research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, characterization and Hirshfeld analysis of bis­­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}copper(II) di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Algeria, bFaculté de Technologie, Université Mohamed Boudiaf M'sila, Algeria, cUniversité abd el Hafid Boussouf, Mila, 43000 Mila, Algeria, dLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, eEcole Nationale Polytechnique de Constantine, Constantine, Algeria, fLaboratoire de Chimie Appliquée et Environnement (LCAE), Département de Chimie, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, and gLaboratoire de Chimie, Faculté des Sciences, Département de Chimie Appliquée et Environnement, Université Mohammed Premier, Oujda, Morocco
*Correspondence e-mail: souheilachetioui@yahoo.fr

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 30 December 2019; accepted 10 February 2020; online 18 February 2020)

In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetra­coordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by ππ inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO mol­ecules inter­act weakly with the complex mol­ecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent mol­ecule is disordered over two positions with occupancies of 0.70 and 0.30.

1. Chemical context

Azo dyes are an important class of organic compounds that are attractive to researchers because of their various applications (Zollinger, 1961[Zollinger, H. (1961). Isr. J. Chem. 1, 45-45.]; Nishihara, 2004[Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407-428.]; Sahoo et al., 2015[Sahoo, J., Kumar Mekap, S. & Sudhir Kumar, P. (2015). J. Taibah Univ. Sci. 9, 187-195.]). They constitute the largest group of azo compounds and are the most widely used colorants in the industry. Applications of azo dyes include their use as coloring agents because of their affinity for wool and silk (Patel et al., 2011[Patel, D. R. & Patel, K. C. (2011). Fibers Polym.. 12, 741-752.]), in photoelectronics (Sekar, 1999[Sekar, N. (1999). Colourage. 46, 63-65.]), optical storage technology (Wang et al., 2000[Wang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195-198.]), biological reactions (Węglarz-Tomczak et al., 2012[Węglarz-Tomczak, E. & Górecki, L. (2012). CHEMIK Science-Technique-Market. 66, 1298-1307.]), printing systems (Abe et al., 1999[Abe, T., Mano, S., Yamaya, Y. & Tomotake, A. (1999). J. Imaging Sci. Tech. 43, 339-344.]; Dharmalingam et al., 2011[Dharmalingam, V., Ramasamy, A. K. & Balasuramanian, V. (2011). J. Chem. 8, S211-S224.]), in analytical areas (Abdalla et al., 2013[Abdalla, N. A., El-Haty, M. T., Adam, F. A. E. & Hassan, F. W. (2013). Rev. Roum. Chim. 58, 899-913.]; Amin et al., 2003[Amin, A. S., Mohammed, T. Y. & Mousa, A. A. (2003). Spectrochim. Acta A, 59, 2577-2584.]) and in the food industry (Almeida et al., 2010[Almeida, M. R., Stephani, R., Dos Santos, H. F. & Oliveira, L. F. C. D. (2010). J. Phys. Chem. A, 114, 526-534.]). Azo derivatives and their metal complexes are important homologue pigments for synthetic leather and vinyl polymers. Furthermore, azo compounds are known to be involved in a number of bio­logical reactions, such as inhibition of DNA, RNA, and protein synthesis, nitro­gen fixation and carcinogenesis (Badea et al., 2004[Badea, M., Olar, R., Cristurean, E., Marinescu, D., Emandi, A., Budrugeac, P. & Segal, E. (2004). J. Therm. Anal. Calorim. 77, 815-824.]). In addition, high-density optical data storage has been the subject of extensive research over the past decade. In general, cyanine dyes, phthalocyanine dyes, and metal-azo dyes are used in the recording layer of DVD-R (digital versatile disc-recordable) discs. It was reported that the new technology, which employs 405 nm blue–violet diode lasers, will require a new optical-recording medium matching the 405 nm wavelength laser (Steed et al., 2007[Steed, J. W., Turner, D. R., & Wallace, K. J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. Chichester: John Wiley & Sons.]). In comparison with the dyes themselves, metal-azo dyes are light-stable, allow an easier control of the wavelength by selection of the appropriate substituent groups, and have good thermal stability (Geng et al., 2004[Geng, Y., Gu, D. & Gan, F. (2004). Opt. Mater. 27, 193-197.]; Bin et al., 2003[Bin, W., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 1596-1599.]; Fu-Xin et al., 2003[Fu-Xin, H., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 2259-2261.]; Hamada et al., 1997[Hamada, E., Fujii, T., Tomizawa, Y. & Iimura, S. (1997). Jpn. J. Appl. Phys. 36, 593-594.]; Suzuki et al., 1999[Suzuki, Y., Okamoto, Y., Kurose, Y. & Maeda, S. (1999). Jpn J. Appl. Phys. 38, 1669-1674.]; Nejati et al., 2009[Nejati, K., Rezvani, Z. & Seyedahmadian, M. (2009). Dyes Pigments, 83, 304-311.]; Li et al., 2010[Li, X., Wu, Y., Gu, D. & Gan, F. (2010). Dyes Pigments, 86, 182-189.]). Being inter­ested in the synthesis and preparation of metal complexes bearing such ligands, we have synthesized and structurally characterized CuII complexes with N,O-bidentate phenyl­azo-naphtho­late ligands (Chetioui et al., 2015a[Chetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211-m212.],b[Chetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207-m208.]). In our previous work, we were inter­ested by the colour-generation mechanism of azo pigments, usually characterized by the chromophore of the azo group (–N=N–) (Bougueria et al., 2013a[Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1052.],b[Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013b). Acta Cryst. E69, o1175-o1176.],c[Bougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. el kader & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1335-o1336.], 2014[Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.]; Chetioui et al., 2013a[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.],b[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322-o1323.]). Herein, we report the synthesis and crystal structure of a CuII complex incorporating the ligand (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol, for which the structure is known (Chetioui et al., 2013a[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.]).

