two positions with final occupancies of 0.70 and 0.30. The disordered atoms were modelled as anisotropic using EADP restraints. H atoms of the disordered DMSO were omitted.
details are summarized in Table 2Supporting information
CCDC reference: 1983017
https://doi.org/10.1107/S2056989020001863/tx2018sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001863/tx2018Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu(C16H8Br3N2O)2]·C2H6OS | F(000) = 2132 |
Mr = 1109.61 | Dx = 1.996 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2yn | Cell parameters from 3926 reflections |
a = 8.9922 (14) Å | θ = 2.6–20.4° |
b = 16.461 (3) Å | µ = 7.22 mm−1 |
c = 24.835 (4) Å | T = 150 K |
β = 92.491 (6)° | Needles, red |
V = 3672.6 (11) Å3 | 0.1 × 0.09 × 0.08 mm |
Z = 4 |
Bruker APEXII diffractometer | 6872 independent reflections |
Radiation source: sealed x-ray tube | 3962 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.107 |
φ or ω oscillation scans | θmax = 25.7°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −10→10 |
Tmin = 0.002, Tmax = 1 | k = −19→19 |
6872 measured reflections | l = −29→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0347P)2] where P = (Fo2 + 2Fc2)/3 |
6872 reflections | (Δ/σ)max = 0.001 |
446 parameters | Δρmax = 0.68 e Å−3 |
150 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.68982 (8) | 0.64876 (4) | 0.67162 (3) | 0.0634 (3) | |
Br3 | 0.75391 (7) | 0.35743 (4) | 0.79468 (3) | 0.0584 (3) | |
Br2 | 1.09066 (7) | 0.63332 (4) | 0.84994 (3) | 0.0622 (3) | |
Br4 | 0.21948 (8) | 0.19770 (4) | 0.78635 (3) | 0.0682 (3) | |
Br5 | −0.21658 (7) | 0.22247 (4) | 0.61830 (3) | 0.0668 (3) | |
Br6 | 0.11254 (7) | 0.49832 (4) | 0.68081 (3) | 0.0556 (3) | |
Cu1 | 0.43783 (7) | 0.42742 (4) | 0.73579 (3) | 0.0398 (2) | |
S1A | 0.0722 (6) | 0.2091 (3) | 0.4460 (2) | 0.143 (2) | 0.700 |
S1B | 0.0869 (10) | 0.2867 (7) | 0.4489 (3) | 0.106 (4) | 0.300 |
O1 | 0.4041 (4) | 0.3614 (2) | 0.67460 (16) | 0.0503 (16) | |
O2 | 0.4641 (4) | 0.4941 (2) | 0.79752 (15) | 0.0476 (16) | |
N1 | 0.6600 (5) | 0.4629 (3) | 0.65494 (18) | 0.0363 (16) | |
N2 | 0.6228 (4) | 0.4666 (3) | 0.70433 (18) | 0.0361 (16) | |
N3 | 0.2087 (5) | 0.3883 (3) | 0.81332 (19) | 0.0376 (16) | |
N4 | 0.2530 (5) | 0.3849 (3) | 0.76505 (18) | 0.0392 (16) | |
C1 | 0.4550 (6) | 0.3729 (3) | 0.6277 (2) | 0.0405 (19) | |
C2 | 0.3861 (7) | 0.3291 (3) | 0.5833 (2) | 0.0488 (19) | |
O3 | 0.2245 (10) | 0.2383 (6) | 0.4445 (4) | 0.196 (5) | |
C3 | 0.4328 (7) | 0.3361 (4) | 0.5333 (3) | 0.058 (2) | |
C4 | 0.5546 (7) | 0.3879 (4) | 0.5212 (2) | 0.0519 (19) | |
C5 | 0.6008 (9) | 0.3970 (5) | 0.4671 (3) | 0.073 (3) | |
C6 | 0.7130 (9) | 0.4461 (5) | 0.4561 (3) | 0.080 (3) | |
C7 | 0.7873 (8) | 0.4909 (5) | 0.4968 (3) | 0.073 (3) | |
C8 | 0.7460 (7) | 0.4844 (4) | 0.5492 (3) | 0.054 (2) | |
C9 | 0.6276 (6) | 0.4321 (3) | 0.5625 (2) | 0.0429 (17) | |
C10 | 0.5789 (6) | 0.4237 (3) | 0.6167 (2) | 0.0367 (17) | |
C11 | 0.7300 (5) | 0.5077 (3) | 0.7382 (2) | 0.0338 (17) | |
C12 | 0.7737 (6) | 0.5880 (3) | 0.7296 (2) | 0.0389 (17) | |
C13 | 0.8781 (6) | 0.6257 (3) | 0.7630 (2) | 0.0402 (19) | |
C14 | 0.9417 (5) | 0.5829 (3) | 0.8053 (2) | 0.040 (2) | |
C15 | 0.9040 (6) | 0.5040 (3) | 0.8157 (2) | 0.040 (2) | |
C16 | 0.7988 (6) | 0.4679 (3) | 0.7821 (2) | 0.0362 (19) | |
C17 | 0.4038 (6) | 0.4840 (3) | 0.8433 (2) | 0.0396 (17) | |
C18 | 0.4594 (6) | 0.5313 (4) | 0.8881 (2) | 0.052 (2) | |
C19 | 0.4018 (7) | 0.5260 (4) | 0.9369 (2) | 0.058 (2) | |
C20 | 0.2835 (7) | 0.4719 (4) | 0.9478 (2) | 0.0522 (19) | |
C21 | 0.2258 (8) | 0.4674 (5) | 0.9997 (3) | 0.068 (3) | |
C22 | 0.1132 (8) | 0.4155 (5) | 1.0092 (3) | 0.076 (3) | |
C23 | 0.0535 (8) | 0.3669 (4) | 0.9673 (3) | 0.070 (3) | |
C24 | 0.1069 (6) | 0.3707 (4) | 0.9164 (2) | 0.0532 (19) | |
C25 | 0.2235 (6) | 0.4237 (3) | 0.9057 (2) | 0.0410 (17) | |
C26 | 0.2843 (6) | 0.4301 (3) | 0.8526 (2) | 0.0387 (17) | |
C27 | 0.1469 (5) | 0.3441 (3) | 0.7299 (2) | 0.0322 (17) | |
C28 | 0.1148 (6) | 0.2620 (3) | 0.7347 (2) | 0.0407 (19) | |
C29 | 0.0094 (6) | 0.2240 (3) | 0.7011 (2) | 0.0448 (19) | |
C30 | −0.0631 (6) | 0.2696 (3) | 0.6626 (2) | 0.042 (2) | |
C31 | −0.0334 (6) | 0.3514 (3) | 0.6555 (2) | 0.042 (2) | |
C32 | 0.0720 (6) | 0.3857 (3) | 0.6896 (2) | 0.0367 (19) | |
C33 | −0.0284 (15) | 0.2589 (10) | 0.3984 (5) | 0.200 (6) | |
C34 | −0.0043 (14) | 0.2544 (10) | 0.4988 (5) | 0.200 (6) | |
H2 | 0.30478 | 0.29405 | 0.58977 | 0.0590* | |
H3 | 0.38413 | 0.30595 | 0.50504 | 0.0690* | |
H5 | 0.55076 | 0.36773 | 0.43872 | 0.0870* | |
H6 | 0.74307 | 0.45080 | 0.42002 | 0.0960* | |
H7 | 0.86667 | 0.52600 | 0.48811 | 0.0870* | |
H8 | 0.79692 | 0.51502 | 0.57667 | 0.0640* | |
H13 | 0.90576 | 0.68054 | 0.75686 | 0.0480* | |
H15 | 0.94936 | 0.47532 | 0.84525 | 0.0480* | |
H18 | 0.53963 | 0.56771 | 0.88306 | 0.0620* | |
H19 | 0.44135 | 0.55961 | 0.96518 | 0.0700* | |
H21 | 0.26601 | 0.50069 | 1.02799 | 0.0820* | |
H22 | 0.07469 | 0.41203 | 1.04410 | 0.0910* | |
H23 | −0.02548 | 0.33062 | 0.97419 | 0.0840* | |
H24 | 0.06465 | 0.33737 | 0.88855 | 0.0640* | |
H29 | −0.01156 | 0.16772 | 0.70477 | 0.0540* | |
H31 | −0.08421 | 0.38228 | 0.62809 | 0.0500* | |
H33A | −0.12104 | 0.22926 | 0.38991 | 0.3000* | 0.700 |
H33B | 0.02909 | 0.26326 | 0.36591 | 0.3000* | 0.700 |
H33C | −0.05193 | 0.31341 | 0.41141 | 0.3000* | 0.700 |
H33D | 0.00672 | 0.20810 | 0.38277 | 0.3000* | 0.300 |
H33E | −0.03207 | 0.30141 | 0.37076 | 0.3000* | 0.300 |