[Scheme 1]

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of a CuII complex mol­ecule and a DMSO solvent mol­ecule. In the complex, the CuII atom is coordinated by two oxygen and two nitro­gen atoms trans to each other. The Cu1—N2 and Cu1—N4 bond lengths [1.976 (4) and 1.971 (5) Å, respectively] are almost identical. The N—Cu—N bond angle is 177.8 (2)°. The two Cu—O distances are 1.882 (4) and 1.892 (4) Å. All bond lengths are similar to those observed in similar crystal structures (Chetioui et al., 2015a[Chetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211-m212.],b[Chetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207-m208.]). The N—Cu—O bond angles range from 88.75 (18) to 93.06 (17)° and the O—Cu—O angle is 177.90 (16)°. Therefore, the copper atom can be considered to be in a slightly distorted square-planar geometry. The dihedral angle formed between the plane of the C1–C10 naphthalene ring system and the tri­bromo­benzene ring is 51.4 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the complex mol­ecules and the DMSO mol­ecules are linked by C3—H3⋯O3 and C23—H23⋯O3 hydrogen bonds (Table 1[link]), forming parallel complex–solvate chains along the b-axis direction (see Fig. 2[link]). ππ stacking inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å] are observed between complex mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.95 2.32 3.257 (12) 169
C23—H23⋯O3i 0.95 2.60 3.453 (12) 150
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound.

4. Analysis of the Hirshfeld surfaces

The program Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1, University of Western Australia, Perth.]) was used to generate the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) mapped over dnorm (Fig. 3[link]). The bright-red spots correspond to the H⋯·O/O⋯H close contacts (C—H⋯O hydrogen bonds), while the faint-red spots, near the H⋯O contacts, are attributed to Br⋯H, Br⋯Br and C⋯H contacts. The white areas correspond to regions where the distances separating neighboring atoms are close or equal to the sum of the van der Waals radius of the atoms. The corresponding fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are shown in Fig. 4[link]. The relative contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: O⋯H/H⋯O contacts 5.0%, H⋯Br/Br⋯H 23.7%, Br⋯Br 4.7%, Br⋯C/C⋯Br 11.6%, C⋯C 3.3%, C⋯H/H⋯C 17.5%, H⋯H 25.8%. The presence of ππ stacking inter­actions are indicated in the Hirshfeld surface mapped over shape-index (Fig. 5[link]).

[Figure 3]
Figure 3
View of the Hirshfeld surface mapped over dnorm.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the compound showing (a) all inter­actions and those delineated into (b) H⋯O/O⋯H, (c) Br⋯H/H⋯Br, (d) Br⋯Br, (e) C⋯Br/Br⋯C, (f) C⋯C, (g) H⋯C/C⋯H and (h) H⋯H inter­actions.
[Figure 5]
Figure 5
Hirshfeld surface mapped over shape-index, highlighting the region involved in ππ stacking inter­actions.