H33F | −0.12823 | 0.25070 | 0.41182 | 0.3000* | 0.300 |
H34A | −0.11277 | 0.24820 | 0.49574 | 0.3000* | 0.700 |
H34B | 0.02109 | 0.31232 | 0.49901 | 0.3000* | 0.700 |
H34C | 0.03409 | 0.22918 | 0.53228 | 0.3000* | 0.700 |
H34D | −0.10002 | 0.23211 | 0.48539 | 0.3000* | 0.300 |
H34E | 0.05313 | 0.21196 | 0.51788 | 0.3000* | 0.300 |
H34F | −0.02185 | 0.29956 | 0.52342 | 0.3000* | 0.300 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0881 (5) | 0.0411 (4) | 0.0592 (4) | 0.0021 (3) | −0.0169 (4) | 0.0083 (3) |
Br3 | 0.0628 (4) | 0.0400 (4) | 0.0715 (5) | −0.0095 (3) | −0.0060 (3) | 0.0143 (3) |
Br2 | 0.0538 (4) | 0.0642 (5) | 0.0671 (5) | −0.0118 (3) | −0.0128 (3) | −0.0127 (3) |
Br4 | 0.0725 (5) | 0.0558 (4) | 0.0742 (5) | 0.0048 (4) | −0.0220 (4) | 0.0134 (4) |
Br5 | 0.0587 (4) | 0.0599 (4) | 0.0792 (5) | −0.0140 (3) | −0.0254 (3) | 0.0007 (4) |
Br6 | 0.0620 (4) | 0.0381 (4) | 0.0674 (5) | −0.0064 (3) | 0.0115 (3) | 0.0044 (3) |
Cu1 | 0.0335 (3) | 0.0444 (4) | 0.0418 (4) | −0.0075 (3) | 0.0062 (3) | −0.0044 (3) |
S1A | 0.129 (4) | 0.094 (3) | 0.200 (5) | −0.014 (3) | −0.055 (3) | 0.004 (3) |
S1B | 0.088 (6) | 0.135 (8) | 0.094 (6) | −0.035 (6) | 0.009 (5) | −0.027 (5) |
O1 | 0.048 (2) | 0.055 (3) | 0.049 (3) | −0.015 (2) | 0.015 (2) | −0.013 (2) |
O2 | 0.041 (2) | 0.054 (3) | 0.048 (3) | −0.0173 (19) | 0.0059 (19) | −0.008 (2) |
N1 | 0.035 (2) | 0.041 (3) | 0.033 (3) | 0.002 (2) | 0.002 (2) | 0.004 (2) |
N2 | 0.033 (2) | 0.038 (3) | 0.037 (3) | −0.004 (2) | −0.001 (2) | 0.000 (2) |
N3 | 0.034 (2) | 0.039 (3) | 0.040 (3) | 0.003 (2) | 0.005 (2) | 0.003 (2) |
N4 | 0.034 (2) | 0.043 (3) | 0.041 (3) | −0.009 (2) | 0.006 (2) | −0.004 (2) |
C1 | 0.036 (3) | 0.038 (3) | 0.047 (4) | 0.008 (2) | −0.005 (3) | 0.000 (3) |
C2 | 0.050 (3) | 0.040 (3) | 0.055 (4) | 0.001 (3) | −0.012 (3) | −0.009 (3) |
O3 | 0.129 (7) | 0.242 (10) | 0.210 (9) | 0.053 (7) | −0.078 (6) | −0.082 (8) |
C3 | 0.068 (4) | 0.055 (4) | 0.049 (4) | 0.011 (3) | −0.013 (3) | −0.014 (3) |
C4 | 0.054 (3) | 0.053 (4) | 0.048 (3) | 0.022 (3) | −0.006 (3) | −0.005 (3) |
C5 | 0.087 (5) | 0.086 (5) | 0.045 (4) | 0.023 (4) | −0.005 (4) | 0.000 (4) |
C6 | 0.093 (5) | 0.105 (6) | 0.043 (4) | 0.027 (4) | 0.021 (4) | 0.015 (4) |
C7 | 0.066 (4) | 0.094 (6) | 0.059 (4) | 0.014 (4) | 0.018 (3) | 0.027 (4) |
C8 | 0.054 (4) | 0.059 (4) | 0.048 (4) | 0.010 (3) | 0.007 (3) | 0.015 (3) |
C9 | 0.044 (3) | 0.043 (3) | 0.042 (3) | 0.014 (3) | 0.005 (2) | 0.000 (3) |
C10 | 0.036 (3) | 0.037 (3) | 0.037 (3) | 0.004 (2) | 0.001 (2) | −0.002 (3) |
C11 | 0.037 (3) | 0.029 (3) | 0.036 (3) | 0.000 (2) | 0.008 (3) | −0.001 (3) |
C12 | 0.035 (3) | 0.039 (3) | 0.043 (3) | 0.002 (3) | 0.005 (3) | −0.001 (3) |
C13 | 0.040 (3) | 0.034 (3) | 0.047 (4) | −0.002 (3) | 0.005 (3) | 0.001 (3) |