5. Synthesis and crystallization

The complex, bis-1-(2,4,6-tri­bromo­phenyl­azo)-2-naphtho­latecopper(II), was obtained by mixing 1 mmol of 1-(2,4,6-tri­bromo­phenyl­azo)-2-naphthol dissolved in 20 ml of THF with 0.5 mmol of Cu(OAc)2·H2O dissolved in 20 ml of MeOH. The mixture was refluxed at 333 K for 8 h. Upon cooling, a dark-orange solid was observed, which was filtered off and washed with water, and then dried under vacuum. Crystallization in DMSO yielded 83% of a crystalline material. To confirm the formula of the solvate complex, an elementary analysis was carried out: calculated for C32H16Br6CuN4O2·C2H6OS, C 36.80%, N 5.05%, H 2.00%, found C 36,27%, N 4,81%, H 1,92%. The 1H NMR spectrum (paramagnetic complex) shows a multiplet around 7 and 8 ppm attributed to the aromatic protons. The IR spectrum of the complex shows the vibration bands: ν(N=N); 1360 cm−1, ν(C—N): 1149 cm −1, ν(C—Br): 645 cm−1, ν(C—O): 1207 cm−1 (aromatic), ν(C=C): 1498 cm−1 (aromatic), ν(C—H): 2945 cm−1 (aromatic), ν(Cu—N): 417 cm−1, ν(Cu-O): 558 cm−1. The UV–Vis spectrum measured in CH2Cl2 (10 −5 M), shows three absorption bands: an intense band at 268 nm ( = 29.94 108 M−1 cm−1) attributed to intra-ligand charge-transfer transition, a band at 382 nm ( = 79.21 107 M−1 cm−1) associated with the azo form of the ligand and a band at 462 nm ( = 63.84 107 M−1 cm−1) attributed to metal–ligand charge transfer.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C). An absorption correction was not applied in view of the very small size of the crystal [0.1 × 0.09 × 0.08 mm]. The DMSO solvent mol­ecule shows disorder over two positions with final occupancies of 0.70 and 0.30. The disordered atoms were modelled as anisotropic using EADP restraints. H atoms of the disordered DMSO were omitted.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C16H8Br3N2O)2]·C2H6OS
Mr 1109.61
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.9922 (14), 16.461 (3), 24.835 (4)
β (°) 92.491 (6)
V3) 3672.6 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.22
Crystal size (mm) 0.1 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.002, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 6872, 6872, 3962
Rint 0.107
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.099, 0.92
No. of reflections 6872
No. of parameters 446
No. of restraints 150
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate top
Crystal data top
[Cu(C16H8Br3N2O)2]·C2H6OSF(000) = 2132
Mr = 1109.61Dx = 1.996 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 3926 reflections
a = 8.9922 (14) Åθ = 2.6–20.4°
b = 16.461 (3) ŵ = 7.22 mm1
c = 24.835 (4) ÅT = 150 K
β = 92.491 (6)°Needles, red
V = 3672.6 (11) Å30.1 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
6872 independent reflections
Radiation source: sealed x-ray tube3962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
φ or ω oscillation scansθmax = 25.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.002, Tmax = 1k = 1919
6872 measured reflectionsl = 2922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.099H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
6872 reflections(Δ/σ)max = 0.001
446 parametersΔρmax = 0.68 e Å3
150 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.68982 (8)0.64876 (4)0.67162 (3)0.0634 (3)