C14 | 0.030 (3) | 0.043 (4) | 0.047 (4) | −0.004 (3) | 0.002 (3) | −0.011 (3) |
C15 | 0.032 (3) | 0.043 (4) | 0.045 (4) | −0.001 (3) | 0.001 (3) | 0.005 (3) |
C16 | 0.035 (3) | 0.030 (3) | 0.044 (4) | 0.000 (2) | 0.007 (3) | 0.004 (3) |
C17 | 0.034 (3) | 0.045 (3) | 0.040 (3) | 0.002 (2) | 0.004 (3) | −0.002 (3) |
C18 | 0.044 (3) | 0.061 (4) | 0.050 (4) | −0.019 (3) | −0.005 (3) | −0.006 (3) |
C19 | 0.053 (4) | 0.080 (5) | 0.040 (3) | 0.000 (3) | −0.007 (3) | −0.014 (3) |
C20 | 0.044 (3) | 0.075 (4) | 0.037 (3) | 0.010 (3) | −0.004 (3) | 0.003 (3) |
C21 | 0.061 (4) | 0.106 (6) | 0.038 (4) | 0.010 (4) | −0.001 (3) | 0.000 (4) |
C22 | 0.066 (4) | 0.118 (6) | 0.045 (4) | 0.016 (4) | 0.012 (3) | 0.012 (4) |
C23 | 0.060 (4) | 0.088 (5) | 0.063 (4) | −0.001 (4) | 0.018 (3) | 0.021 (4) |
C24 | 0.051 (3) | 0.065 (4) | 0.044 (3) | −0.002 (3) | 0.006 (3) | 0.011 (3) |
C25 | 0.039 (3) | 0.050 (3) | 0.034 (3) | 0.009 (2) | 0.002 (2) | 0.009 (2) |
C26 | 0.034 (3) | 0.042 (3) | 0.040 (3) | 0.002 (2) | 0.000 (2) | 0.001 (3) |
C27 | 0.025 (3) | 0.035 (3) | 0.037 (3) | −0.001 (2) | 0.005 (2) | −0.004 (3) |
C28 | 0.040 (3) | 0.043 (4) | 0.039 (3) | 0.000 (3) | 0.002 (3) | 0.001 (3) |
C29 | 0.041 (3) | 0.034 (3) | 0.059 (4) | −0.005 (3) | −0.003 (3) | 0.005 (3) |
C30 | 0.031 (3) | 0.043 (4) | 0.050 (4) | −0.005 (3) | −0.003 (3) | −0.001 (3) |
C31 | 0.036 (3) | 0.041 (4) | 0.049 (4) | 0.005 (3) | 0.002 (3) | 0.006 (3) |
C32 | 0.035 (3) | 0.033 (3) | 0.043 (4) | −0.006 (2) | 0.012 (3) | −0.001 (3) |
C33 | 0.138 (8) | 0.360 (16) | 0.101 (6) | −0.016 (9) | −0.006 (6) | 0.040 (8) |
C34 | 0.138 (8) | 0.360 (16) | 0.101 (6) | −0.016 (9) | −0.006 (6) | 0.040 (8) |
Br1—C12 | 1.884 (5) | C18—C19 | 1.341 (7) |
Br3—C16 | 1.892 (5) | C19—C20 | 1.422 (9) |
Br2—C14 | 1.893 (5) | C20—C21 | 1.412 (9) |
Br4—C28 | 1.883 (5) | C20—C25 | 1.402 (8) |
Br5—C30 | 1.893 (5) | C21—C22 | 1.353 (11) |
Br6—C32 | 1.904 (5) | C22—C23 | 1.401 (10) |
Cu1—O1 | 1.882 (4) | C23—C24 | 1.373 (9) |
Cu1—O2 | 1.892 (4) | C24—C25 | 1.398 (8) |
Cu1—N2 | 1.976 (4) | C25—C26 | 1.453 (7) |
Cu1—N4 | 1.971 (5) | C27—C28 | 1.388 (7) |
S1A—C34 | 1.681 (14) | C27—C32 | 1.366 (7) |
S1A—O3 | 1.453 (11) | C28—C29 | 1.385 (7) |
S1A—C33 | 1.672 (15) | C29—C30 | 1.360 (7) |
S1B—C33 | 1.657 (16) | C30—C31 | 1.386 (7) |
S1B—C34 | 1.606 (15) | C31—C32 | 1.366 (7) |
S1B—O3 | 1.480 (13) | C2—H2 | 0.9500 |
O1—C1 | 1.284 (6) | C3—H3 | 0.9500 |
O2—C17 | 1.292 (6) | C5—H5 | 0.9500 |
N1—N2 | 1.287 (6) | C6—H6 | 0.9500 |
N1—C10 | 1.338 (7) | C7—H7 | 0.9500 |
N2—C11 | 1.423 (6) | C8—H8 | 0.9500 |
N3—N4 | 1.281 (6) | C13—H13 | 0.9500 |
N3—C26 | 1.353 (7) | C15—H15 | 0.9500 |
N4—C27 | 1.432 (7) | C18—H18 | 0.9500 |
C1—C2 | 1.435 (7) | C19—H19 | 0.9500 |