Br30.75391 (7)0.35743 (4)0.79468 (3)0.0584 (3)
Br21.09066 (7)0.63332 (4)0.84994 (3)0.0622 (3)
Br40.21948 (8)0.19770 (4)0.78635 (3)0.0682 (3)
Br50.21658 (7)0.22247 (4)0.61830 (3)0.0668 (3)
Br60.11254 (7)0.49832 (4)0.68081 (3)0.0556 (3)
Cu10.43783 (7)0.42742 (4)0.73579 (3)0.0398 (2)
S1A0.0722 (6)0.2091 (3)0.4460 (2)0.143 (2)0.700
S1B0.0869 (10)0.2867 (7)0.4489 (3)0.106 (4)0.300
O10.4041 (4)0.3614 (2)0.67460 (16)0.0503 (16)
O20.4641 (4)0.4941 (2)0.79752 (15)0.0476 (16)
N10.6600 (5)0.4629 (3)0.65494 (18)0.0363 (16)
N20.6228 (4)0.4666 (3)0.70433 (18)0.0361 (16)
N30.2087 (5)0.3883 (3)0.81332 (19)0.0376 (16)
N40.2530 (5)0.3849 (3)0.76505 (18)0.0392 (16)
C10.4550 (6)0.3729 (3)0.6277 (2)0.0405 (19)
C20.3861 (7)0.3291 (3)0.5833 (2)0.0488 (19)
O30.2245 (10)0.2383 (6)0.4445 (4)0.196 (5)
C30.4328 (7)0.3361 (4)0.5333 (3)0.058 (2)
C40.5546 (7)0.3879 (4)0.5212 (2)0.0519 (19)
C50.6008 (9)0.3970 (5)0.4671 (3)0.073 (3)
C60.7130 (9)0.4461 (5)0.4561 (3)0.080 (3)
C70.7873 (8)0.4909 (5)0.4968 (3)0.073 (3)
C80.7460 (7)0.4844 (4)0.5492 (3)0.054 (2)
C90.6276 (6)0.4321 (3)0.5625 (2)0.0429 (17)
C100.5789 (6)0.4237 (3)0.6167 (2)0.0367 (17)
C110.7300 (5)0.5077 (3)0.7382 (2)0.0338 (17)
C120.7737 (6)0.5880 (3)0.7296 (2)0.0389 (17)
C130.8781 (6)0.6257 (3)0.7630 (2)0.0402 (19)
C140.9417 (5)0.5829 (3)0.8053 (2)0.040 (2)
C150.9040 (6)0.5040 (3)0.8157 (2)0.040 (2)
C160.7988 (6)0.4679 (3)0.7821 (2)0.0362 (19)
C170.4038 (6)0.4840 (3)0.8433 (2)0.0396 (17)
C180.4594 (6)0.5313 (4)0.8881 (2)0.052 (2)
C190.4018 (7)0.5260 (4)0.9369 (2)0.058 (2)
C200.2835 (7)0.4719 (4)0.9478 (2)0.0522 (19)
C210.2258 (8)0.4674 (5)0.9997 (3)0.068 (3)
C220.1132 (8)0.4155 (5)1.0092 (3)0.076 (3)
C230.0535 (8)0.3669 (4)0.9673 (3)0.070 (3)
C240.1069 (6)0.3707 (4)0.9164 (2)0.0532 (19)
C250.2235 (6)0.4237 (3)0.9057 (2)0.0410 (17)
C260.2843 (6)0.4301 (3)0.8526 (2)0.0387 (17)
C270.1469 (5)0.3441 (3)0.7299 (2)0.0322 (17)
C280.1148 (6)0.2620 (3)0.7347 (2)0.0407 (19)
C290.0094 (6)0.2240 (3)0.7011 (2)0.0448 (19)
C300.0631 (6)0.2696 (3)0.6626 (2)0.042 (2)
C310.0334 (6)0.3514 (3)0.6555 (2)0.042 (2)
C320.0720 (6)0.3857 (3)0.6896 (2)0.0367 (19)
C330.0284 (15)0.2589 (10)0.3984 (5)0.200 (6)
C340.0043 (14)0.2544 (10)0.4988 (5)0.200 (6)
H20.304780.294050.589770.0590*
H30.384130.305950.505040.0690*
H50.550760.367730.438720.0870*
H60.743070.450800.420020.0960*
H70.866670.526000.488110.0870*
H80.796920.515020.576670.0640*
H130.905760.680540.756860.0480*
H150.949360.475320.845250.0480*
H180.539630.567710.883060.0620*
H190.441350.559610.965180.0700*
H210.266010.500691.027990.0820*
H220.074690.412031.044100.0910*
H230.025480.330620.974190.0840*
H240.064650.337370.888550.0640*
H290.011560.167720.704770.0540*
H310.084210.382280.628090.0500*
H33A0.121040.229260.389910.3000*0.700
H33B0.029090.263260.365910.3000*0.700
H33C0.051930.313410.411410.3000*0.700
H33D0.006720.208100.382770.3000*0.300
H33E0.032070.301410.370760.3000*0.300
H33F0.128230.250700.411820.3000*0.300
H34A0.112770.248200.495740.3000*0.700
H34B0.021090.312320.499010.3000*0.700
H34C0.034090.229180.532280.3000*0.700
H34D0.100020.232110.485390.3000*0.300
H34E0.053130.211960.517880.3000*0.300
H34F0.021850.299560.523420.3000*0.300
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0881 (5)0.0411 (4)0.0592 (4)0.0021 (3)0.0169 (4)0.0083 (3)
Br30.0628 (4)0.0400 (4)0.0715 (5)0.0095 (3)0.0060 (3)0.0143 (3)
Br20.0538 (4)0.0642 (5)0.0671 (5)0.0118 (3)0.0128 (3)0.0127 (3)
Br40.0725 (5)0.0558 (4)0.0742 (5)0.0048 (4)0.0220 (4)0.0134 (4)
Br50.0587 (4)0.0599 (4)0.0792 (5)0.0140 (3)0.0254 (3)0.0007 (4)
Br60.0620 (4)0.0381 (4)0.0674 (5)0.0064 (3)0.0115 (3)0.0044 (3)
Cu10.0335 (3)0.0444 (4)0.0418 (4)0.0075 (3)0.0062 (3)0.0044 (3)
S1A0.129 (4)0.094 (3)0.200 (5)0.014 (3)0.055 (3)0.004 (3)
S1B0.088 (6)0.135 (8)0.094 (6)0.035 (6)0.009 (5)0.027 (5)
O10.048 (2)0.055 (3)0.049 (3)0.015 (2)0.015 (2)0.013 (2)
O20.041 (2)0.054 (3)0.048 (3)0.0173 (19)0.0059 (19)0.008 (2)
N10.035 (2)0.041 (3)0.033 (3)0.002 (2)0.002 (2)0.004 (2)
N20.033 (2)0.038 (3)0.037 (3)0.004 (2)0.001 (2)0.000 (2)
N30.034 (2)0.039 (3)0.040 (3)0.003 (2)0.005 (2)0.003 (2)
N40.034 (2)0.043 (3)0.041 (3)0.009 (2)0.006 (2)0.004 (2)
C10.036 (3)0.038 (3)0.047 (4)0.008 (2)0.005 (3)0.000 (3)
C20.050 (3)0.040 (3)0.055 (4)0.001 (3)0.012 (3)0.009 (3)
O30.129 (7)0.242 (10)0.210 (9)0.053 (7)0.078 (6)0.082 (8)
C30.068 (4)0.055 (4)0.049 (4)0.011 (3)0.013 (3)0.014 (3)
C40.054 (3)0.053 (4)0.048 (3)0.022 (3)0.006 (3)0.005 (3)
C50.087 (5)0.086 (5)0.045 (4)0.023 (4)0.005 (4)0.000 (4)
C60.093 (5)0.105 (6)0.043 (4)0.027 (4)0.021 (4)0.015 (4)
C70.066 (4)0.094 (6)0.059 (4)0.014 (4)0.018 (3)0.027 (4)
C80.054 (4)0.059 (4)0.048 (4)0.010 (3)0.007 (3)0.015 (3)
C90.044 (3)0.043 (3)0.042 (3)0.014 (3)0.005 (2)0.000 (3)
C100.036 (3)0.037 (3)0.037 (3)0.004 (2)0.001 (2)0.002 (3)
C110.037 (3)0.029 (3)0.036 (3)0.000 (2)0.008 (3)0.001 (3)
C120.035 (3)0.039 (3)0.043 (3)0.002 (3)0.005 (3)0.001 (3)
C130.040 (3)0.034 (3)0.047 (4)0.002 (3)0.005 (3)0.001 (3)
C140.030 (3)0.043 (4)0.047 (4)0.004 (3)0.002 (3)0.011 (3)
C150.032 (3)0.043 (4)0.045 (4)0.001 (3)0.001 (3)0.005 (3)
C160.035 (3)0.030 (3)0.044 (4)0.000 (2)0.007 (3)0.004 (3)
C170.034 (3)0.045 (3)0.040 (3)0.002 (2)0.004 (3)0.002 (3)
C180.044 (3)0.061 (4)0.050 (4)0.019 (3)0.005 (3)0.006 (3)
C190.053 (4)0.080 (5)0.040 (3)0.000 (3)0.007 (3)0.014 (3)
C200.044 (3)0.075 (4)0.037 (3)0.010 (3)0.004 (3)0.003 (3)
C210.061 (4)0.106 (6)0.038 (4)0.010 (4)0.001 (3)0.000 (4)
C220.066 (4)0.118 (6)0.045 (4)0.016 (4)0.012 (3)0.012 (4)
C230.060 (4)0.088 (5)0.063 (4)0.001 (4)0.018 (3)0.021 (4)
C240.051 (3)0.065 (4)0.044 (3)0.002 (3)0.006 (3)0.011 (3)
C250.039 (3)0.050 (3)0.034 (3)0.009 (2)0.002 (2)0.009 (2)
C260.034 (3)0.042 (3)0.040 (3)0.002 (2)0.000 (2)0.001 (3)
C270.025 (3)0.035 (3)0.037 (3)0.001 (2)0.005 (2)0.004 (3)
C280.040 (3)0.043 (4)0.039 (3)0.000 (3)0.002 (3)0.001 (3)
C290.041 (3)0.034 (3)0.059 (4)0.005 (3)0.003 (3)0.005 (3)
C300.031 (3)0.043 (4)0.050 (4)0.005 (3)0.003 (3)0.001 (3)
C310.036 (3)0.041 (4)0.049 (4)0.005 (3)0.002 (3)0.006 (3)
C320.035 (3)0.033 (3)0.043 (4)0.006 (2)0.012 (3)0.001 (3)
C330.138 (8)0.360 (16)0.101 (6)0.016 (9)0.006 (6)0.040 (8)
C340.138 (8)0.360 (16)0.101 (6)0.016 (9)0.006 (6)0.040 (8)
Geometric parameters (Å, º) top
Br1—C121.884 (5)C18—C191.341 (7)
Br3—C161.892 (5)C19—C201.422 (9)
Br2—C141.893 (5)C20—C211.412 (9)
Br4—C281.883 (5)C20—C251.402 (8)
Br5—C301.893 (5)C21—C221.353 (11)
Br6—C321.904 (5)C22—C231.401 (10)
Cu1—O11.882 (4)C23—C241.373 (9)
Cu1—O21.892 (4)C24—C251.398 (8)
Cu1—N21.976 (4)C25—C261.453 (7)
Cu1—N41.971 (5)C27—C281.388 (7)