C1—C10 | 1.429 (7) | C21—H21 | 0.9500 |
C2—C3 | 1.333 (9) | C22—H22 | 0.9500 |
C3—C4 | 1.430 (9) | C23—H23 | 0.9500 |
C4—C9 | 1.398 (8) | C24—H24 | 0.9500 |
C4—C5 | 1.431 (9) | C29—H29 | 0.9500 |
C5—C6 | 1.330 (11) | C31—H31 | 0.9500 |
C6—C7 | 1.398 (11) | C33—H33A | 0.9800 |
C7—C8 | 1.373 (10) | C33—H33B | 0.9800 |
C8—C9 | 1.419 (8) | C33—H33C | 0.9800 |
C9—C10 | 1.440 (7) | C33—H33D | 0.9800 |
C11—C12 | 1.398 (7) | C33—H33E | 0.9800 |
C11—C16 | 1.394 (7) | C33—H33F | 0.9800 |
C12—C13 | 1.374 (7) | C34—H34A | 0.9800 |
C13—C14 | 1.369 (7) | C34—H34B | 0.9800 |
C14—C15 | 1.370 (7) | C34—H34C | 0.9800 |
C15—C16 | 1.370 (7) | C34—H34D | 0.9800 |
C17—C26 | 1.420 (7) | C34—H34E | 0.9800 |
C17—C18 | 1.430 (7) | C34—H34F | 0.9800 |
O1—Cu1—O2 | 177.90 (16) | N3—C26—C25 | 114.9 (5) |
O1—Cu1—N2 | 88.75 (18) | N4—C27—C32 | 120.4 (5) |
O1—Cu1—N4 | 89.07 (18) | C28—C27—C32 | 117.0 (5) |
O2—Cu1—N2 | 93.06 (17) | N4—C27—C28 | 122.7 (4) |
O2—Cu1—N4 | 89.13 (18) | C27—C28—C29 | 121.8 (5) |
N2—Cu1—N4 | 177.8 (2) | Br4—C28—C27 | 120.4 (4) |
C33—S1A—C34 | 96.1 (7) | Br4—C28—C29 | 117.7 (4) |
O3—S1A—C33 | 107.5 (7) | C28—C29—C30 | 118.0 (5) |
O3—S1A—C34 | 106.9 (7) | Br5—C30—C29 | 119.8 (4) |
O3—S1B—C34 | 109.6 (9) | Br5—C30—C31 | 117.6 (4) |
O3—S1B—C33 | 107.1 (9) | C29—C30—C31 | 122.5 (5) |
C33—S1B—C34 | 99.7 (8) | C30—C31—C32 | 117.1 (5) |
Cu1—O1—C1 | 126.6 (3) | C27—C32—C31 | 123.6 (5) |
Cu1—O2—C17 | 126.6 (3) | Br6—C32—C27 | 118.8 (4) |
N2—N1—C10 | 122.9 (5) | Br6—C32—C31 | 117.6 (4) |
Cu1—N2—C11 | 118.8 (3) | C1—C2—H2 | 119.00 |
Cu1—N2—N1 | 128.3 (3) | C3—C2—H2 | 119.00 |
N1—N2—C11 | 112.9 (4) | C2—C3—H3 | 119.00 |
N4—N3—C26 | 122.0 (5) | C4—C3—H3 | 119.00 |
Cu1—N4—N3 | 129.1 (4) | C6—C5—H5 | 120.00 |
Cu1—N4—C27 | 119.5 (3) | C4—C5—H5 | 120.00 |
N3—N4—C27 | 111.4 (4) | C5—C6—H6 | 120.00 |
O1—C1—C10 | 124.9 (5) | C7—C6—H6 | 119.00 |
O1—C1—C2 | 117.6 (5) | C8—C7—H7 | 120.00 |
C2—C1—C10 | 117.5 (5) | C6—C7—H7 | 120.00 |
C1—C2—C3 | 122.0 (5) | C7—C8—H8 | 120.00 |
C2—C3—C4 | 121.5 (6) | C9—C8—H8 | 120.00 |
C5—C4—C9 | 119.2 (6) | C12—C13—H13 | 121.00 |
C3—C4—C9 | 119.7 (5) | C14—C13—H13 | 121.00 |
C3—C4—C5 | 121.1 (6) | C16—C15—H15 | 121.00 |
C4—C5—C6 | 120.7 (7) | C14—C15—H15 | 121.00 |
C5—C6—C7 | 121.0 (7) | C17—C18—H18 | 119.00 |
C6—C7—C8 | 120.3 (7) | C19—C18—H18 | 119.00 |
C7—C8—C9 | 120.3 (6) | C18—C19—H19 | 119.00 |
C4—C9—C10 | 118.9 (5) | C20—C19—H19 | 119.00 |
C4—C9—C8 | 118.6 (5) | C22—C21—H21 | 120.00 |
C8—C9—C10 | 122.5 (5) | C20—C21—H21 | 120.00 |
C1—C10—C9 | 120.4 (5) | C21—C22—H22 | 120.00 |
N1—C10—C1 | 123.5 (5) | C23—C22—H22 | 120.00 |
N1—C10—C9 | 116.0 (5) | C22—C23—H23 | 119.00 |
N2—C11—C16 | 120.4 (4) | C24—C23—H23 | 119.00 |
C12—C11—C16 | 116.5 (4) | C25—C24—H24 | 120.00 |