S1A—C341.681 (14)C27—C321.366 (7)
S1A—O31.453 (11)C28—C291.385 (7)
S1A—C331.672 (15)C29—C301.360 (7)
S1B—C331.657 (16)C30—C311.386 (7)
S1B—C341.606 (15)C31—C321.366 (7)
S1B—O31.480 (13)C2—H20.9500
O1—C11.284 (6)C3—H30.9500
O2—C171.292 (6)C5—H50.9500
N1—N21.287 (6)C6—H60.9500
N1—C101.338 (7)C7—H70.9500
N2—C111.423 (6)C8—H80.9500
N3—N41.281 (6)C13—H130.9500
N3—C261.353 (7)C15—H150.9500
N4—C271.432 (7)C18—H180.9500
C1—C21.435 (7)C19—H190.9500
C1—C101.429 (7)C21—H210.9500
C2—C31.333 (9)C22—H220.9500
C3—C41.430 (9)C23—H230.9500
C4—C91.398 (8)C24—H240.9500
C4—C51.431 (9)C29—H290.9500
C5—C61.330 (11)C31—H310.9500
C6—C71.398 (11)C33—H33A0.9800
C7—C81.373 (10)C33—H33B0.9800
C8—C91.419 (8)C33—H33C0.9800
C9—C101.440 (7)C33—H33D0.9800
C11—C121.398 (7)C33—H33E0.9800
C11—C161.394 (7)C33—H33F0.9800
C12—C131.374 (7)C34—H34A0.9800
C13—C141.369 (7)C34—H34B0.9800
C14—C151.370 (7)C34—H34C0.9800
C15—C161.370 (7)C34—H34D0.9800
C17—C261.420 (7)C34—H34E0.9800
C17—C181.430 (7)C34—H34F0.9800
O1—Cu1—O2177.90 (16)N3—C26—C25114.9 (5)
O1—Cu1—N288.75 (18)N4—C27—C32120.4 (5)
O1—Cu1—N489.07 (18)C28—C27—C32117.0 (5)
O2—Cu1—N293.06 (17)N4—C27—C28122.7 (4)
O2—Cu1—N489.13 (18)C27—C28—C29121.8 (5)
N2—Cu1—N4177.8 (2)Br4—C28—C27120.4 (4)
C33—S1A—C3496.1 (7)Br4—C28—C29117.7 (4)
O3—S1A—C33107.5 (7)C28—C29—C30118.0 (5)
O3—S1A—C34106.9 (7)Br5—C30—C29119.8 (4)
O3—S1B—C34109.6 (9)Br5—C30—C31117.6 (4)
O3—S1B—C33107.1 (9)C29—C30—C31122.5 (5)
C33—S1B—C3499.7 (8)C30—C31—C32117.1 (5)
Cu1—O1—C1126.6 (3)C27—C32—C31123.6 (5)
Cu1—O2—C17126.6 (3)Br6—C32—C27118.8 (4)
N2—N1—C10122.9 (5)Br6—C32—C31117.6 (4)
Cu1—N2—C11118.8 (3)C1—C2—H2119.00
Cu1—N2—N1128.3 (3)C3—C2—H2119.00
N1—N2—C11112.9 (4)C2—C3—H3119.00
N4—N3—C26122.0 (5)C4—C3—H3119.00
Cu1—N4—N3129.1 (4)C6—C5—H5120.00
Cu1—N4—C27119.5 (3)C4—C5—H5120.00
N3—N4—C27111.4 (4)C5—C6—H6120.00
O1—C1—C10124.9 (5)C7—C6—H6119.00
O1—C1—C2117.6 (5)C8—C7—H7120.00
C2—C1—C10117.5 (5)C6—C7—H7120.00
C1—C2—C3122.0 (5)C7—C8—H8120.00
C2—C3—C4121.5 (6)C9—C8—H8120.00
C5—C4—C9119.2 (6)C12—C13—H13121.00
C3—C4—C9119.7 (5)C14—C13—H13121.00
C3—C4—C5121.1 (6)C16—C15—H15121.00
C4—C5—C6120.7 (7)C14—C15—H15121.00
C5—C6—C7121.0 (7)C17—C18—H18119.00
C6—C7—C8120.3 (7)C19—C18—H18119.00
C7—C8—C9120.3 (6)C18—C19—H19119.00
C4—C9—C10118.9 (5)C20—C19—H19119.00
C4—C9—C8118.6 (5)C22—C21—H21120.00
C8—C9—C10122.5 (5)C20—C21—H21120.00
C1—C10—C9120.4 (5)C21—C22—H22120.00
N1—C10—C1123.5 (5)C23—C22—H22120.00
N1—C10—C9116.0 (5)C22—C23—H23119.00
N2—C11—C16120.4 (4)C24—C23—H23119.00
C12—C11—C16116.5 (4)C25—C24—H24120.00
N2—C11—C12123.2 (5)C23—C24—H24120.00
C11—C12—C13121.6 (5)C28—C29—H29121.00
Br1—C12—C11120.9 (4)C30—C29—H29121.00
Br1—C12—C13117.5 (4)C32—C31—H31121.00
C12—C13—C14118.9 (5)C30—C31—H31121.00
Br2—C14—C13119.0 (4)S1A—C33—H33A110.00
Br2—C14—C15118.7 (4)S1A—C33—H33B109.00
C13—C14—C15122.3 (5)S1A—C33—H33C109.00
C14—C15—C16117.8 (5)S1B—C33—H33D109.00
C11—C16—C15123.0 (5)S1B—C33—H33E110.00
Br3—C16—C11119.4 (4)S1B—C33—H33F109.00
Br3—C16—C15117.6 (4)H33A—C33—H33B109.00
O2—C17—C18118.0 (5)H33A—C33—H33C109.00
O2—C17—C26125.0 (5)H33B—C33—H33C110.00
C18—C17—C26117.1 (5)H33D—C33—H33E109.00
C17—C18—C19122.1 (5)H33D—C33—H33F109.00
C18—C19—C20122.3 (5)H33E—C33—H33F109.00
C19—C20—C25118.6 (5)S1A—C34—H34A109.00
C19—C20—C21120.9 (6)S1A—C34—H34B109.00
C21—C20—C25120.4 (6)S1A—C34—H34C109.00