N2—C11—C12 | 123.2 (5) | C23—C24—H24 | 120.00 |
C11—C12—C13 | 121.6 (5) | C28—C29—H29 | 121.00 |
Br1—C12—C11 | 120.9 (4) | C30—C29—H29 | 121.00 |
Br1—C12—C13 | 117.5 (4) | C32—C31—H31 | 121.00 |
C12—C13—C14 | 118.9 (5) | C30—C31—H31 | 121.00 |
Br2—C14—C13 | 119.0 (4) | S1A—C33—H33A | 110.00 |
Br2—C14—C15 | 118.7 (4) | S1A—C33—H33B | 109.00 |
C13—C14—C15 | 122.3 (5) | S1A—C33—H33C | 109.00 |
C14—C15—C16 | 117.8 (5) | S1B—C33—H33D | 109.00 |
C11—C16—C15 | 123.0 (5) | S1B—C33—H33E | 110.00 |
Br3—C16—C11 | 119.4 (4) | S1B—C33—H33F | 109.00 |
Br3—C16—C15 | 117.6 (4) | H33A—C33—H33B | 109.00 |
O2—C17—C18 | 118.0 (5) | H33A—C33—H33C | 109.00 |
O2—C17—C26 | 125.0 (5) | H33B—C33—H33C | 110.00 |
C18—C17—C26 | 117.1 (5) | H33D—C33—H33E | 109.00 |
C17—C18—C19 | 122.1 (5) | H33D—C33—H33F | 109.00 |
C18—C19—C20 | 122.3 (5) | H33E—C33—H33F | 109.00 |
C19—C20—C25 | 118.6 (5) | S1A—C34—H34A | 109.00 |
C19—C20—C21 | 120.9 (6) | S1A—C34—H34B | 109.00 |
C21—C20—C25 | 120.4 (6) | S1A—C34—H34C | 109.00 |
C20—C21—C22 | 120.0 (7) | S1B—C34—H34D | 109.00 |
C21—C22—C23 | 119.8 (7) | S1B—C34—H34E | 109.00 |
C22—C23—C24 | 121.3 (6) | S1B—C34—H34F | 109.00 |
C23—C24—C25 | 119.9 (5) | H34A—C34—H34B | 109.00 |
C20—C25—C26 | 119.2 (5) | H34A—C34—H34C | 110.00 |
C20—C25—C24 | 118.6 (5) | H34B—C34—H34C | 110.00 |
C24—C25—C26 | 122.2 (5) | H34D—C34—H34E | 110.00 |
C17—C26—C25 | 120.7 (4) | H34D—C34—H34F | 109.00 |
N3—C26—C17 | 124.1 (5) | H34E—C34—H34F | 110.00 |
N2—Cu1—O1—C1 | −24.1 (4) | N2—C11—C12—Br1 | 0.7 (7) |
N4—Cu1—O1—C1 | 156.5 (4) | N2—C11—C12—C13 | −179.7 (5) |
N2—Cu1—O2—C17 | −159.5 (4) | C16—C11—C12—Br1 | 179.9 (4) |
N4—Cu1—O2—C17 | 20.0 (4) | C16—C11—C12—C13 | −0.5 (7) |
O1—Cu1—N2—N1 | 18.6 (5) | N2—C11—C16—Br3 | 2.4 (6) |
O1—Cu1—N2—C11 | −164.4 (4) | N2—C11—C16—C15 | 179.2 (5) |
O2—Cu1—N2—N1 | −160.4 (5) | C12—C11—C16—Br3 | −176.9 (4) |
O2—Cu1—N2—C11 | 16.7 (4) | C12—C11—C16—C15 | 0.0 (8) |
O1—Cu1—N4—N3 | 164.0 (5) | Br1—C12—C13—C14 | −179.6 (4) |
O1—Cu1—N4—C27 | −16.5 (4) | C11—C12—C13—C14 | 0.8 (8) |
O2—Cu1—N4—N3 | −17.1 (5) | C12—C13—C14—Br2 | 177.8 (4) |
O2—Cu1—N4—C27 | 162.4 (4) | C12—C13—C14—C15 | −0.5 (8) |
Cu1—O1—C1—C2 | −163.7 (4) | Br2—C14—C15—C16 | −178.3 (4) |
Cu1—O1—C1—C10 | 18.8 (7) | C13—C14—C15—C16 | 0.0 (8) |
Cu1—O2—C17—C18 | 168.1 (4) | C14—C15—C16—Br3 | 177.2 (4) |
Cu1—O2—C17—C26 | −12.9 (7) | C14—C15—C16—C11 | 0.3 (8) |
C10—N1—N2—Cu1 | −6.0 (8) | O2—C17—C18—C19 | 178.7 (5) |
C10—N1—N2—C11 | 176.8 (5) | C26—C17—C18—C19 | −0.4 (8) |
N2—N1—C10—C1 | −8.9 (8) | O2—C17—C26—N3 | −6.8 (8) |
N2—N1—C10—C9 | 174.0 (5) | O2—C17—C26—C25 | −179.5 (5) |
Cu1—N2—C11—C12 | −118.7 (5) | C18—C17—C26—N3 | 172.2 (5) |
Cu1—N2—C11—C16 | 62.1 (6) | C18—C17—C26—C25 | −0.5 (7) |