C20—C21—C22120.0 (7)S1B—C34—H34D109.00
C21—C22—C23119.8 (7)S1B—C34—H34E109.00
C22—C23—C24121.3 (6)S1B—C34—H34F109.00
C23—C24—C25119.9 (5)H34A—C34—H34B109.00
C20—C25—C26119.2 (5)H34A—C34—H34C110.00
C20—C25—C24118.6 (5)H34B—C34—H34C110.00
C24—C25—C26122.2 (5)H34D—C34—H34E110.00
C17—C26—C25120.7 (4)H34D—C34—H34F109.00
N3—C26—C17124.1 (5)H34E—C34—H34F110.00
N2—Cu1—O1—C124.1 (4)N2—C11—C12—Br10.7 (7)
N4—Cu1—O1—C1156.5 (4)N2—C11—C12—C13179.7 (5)
N2—Cu1—O2—C17159.5 (4)C16—C11—C12—Br1179.9 (4)
N4—Cu1—O2—C1720.0 (4)C16—C11—C12—C130.5 (7)
O1—Cu1—N2—N118.6 (5)N2—C11—C16—Br32.4 (6)
O1—Cu1—N2—C11164.4 (4)N2—C11—C16—C15179.2 (5)
O2—Cu1—N2—N1160.4 (5)C12—C11—C16—Br3176.9 (4)
O2—Cu1—N2—C1116.7 (4)C12—C11—C16—C150.0 (8)
O1—Cu1—N4—N3164.0 (5)Br1—C12—C13—C14179.6 (4)
O1—Cu1—N4—C2716.5 (4)C11—C12—C13—C140.8 (8)
O2—Cu1—N4—N317.1 (5)C12—C13—C14—Br2177.8 (4)
O2—Cu1—N4—C27162.4 (4)C12—C13—C14—C150.5 (8)
Cu1—O1—C1—C2163.7 (4)Br2—C14—C15—C16178.3 (4)
Cu1—O1—C1—C1018.8 (7)C13—C14—C15—C160.0 (8)
Cu1—O2—C17—C18168.1 (4)C14—C15—C16—Br3177.2 (4)
Cu1—O2—C17—C2612.9 (7)C14—C15—C16—C110.3 (8)
C10—N1—N2—Cu16.0 (8)O2—C17—C18—C19178.7 (5)
C10—N1—N2—C11176.8 (5)C26—C17—C18—C190.4 (8)
N2—N1—C10—C18.9 (8)O2—C17—C26—N36.8 (8)
N2—N1—C10—C9174.0 (5)O2—C17—C26—C25179.5 (5)
Cu1—N2—C11—C12118.7 (5)C18—C17—C26—N3172.2 (5)
Cu1—N2—C11—C1662.1 (6)C18—C17—C26—C250.5 (7)
N1—N2—C11—C1258.8 (6)C17—C18—C19—C201.3 (10)
N1—N2—C11—C16120.4 (5)C18—C19—C20—C21179.6 (6)
C26—N3—N4—Cu15.4 (8)C18—C19—C20—C251.2 (9)
C26—N3—N4—C27174.2 (5)C19—C20—C21—C22180.0 (7)
N4—N3—C26—C1710.4 (8)C25—C20—C21—C220.9 (11)
N4—N3—C26—C25176.5 (5)C19—C20—C25—C24179.8 (6)
Cu1—N4—C27—C28113.6 (5)C19—C20—C25—C260.4 (8)
Cu1—N4—C27—C3266.5 (6)C21—C20—C25—C240.7 (9)
N3—N4—C27—C2866.8 (6)C21—C20—C25—C26179.5 (6)
N3—N4—C27—C32113.2 (5)C20—C21—C22—C230.5 (11)
O1—C1—C2—C3178.9 (5)C21—C22—C23—C240.0 (11)
C10—C1—C2—C31.3 (8)C22—C23—C24—C250.2 (10)
O1—C1—C10—N12.7 (8)C23—C24—C25—C200.1 (9)
O1—C1—C10—C9179.7 (5)C23—C24—C25—C26180.0 (6)
C2—C1—C10—N1174.8 (5)C20—C25—C26—N3172.9 (5)
C2—C1—C10—C92.2 (7)C20—C25—C26—C170.5 (8)
C1—C2—C3—C40.0 (9)C24—C25—C26—N37.3 (8)
C2—C3—C4—C5178.0 (6)C24—C25—C26—C17179.4 (5)
C2—C3—C4—C90.4 (10)N4—C27—C28—Br43.5 (7)
C3—C4—C5—C6179.2 (7)N4—C27—C28—C29178.5 (5)
C9—C4—C5—C60.8 (11)C32—C27—C28—Br4176.5 (4)
C3—C4—C9—C8178.6 (6)C32—C27—C28—C291.4 (8)
C3—C4—C9—C100.6 (8)N4—C27—C32—Br60.5 (7)
C5—C4—C9—C80.3 (9)N4—C27—C32—C31178.2 (5)
C5—C4—C9—C10179.0 (6)C28—C27—C32—Br6179.6 (4)
C4—C5—C6—C70.9 (12)C28—C27—C32—C311.7 (8)
C5—C6—C7—C80.5 (12)Br4—C28—C29—C30177.9 (4)
C6—C7—C8—C90.0 (11)C27—C28—C29—C300.1 (8)
C7—C8—C9—C40.1 (9)C28—C29—C30—Br5176.3 (4)
C7—C8—C9—C10179.3 (6)C28—C29—C30—C311.1 (8)
C4—C9—C10—N1175.3 (5)Br5—C30—C31—C32176.6 (4)
C4—C9—C10—C11.9 (8)C29—C30—C31—C320.8 (8)
C8—C9—C10—N15.5 (8)C30—C31—C32—Br6179.4 (4)
C8—C9—C10—C1177.3 (5)C30—C31—C32—C270.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.952.323.257 (12)169
C23—H23···O3i0.952.603.453 (12)150
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are indebted to URCHEMS (Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale of the University of Constantine Algeria) for the X-ray facilities.

References

First citationAbdalla, N. A., El-Haty, M. T., Adam, F. A. E. & Hassan, F. W. (2013). Rev. Roum. Chim. 58, 899–913.  CAS Google Scholar