N1—N2—C11—C12 | 58.8 (6) | C17—C18—C19—C20 | 1.3 (10) |
N1—N2—C11—C16 | −120.4 (5) | C18—C19—C20—C21 | 179.6 (6) |
C26—N3—N4—Cu1 | 5.4 (8) | C18—C19—C20—C25 | −1.2 (9) |
C26—N3—N4—C27 | −174.2 (5) | C19—C20—C21—C22 | 180.0 (7) |
N4—N3—C26—C17 | 10.4 (8) | C25—C20—C21—C22 | 0.9 (11) |
N4—N3—C26—C25 | −176.5 (5) | C19—C20—C25—C24 | −179.8 (6) |
Cu1—N4—C27—C28 | 113.6 (5) | C19—C20—C25—C26 | 0.4 (8) |
Cu1—N4—C27—C32 | −66.5 (6) | C21—C20—C25—C24 | −0.7 (9) |
N3—N4—C27—C28 | −66.8 (6) | C21—C20—C25—C26 | 179.5 (6) |
N3—N4—C27—C32 | 113.2 (5) | C20—C21—C22—C23 | −0.5 (11) |
O1—C1—C2—C3 | −178.9 (5) | C21—C22—C23—C24 | 0.0 (11) |
C10—C1—C2—C3 | −1.3 (8) | C22—C23—C24—C25 | 0.2 (10) |
O1—C1—C10—N1 | 2.7 (8) | C23—C24—C25—C20 | 0.1 (9) |
O1—C1—C10—C9 | 179.7 (5) | C23—C24—C25—C26 | 180.0 (6) |
C2—C1—C10—N1 | −174.8 (5) | C20—C25—C26—N3 | −172.9 (5) |
C2—C1—C10—C9 | 2.2 (7) | C20—C25—C26—C17 | 0.5 (8) |
C1—C2—C3—C4 | 0.0 (9) | C24—C25—C26—N3 | 7.3 (8) |
C2—C3—C4—C5 | −178.0 (6) | C24—C25—C26—C17 | −179.4 (5) |
C2—C3—C4—C9 | 0.4 (10) | N4—C27—C28—Br4 | −3.5 (7) |
C3—C4—C5—C6 | 179.2 (7) | N4—C27—C28—C29 | 178.5 (5) |
C9—C4—C5—C6 | 0.8 (11) | C32—C27—C28—Br4 | 176.5 (4) |
C3—C4—C9—C8 | −178.6 (6) | C32—C27—C28—C29 | −1.4 (8) |
C3—C4—C9—C10 | 0.6 (8) | N4—C27—C32—Br6 | 0.5 (7) |
C5—C4—C9—C8 | −0.3 (9) | N4—C27—C32—C31 | −178.2 (5) |
C5—C4—C9—C10 | 179.0 (6) | C28—C27—C32—Br6 | −179.6 (4) |
C4—C5—C6—C7 | −0.9 (12) | C28—C27—C32—C31 | 1.7 (8) |
C5—C6—C7—C8 | 0.5 (12) | Br4—C28—C29—C30 | −177.9 (4) |
C6—C7—C8—C9 | 0.0 (11) | C27—C28—C29—C30 | 0.1 (8) |
C7—C8—C9—C4 | −0.1 (9) | C28—C29—C30—Br5 | −176.3 (4) |
C7—C8—C9—C10 | −179.3 (6) | C28—C29—C30—C31 | 1.1 (8) |
C4—C9—C10—N1 | 175.3 (5) | Br5—C30—C31—C32 | 176.6 (4) |
C4—C9—C10—C1 | −1.9 (8) | C29—C30—C31—C32 | −0.8 (8) |
C8—C9—C10—N1 | −5.5 (8) | C30—C31—C32—Br6 | −179.4 (4) |
C8—C9—C10—C1 | 177.3 (5) | C30—C31—C32—C27 | −0.7 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3 | 0.95 | 2.32 | 3.257 (12) | 169 |
C23—H23···O3i | 0.95 | 2.60 | 3.453 (12) | 150 |
Symmetry code: (i) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors are indebted to URCHEMS (Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale of the University of Constantine Algeria) for the X-ray facilities.
References
Abdalla, N. A., El-Haty, M. T., Adam, F. A. E. & Hassan, F. W. (2013). Rev. Roum. Chim. 58, 899–913. CAS Google Scholar
Abe, T., Mano, S., Yamaya, Y. & Tomotake, A. (1999). J. Imaging Sci. Tech. 43, 339–344. CAS Google Scholar
Almeida, M. R., Stephani, R., Dos Santos, H. F. & Oliveira, L. F. C. D. (2010). J. Phys. Chem. A, 114, 526–534. CrossRef PubMed CAS Google Scholar
Amin, A. S., Mohammed, T. Y. & Mousa, A. A. (2003). Spectrochim. Acta A, 59, 2577–2584. CrossRef CAS Google Scholar
Badea, M., Olar, R., Cristurean, E., Marinescu, D., Emandi, A., Budrugeac, P. & Segal, E. (2004). J. Therm. Anal. Calorim. 77, 815–824. Web of Science CrossRef CAS Google Scholar
Bin, W., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 1596–1599. CrossRef Google Scholar
Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013b). Acta Cryst. E69, o1175–o1176. Google Scholar
Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1052. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. el kader & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1335–o1336. Google Scholar
Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250. CSD CrossRef IUCr Journals Google Scholar
Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322–o1323. CSD CrossRef IUCr Journals Google Scholar
Chetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211–m212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207–m208. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dharmalingam, V., Ramasamy, A. K. & Balasuramanian, V. (2011). J. Chem. 8, S211–S224. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu-Xin, H., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 2259–2261. Google Scholar
Geng, Y., Gu, D. & Gan, F. (2004). Opt. Mater. 27, 193–197. CrossRef CAS Google Scholar
Hamada, E., Fujii, T., Tomizawa, Y. & Iimura, S. (1997). Jpn. J. Appl. Phys. 36, 593–594. CrossRef CAS Google Scholar
Steed, J. W., Turner, D. R., & Wallace, K. J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. Chichester: John Wiley & Sons. Google Scholar
Li, X., Wu, Y., Gu, D. & Gan, F. (2010). Dyes Pigments, 86, 182–189. CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Nejati, K., Rezvani, Z. & Seyedahmadian, M. (2009). Dyes Pigments, 83, 304–311. CrossRef CAS Google Scholar
Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428. Web of Science CrossRef CAS Google Scholar
Patel, D. R. & Patel, K. C. (2011). Fibers Polym.. 12, 741–752. CrossRef CAS Google Scholar
Sahoo, J., Kumar Mekap, S. & Sudhir Kumar, P. (2015). J. Taibah Univ. Sci. 9, 187–195. CrossRef Google Scholar
Sekar, N. (1999). Colourage. 46, 63–65. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Suzuki, Y., Okamoto, Y., Kurose, Y. & Maeda, S. (1999). Jpn J. Appl. Phys. 38, 1669–1674. CrossRef CAS Google Scholar
Wang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195–198. Web of Science CrossRef CAS Google Scholar
Węglarz-Tomczak, E. & Górecki, L. (2012). CHEMIK Science-Technique-Market. 66, 1298-1307. Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1, University of Western Australia, Perth. Google Scholar
Zollinger, H. (1961). Isr. J. Chem. 1, 45–45. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.