First citationAbe, T., Mano, S., Yamaya, Y. & Tomotake, A. (1999). J. Imaging Sci. Tech. 43, 339–344.  CAS Google Scholar
First citationAlmeida, M. R., Stephani, R., Dos Santos, H. F. & Oliveira, L. F. C. D. (2010). J. Phys. Chem. A, 114, 526–534.  CrossRef PubMed CAS Google Scholar
First citationAmin, A. S., Mohammed, T. Y. & Mousa, A. A. (2003). Spectrochim. Acta A, 59, 2577–2584.  CrossRef CAS Google Scholar
First citationBadea, M., Olar, R., Cristurean, E., Marinescu, D., Emandi, A., Budrugeac, P. & Segal, E. (2004). J. Therm. Anal. Calorim. 77, 815–824.  Web of Science CrossRef CAS Google Scholar
First citationBin, W., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 1596–1599.  CrossRef Google Scholar
First citationBougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013b). Acta Cryst. E69, o1175–o1176.  Google Scholar
First citationBougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1052.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. el kader & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1335–o1336.  Google Scholar
First citationBougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322–o1323.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211–m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207–m208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDharmalingam, V., Ramasamy, A. K. & Balasuramanian, V. (2011). J. Chem. 8, S211–S224.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu-Xin, H., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 2259–2261.  Google Scholar
First citationGeng, Y., Gu, D. & Gan, F. (2004). Opt. Mater. 27, 193–197.  CrossRef CAS Google Scholar
First citationHamada, E., Fujii, T., Tomizawa, Y. & Iimura, S. (1997). Jpn. J. Appl. Phys. 36, 593–594.  CrossRef CAS Google Scholar
First citationSteed, J. W., Turner, D. R., & Wallace, K. J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. Chichester: John Wiley & Sons.  Google Scholar
First citationLi, X., Wu, Y., Gu, D. & Gan, F. (2010). Dyes Pigments, 86, 182–189.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNejati, K., Rezvani, Z. & Seyedahmadian, M. (2009). Dyes Pigments, 83, 304–311.  CrossRef CAS Google Scholar
First citationNishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428.  Web of Science CrossRef CAS Google Scholar
First citationPatel, D. R. & Patel, K. C. (2011). Fibers Polym.. 12, 741–752.  CrossRef CAS Google Scholar
First citationSahoo, J., Kumar Mekap, S. & Sudhir Kumar, P. (2015). J. Taibah Univ. Sci. 9, 187–195.  CrossRef Google Scholar
First citationSekar, N. (1999). Colourage. 46, 63–65.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSuzuki, Y., Okamoto, Y., Kurose, Y. & Maeda, S. (1999). Jpn J. Appl. Phys. 38, 1669–1674.  CrossRef CAS Google Scholar
First citationWang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195–198.  Web of Science CrossRef CAS Google Scholar
First citationWęglarz-Tomczak, E. & Górecki, L. (2012). CHEMIK Science-Technique-Market. 66, 1298-1307.  Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1, University of Western Australia, Perth.  Google Scholar
First citationZollinger, H. (1961). Isr. J. Chem. 1, 45–45.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds