research communications
Structural and luminescent properties of co-crystals of tetraiodoethylene with two azaphenanthrenes
aDepartment of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China, and bKey Laboratory Chemical Biology and Molecular Engineering, Education Ministry, People's Republic of China
*Correspondence e-mail: 250951251@qq.com
Two new co-crystals, tetraiodoethylene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetraiodoethylene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetraiodoethylene and azaphenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent molecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar azaphenanthrenes lend themselves to π–π stacking and C—H⋯π interactions, leading to a diversity of supramolecular three-dimensional structural motifs being formed by these interactions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature.
1. Chemical context
A halogen bond is an attractive non-covalent interaction between an electrophilic region in a covalently bonded halogen atom and a et al., 2013; Cavallo et al., 2016; Gilday et al., 2015; Wang et al., 2016). Over the past few years, XB has been used successfully to assemble luminescent co-crystals (Liu et al., 2017a; d'Agostino et al., 2015; Ventura et al., 2014; Bolton et al., 2011). XB can play multiple roles in co-crystals, for example, as cement to assemble XB donors and acceptors together (Metrangolo et al., 2005), and, importantly, as a heavy-atom source to enhance phosphorescence or by efficient spin-orbital coupling (Gao et al., 2012). Phosphorescence or materials are very popular for preparing light devices because of the higher internal of triplet excitons (Brown et al., 1993; Baldo et al., 1999).
Halogen bonding (XB) is a powerful tool to assemble supramolecular materials and to promote chemical or biological molecular recognition (DesirajuNitrogen heteroaromatic rings are a common type of luminescence or luminescent precursor materials. However, in general, it is difficult to use them to generate phosphorescence or et al., 2017; Wang et al., 2014, 2016; Wang & Jin, 2017; Liu et al., 2017b). We report herein the use of tetraiodoethylene (TIE) as a new XB donor in the assembly of co-crystals with two different azaphenanthrenes, namely phenanthridine (PHN) and benzo[f]quinoline (BfQ), which is expected to tune their luminescence behaviour via a change of the structures. Single crystal X-ray diffraction (XRD) data reveal that the two co-crystals of TIE with PHN and BfQ reported here have interesting structural properties and exhibit different luminescence behaviour from previous reports. TIE as a quadridentate XB donor allows the formation of three-dimensional halogen-bonded networks with XB acceptors, PHN and BfQ. Using the conventional solution-based method, yellow co-crystals suitable for XRD measurement were obtained. The crystal structures of the co-crystals are mainly constructed by C—I⋯π and C—I⋯N halogen bonds. Other multiple intermolecular interactions, such as π–π stacking, C—H⋯π, C—H⋯I as well as C—H⋯H—C interactions, are also observed in the co-crystals.
Haloperfluorobenzenes, as XB donors, have been used in attempts to assemble luminescence co-crystals with azaphenanthrenes (Gao2. Structural commentary
The asymmetric units of co-crystals 1 and 2 each comprise one half TIE molecule lying about an inversion centre and one PHN or BfQ molecule in a general position, hence the co-crystals have a 1:2 stoichiometry (Fig. 1). 1 crystallizes in the monoclinic C2/c while 2 crystallizes in the triclinic P.
3. Supramolecular features
In the crystal of 1, C—I⋯N, C—I⋯C and C—I⋯π halogen bonds lead to the formation of a two-dimensional network structure in which the rectangular motif has a D⋯2A⋯D⋯2A arrangement, as shown in Fig. 2a. The I1 atom of the TIE molecule interacts with the N1 atom of a PHN molecule, forming a C1—I1⋯N1 halogen bond (Fig. 2b). The I1⋯N1i distance is 2.864 (7) Å and the corresponding C14–I1⋯N1i angle is 172.8 (2)° [symmetry code: (i) x, y + 1, z]. The strong C14—I1⋯N1 halogen bond results in a I1⋯C13i distance [3.553 (8) Å] shorter than the sum of the van der Waals radii, which indicates a C1—I1⋯C13 halogen interaction. In addition, the C14—I2⋯C9ii/C10ii C—I⋯π separations [Fig. 2b; symmetry code: (ii) − x, − y, z] are 3.432 (9) and 3.612 (8) Å, and the corresponding bond angles are 165.6 (2) and 156.7 (2)°, respectively. Furthermore, π–π stacking [Fig. 2c; Cg1⋯Cg2iii = 3.692 (4) Å, Cg3⋯Cg2iii = 3.626 (4) Å; Cg1, Cg2 and Cg3 are the centroids of rings C1–C6, C7–C12 and N1/C1/C6/C7/C12/C13, respectively; symmetry code: (iii) x, −1 + y, z] and C—H⋯H—C interactions between two adjacent PHN molecules contribute to the extension of the two-dimensional network into a three-dimensional supramolecular structure (Fig. 3).
The two-dimensional network of 2 is similar to that of 1, as shown in Fig. 4a. Both of them are constructed by the same halogen-bonded synthon, i.e., C—I⋯N, C—I⋯C and C—I⋯π halogen bonds, but the bonding characteristics are slightly different. In general, the distances of the C—I⋯N, C—I⋯C and C—I⋯π interactions [I1⋯N1 = 2.901 (4), I1⋯C1 = 3.641 (5), I2⋯C13(−x, 1 − y, 1 − z) = 3.436 (5) and I2⋯C8(−x, 1 − y, 1 − z) = 3.733 (4) Å, respectively] in 2 are all a little longer (0.004–0.121 Å) than in 1 (Fig. 4b). In addition, the two-dimensional network (Fig. 5) is extended to a three-dimensional supramolecular structure by π–π stacking (Fig. 4c and 5; Cg1⋯Cg1i = 3.562 (3) Å, Cg1⋯Cg2ii = 3.963 (2) Å, Cg1⋯Cg3ii = 3.746 (3) Å, Cg2⋯Cg2ii = 3.768 (2) Å; Cg1, Cg2 and Cg3 are the centroids of rings N1/C1–C5, C4–C9 and C8–C13, respectively; symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z] and C—H⋯I hydrogen bonds (Table 1).
4. Powder X-ray diffraction pattern
The powder X-ray diffraction (PXRD) experiments were carried out for the title co-crystals using a Bruker D8-ADVANCE X-ray diffractometer (Cu Kα, λ = 1.5418 Å) in the 2θ range of 5 to 50°. As shown in Fig. 6, the experimental patterns for 1 and 2 match well with the spectra simulated from the XRD data, which confirms the purity of 1 and 2.
5. Luminescence behavior of co-crystals 1 and 2
As shown in Fig. 7, the two co-crystals fluoresce with some vibrational fine structure (see also spectroscopic data in Table 2). The two co-crystals also show (Fig. 8). For both co-crystals, the emission bands in the region of 450–480 nm should be relative to the π–π stacking patterns. Luminescence from the excimer is possible because of the close π–π stacking distances as shown in Figs. 2–5, besides luminescence from a monomer. Furthermore, TIE–PHN and TIE–BfQ produce weak phosphorescence. The strong XB interaction between the iodine atoms of TIE and the non-bonding orbitals of the azaphenanthrene N atoms should cause the energy of the lowest 1(n, π*) state to drop below that of the 3(π, π*) state. It is supposed that for the singlet states the 0–0 transition of emitters in co-crystals is localized at 375 nm and 450 nm, respectively, and for triplet states the 0–0 transition is at about 600 nm. The energy gap between S1 and T1 is largely greater than 20 kJ mol−1, so the most likely originates from the triplet–triplet annihilation process, named P-type (P-DF). Both and phosphorescence are relative to triplet states, so they should be significant for improving the emission efficiency of luminescence materials (Adachi et al., 2001).
|
For the luminescence decay, all 1 and 9.29 ns for 2) are about 10 ns, while the lifetime (4.36 µs for 1 and 6.45 µs for 2) is less than the 10 µs level because of the strong heavy-atom effect leading to a faster decay of the Additionally, the phosphorescence is too weak to measure its decay lifetime. However, the phosphorescence lifetime can be estimated to be about 20 µs based on the relationship between P-DF and the accompanying phosphorescence (Parker et al., 1962, 1965).
decay lifetimes (11.49 ns for6. Synthesis and crystallization
0.1 mmol of PHN/BfQ and 0.05 mmol of TIE were dissolved in an acetone/chloroform (2:1) mixture in a glass vial. Well–formed co-crystals 1 and 2 suitable for single-crystal X–ray diffraction (XRD) measurements were obtained by slow evaporation of the solvent at room temperature after about two weeks. Elemental analysis (%, EA) calculated for C14H9NI2 (445.02): C 37.78, H 2.04, N 3.15. Found: C 37.54, H 2.31, N 3.26. For 1, and C 37.85, H 2.16, N 3.04 for 2. IR (KBr, ν, cm−1) For 1: 3048(w), 1603(w), 1572(w), 1494(m), 1446(w), 1382(m), 1293(m), 1267(m), 1189(m), 1089(m), 948(m), 870(s), 832(s), 802(s), 749(s), 707(s), 615(m), 538(m), 487(m), 435(m). For 2: 3048(w), 1611(w), 1576(s), 1522(w), 1486(w), 1458(m), 1440(m), 1238(m), 1132(m), 1032(m), 953(m), 924(m), 889(s), 745(s), 714(s), 610(m), 552(m), 448(m), 423(m).
7. Refinement
Crystal data, data collection and structure . H atoms attached to C atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989020002182/vm2225sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989020002182/vm22251sup4.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989020002182/vm22252sup5.hkl
For both structures, data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015). Molecular graphics: SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2005) for (1); SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), for (2). For both structures, software used to prepare material for publication: publCIF (Westrip, 2010).0.5C2I4·C13H9N | F(000) = 1648 |
Mr = 445.02 | Dx = 2.257 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.2920 (18) Å | Cell parameters from 5311 reflections |
b = 4.8348 (4) Å | θ = 3.1–26.3° |
c = 24.8761 (16) Å | µ = 4.78 mm−1 |
β = 116.272 (2)° | T = 296 K |
V = 2619.8 (3) Å3 | Block, yellow |
Z = 8 | 0.30 × 0.25 × 0.25 mm |
Bruker APEXII CCD diffractometer | 1782 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.045 |
φ and ω scans | θmax = 26.3°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −30→29 |
Tmin = 0.489, Tmax = 0.745 | k = −6→6 |
12094 measured reflections | l = −31→30 |
2635 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0187P)2 + 28.9715P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2635 reflections | Δρmax = 1.08 e Å−3 |
154 parameters | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.70990 (2) | 0.95088 (10) | 0.57060 (2) | 0.04011 (16) | |
I2 | 0.85225 (2) | 0.96131 (11) | 0.56611 (2) | 0.04316 (16) | |
N1 | 0.6417 (3) | 0.1927 (12) | 0.6276 (2) | 0.0377 (14) | |
C1 | 0.6440 (3) | 0.1453 (14) | 0.6836 (3) | 0.0339 (16) | |
C2 | 0.6849 (3) | −0.0548 (15) | 0.7193 (3) | 0.0442 (18) | |
H2 | 0.708323 | −0.152775 | 0.704671 | 0.053* | |
C3 | 0.6910 (4) | −0.1093 (16) | 0.7755 (3) | 0.053 (2) | |
H3 | 0.719345 | −0.239978 | 0.799494 | 0.064* | |
C4 | 0.6547 (4) | 0.0319 (17) | 0.7965 (3) | 0.054 (2) | |
H4 | 0.658318 | −0.006933 | 0.834537 | 0.065* | |
C5 | 0.6141 (3) | 0.2253 (16) | 0.7623 (3) | 0.0452 (19) | |
H5 | 0.590382 | 0.318582 | 0.777344 | 0.054* | |
C6 | 0.6070 (3) | 0.2880 (14) | 0.7044 (3) | 0.0328 (16) | |
C7 | 0.5640 (3) | 0.4901 (13) | 0.6650 (3) | 0.0342 (16) | |
C8 | 0.5240 (3) | 0.6464 (16) | 0.6801 (3) | 0.0475 (19) | |
H8 | 0.524161 | 0.622630 | 0.717264 | 0.057* | |
C9 | 0.4853 (3) | 0.8313 (17) | 0.6406 (4) | 0.054 (2) | |
H9 | 0.459174 | 0.933001 | 0.651309 | 0.065* | |
C10 | 0.4834 (3) | 0.8741 (16) | 0.5846 (4) | 0.051 (2) | |
H10 | 0.456128 | 1.001451 | 0.558148 | 0.061* | |
C11 | 0.5219 (3) | 0.7271 (15) | 0.5691 (3) | 0.0455 (19) | |
H11 | 0.521208 | 0.755053 | 0.531834 | 0.055* | |
C12 | 0.5627 (3) | 0.5329 (14) | 0.6091 (3) | 0.0345 (16) | |
C13 | 0.6035 (3) | 0.3779 (15) | 0.5941 (3) | 0.0405 (18) | |
H13 | 0.602707 | 0.412409 | 0.557015 | 0.049* | |
C14 | 0.7603 (3) | 0.8233 (15) | 0.5244 (3) | 0.0411 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0411 (3) | 0.0521 (3) | 0.0327 (3) | 0.0057 (2) | 0.0213 (2) | −0.0022 (2) |
I2 | 0.0332 (3) | 0.0582 (3) | 0.0364 (3) | −0.0048 (2) | 0.0139 (2) | −0.0059 (2) |
N1 | 0.034 (3) | 0.046 (4) | 0.037 (3) | 0.000 (3) | 0.019 (3) | −0.004 (3) |
C1 | 0.034 (4) | 0.036 (4) | 0.033 (4) | −0.005 (3) | 0.016 (3) | −0.005 (3) |
C2 | 0.042 (4) | 0.043 (4) | 0.046 (4) | 0.001 (4) | 0.018 (4) | 0.001 (4) |
C3 | 0.060 (5) | 0.049 (5) | 0.041 (5) | 0.000 (4) | 0.013 (4) | 0.011 (4) |
C4 | 0.067 (6) | 0.066 (6) | 0.027 (4) | −0.015 (5) | 0.019 (4) | −0.001 (4) |
C5 | 0.048 (5) | 0.053 (5) | 0.041 (4) | −0.010 (4) | 0.026 (4) | −0.008 (4) |
C6 | 0.031 (4) | 0.038 (4) | 0.030 (4) | −0.008 (3) | 0.014 (3) | −0.007 (3) |
C7 | 0.032 (4) | 0.034 (4) | 0.041 (4) | −0.006 (3) | 0.020 (3) | −0.008 (3) |
C8 | 0.045 (5) | 0.053 (5) | 0.049 (5) | −0.002 (4) | 0.026 (4) | −0.005 (4) |
C9 | 0.031 (5) | 0.051 (5) | 0.081 (6) | −0.003 (4) | 0.025 (4) | −0.015 (5) |
C10 | 0.038 (5) | 0.040 (5) | 0.070 (6) | 0.006 (4) | 0.019 (4) | 0.005 (4) |
C11 | 0.042 (5) | 0.049 (5) | 0.039 (4) | −0.012 (4) | 0.012 (4) | −0.003 (4) |
C12 | 0.030 (4) | 0.036 (4) | 0.033 (4) | −0.003 (3) | 0.010 (3) | −0.001 (3) |
C13 | 0.046 (5) | 0.052 (5) | 0.030 (4) | −0.005 (4) | 0.023 (4) | −0.002 (4) |
C14 | 0.045 (5) | 0.044 (5) | 0.043 (4) | 0.007 (4) | 0.028 (4) | 0.003 (3) |
I1—C14 | 2.108 (6) | C6—C7 | 1.449 (9) |
I2—C14 | 2.111 (7) | C7—C12 | 1.394 (9) |
N1—C13 | 1.293 (8) | C7—C8 | 1.406 (9) |
N1—C1 | 1.390 (8) | C8—C9 | 1.353 (10) |
C1—C2 | 1.389 (9) | C8—H8 | 0.9300 |
C1—C6 | 1.400 (9) | C9—C10 | 1.387 (11) |
C2—C3 | 1.364 (10) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C10—C11 | 1.360 (10) |
C3—C4 | 1.389 (11) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.408 (9) |
C4—C5 | 1.352 (10) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—C13 | 1.416 (9) |
C5—C6 | 1.406 (9) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—C14i | 1.301 (13) |
C13—N1—C1 | 117.3 (6) | C9—C8—C7 | 120.1 (7) |
N1—C1—C2 | 117.1 (6) | C9—C8—H8 | 120.0 |
N1—C1—C6 | 122.8 (6) | C7—C8—H8 | 120.0 |
C2—C1—C6 | 120.1 (6) | C8—C9—C10 | 122.1 (7) |
C3—C2—C1 | 120.8 (7) | C8—C9—H9 | 119.0 |
C3—C2—H2 | 119.6 | C10—C9—H9 | 119.0 |
C1—C2—H2 | 119.6 | C11—C10—C9 | 119.0 (7) |
C2—C3—C4 | 119.4 (7) | C11—C10—H10 | 120.5 |
C2—C3—H3 | 120.3 | C9—C10—H10 | 120.5 |
C4—C3—H3 | 120.3 | C10—C11—C12 | 120.4 (7) |
C5—C4—C3 | 120.8 (7) | C10—C11—H11 | 119.8 |
C5—C4—H4 | 119.6 | C12—C11—H11 | 119.8 |
C3—C4—H4 | 119.6 | C7—C12—C11 | 120.1 (6) |
C4—C5—C6 | 121.2 (7) | C7—C12—C13 | 118.4 (6) |
C4—C5—H5 | 119.4 | C11—C12—C13 | 121.6 (6) |
C6—C5—H5 | 119.4 | N1—C13—C12 | 125.7 (6) |
C1—C6—C5 | 117.7 (6) | N1—C13—H13 | 117.1 |
C1—C6—C7 | 118.1 (6) | C12—C13—H13 | 117.1 |
C5—C6—C7 | 124.2 (6) | C14i—C14—I2 | 121.2 (7) |
C12—C7—C8 | 118.3 (7) | C14i—C14—I1 | 126.2 (7) |
C12—C7—C6 | 117.7 (6) | I2—C14—I1 | 112.5 (3) |
C8—C7—C6 | 124.0 (6) | ||
C13—N1—C1—C2 | 179.7 (6) | C5—C6—C7—C8 | −0.3 (11) |
C13—N1—C1—C6 | 0.2 (10) | C12—C7—C8—C9 | 0.5 (11) |
N1—C1—C2—C3 | 178.4 (7) | C6—C7—C8—C9 | 179.9 (7) |
C6—C1—C2—C3 | −2.1 (11) | C7—C8—C9—C10 | 0.0 (12) |
C1—C2—C3—C4 | 1.8 (12) | C8—C9—C10—C11 | −0.5 (12) |
C2—C3—C4—C5 | −1.0 (12) | C9—C10—C11—C12 | 0.5 (11) |
C3—C4—C5—C6 | 0.5 (12) | C8—C7—C12—C11 | −0.5 (10) |
N1—C1—C6—C5 | −179.0 (6) | C6—C7—C12—C11 | −179.9 (6) |
C2—C1—C6—C5 | 1.5 (10) | C8—C7—C12—C13 | 179.3 (6) |
N1—C1—C6—C7 | 1.0 (10) | C6—C7—C12—C13 | −0.2 (10) |
C2—C1—C6—C7 | −178.5 (6) | C10—C11—C12—C7 | 0.0 (10) |
C4—C5—C6—C1 | −0.7 (10) | C10—C11—C12—C13 | −179.7 (7) |
C4—C5—C6—C7 | 179.3 (7) | C1—N1—C13—C12 | −1.4 (10) |
C1—C6—C7—C12 | −0.9 (9) | C7—C12—C13—N1 | 1.5 (11) |
C5—C6—C7—C12 | 179.1 (7) | C11—C12—C13—N1 | −178.8 (7) |
C1—C6—C7—C8 | 179.7 (6) |
Symmetry code: (i) −x+3/2, −y+3/2, −z+1. |
0.5C2I4·C13H9N | Z = 2 |
Mr = 445.02 | F(000) = 412 |
Triclinic, P1 | Dx = 2.229 Mg m−3 |
a = 7.3179 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.1089 (5) Å | Cell parameters from 4699 reflections |
c = 11.3252 (7) Å | θ = 2.8–26.4° |
α = 97.050 (2)° | µ = 4.72 mm−1 |
β = 92.059 (2)° | T = 296 K |
γ = 95.579 (2)° | Block, yellow |
V = 663.02 (7) Å3 | 0.35 × 0.32 × 0.30 mm |
Bruker APEXII CCD diffractometer | 2099 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.026 |
φ and ω scans | θmax = 26.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −9→9 |
Tmin = 0.638, Tmax = 0.745 | k = −10→10 |
8567 measured reflections | l = −14→14 |
2701 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0189P)2 + 0.7413P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2701 reflections | Δρmax = 0.80 e Å−3 |
154 parameters | Δρmin = −0.74 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.20988 (4) | 0.45307 (3) | 0.82595 (2) | 0.04767 (10) | |
I2 | −0.08934 (4) | 0.75374 (3) | 0.91391 (3) | 0.05167 (11) | |
N1 | 0.4565 (5) | 0.3596 (5) | 0.6400 (3) | 0.0518 (9) | |
C1 | 0.6267 (7) | 0.4270 (6) | 0.6615 (4) | 0.0597 (13) | |
H1 | 0.655445 | 0.495377 | 0.733212 | 0.072* | |
C2 | 0.7655 (7) | 0.4022 (6) | 0.5841 (5) | 0.0613 (13) | |
H2 | 0.883874 | 0.453358 | 0.603495 | 0.074* | |
C3 | 0.7274 (6) | 0.3026 (6) | 0.4794 (5) | 0.0541 (12) | |
H3 | 0.819507 | 0.286190 | 0.425958 | 0.065* | |
C4 | 0.5492 (5) | 0.2240 (5) | 0.4514 (4) | 0.0399 (10) | |
C5 | 0.4171 (5) | 0.2587 (5) | 0.5350 (4) | 0.0389 (9) | |
C6 | 0.2327 (6) | 0.1869 (5) | 0.5119 (4) | 0.0470 (11) | |
H6 | 0.144788 | 0.211154 | 0.566982 | 0.056* | |
C7 | 0.1844 (6) | 0.0845 (5) | 0.4114 (4) | 0.0471 (11) | |
H7 | 0.062732 | 0.038787 | 0.398340 | 0.057* | |
C8 | 0.3128 (6) | 0.0431 (5) | 0.3238 (4) | 0.0424 (10) | |
C9 | 0.4960 (6) | 0.1144 (5) | 0.3424 (4) | 0.0418 (10) | |
C10 | 0.6199 (7) | 0.0731 (6) | 0.2544 (4) | 0.0561 (12) | |
H10 | 0.741510 | 0.119847 | 0.264207 | 0.067* | |
C11 | 0.5643 (9) | −0.0348 (7) | 0.1546 (5) | 0.0730 (16) | |
H11 | 0.648615 | −0.060734 | 0.097457 | 0.088* | |
C12 | 0.3842 (9) | −0.1063 (7) | 0.1373 (4) | 0.0716 (16) | |
H12 | 0.347907 | −0.180218 | 0.069304 | 0.086* | |
C13 | 0.2612 (7) | −0.0676 (6) | 0.2203 (4) | 0.0555 (12) | |
H13 | 0.140145 | −0.115380 | 0.208420 | 0.067* | |
C14 | 0.0238 (6) | 0.5360 (5) | 0.9536 (4) | 0.0449 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0579 (2) | 0.04585 (18) | 0.04064 (16) | 0.01385 (14) | 0.01030 (14) | 0.00193 (12) |
I2 | 0.0700 (2) | 0.04158 (18) | 0.04756 (18) | 0.02041 (15) | 0.00980 (15) | 0.00849 (13) |
N1 | 0.058 (3) | 0.051 (2) | 0.049 (2) | 0.0117 (19) | 0.003 (2) | 0.0083 (18) |
C1 | 0.068 (3) | 0.052 (3) | 0.058 (3) | 0.007 (3) | −0.016 (3) | 0.006 (2) |
C2 | 0.042 (3) | 0.067 (3) | 0.076 (4) | −0.002 (2) | −0.010 (3) | 0.024 (3) |
C3 | 0.039 (3) | 0.055 (3) | 0.073 (3) | 0.006 (2) | 0.013 (2) | 0.026 (3) |
C4 | 0.036 (2) | 0.041 (2) | 0.049 (2) | 0.0109 (18) | 0.008 (2) | 0.0221 (19) |
C5 | 0.041 (2) | 0.036 (2) | 0.043 (2) | 0.0108 (18) | 0.0065 (19) | 0.0135 (18) |
C6 | 0.042 (2) | 0.054 (3) | 0.048 (3) | 0.008 (2) | 0.015 (2) | 0.009 (2) |
C7 | 0.036 (2) | 0.051 (3) | 0.056 (3) | 0.003 (2) | 0.006 (2) | 0.016 (2) |
C8 | 0.051 (3) | 0.036 (2) | 0.044 (2) | 0.0087 (19) | 0.006 (2) | 0.0144 (18) |
C9 | 0.046 (2) | 0.042 (2) | 0.044 (2) | 0.0161 (19) | 0.014 (2) | 0.0199 (19) |
C10 | 0.059 (3) | 0.066 (3) | 0.052 (3) | 0.023 (2) | 0.021 (2) | 0.022 (2) |
C11 | 0.099 (5) | 0.080 (4) | 0.051 (3) | 0.043 (4) | 0.031 (3) | 0.018 (3) |
C12 | 0.115 (5) | 0.059 (3) | 0.044 (3) | 0.025 (3) | 0.007 (3) | 0.004 (2) |
C13 | 0.072 (3) | 0.047 (3) | 0.049 (3) | 0.009 (2) | −0.003 (3) | 0.010 (2) |
C14 | 0.054 (3) | 0.039 (2) | 0.041 (2) | 0.011 (2) | 0.002 (2) | −0.0017 (18) |
I1—C14 | 2.116 (4) | C6—H6 | 0.9300 |
I2—C14 | 2.111 (4) | C7—C8 | 1.423 (6) |
N1—C1 | 1.313 (6) | C7—H7 | 0.9300 |
N1—C5 | 1.363 (5) | C8—C13 | 1.402 (6) |
C1—C2 | 1.379 (7) | C8—C9 | 1.405 (6) |
C1—H1 | 0.9300 | C9—C10 | 1.403 (6) |
C2—C3 | 1.354 (7) | C10—C11 | 1.365 (7) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.402 (6) | C11—C12 | 1.384 (8) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.401 (5) | C12—C13 | 1.355 (7) |
C4—C9 | 1.448 (6) | C12—H12 | 0.9300 |
C5—C6 | 1.418 (6) | C13—H13 | 0.9300 |
C6—C7 | 1.339 (6) | C14—C14i | 1.305 (8) |
C1—N1—C5 | 117.4 (4) | C13—C8—C9 | 119.4 (4) |
N1—C1—C2 | 123.8 (5) | C13—C8—C7 | 121.7 (4) |
N1—C1—H1 | 118.1 | C9—C8—C7 | 118.9 (4) |
C2—C1—H1 | 118.1 | C10—C9—C8 | 118.0 (4) |
C3—C2—C1 | 119.2 (4) | C10—C9—C4 | 123.0 (4) |
C3—C2—H2 | 120.4 | C8—C9—C4 | 119.0 (4) |
C1—C2—H2 | 120.4 | C11—C10—C9 | 120.9 (5) |
C2—C3—C4 | 120.1 (4) | C11—C10—H10 | 119.6 |
C2—C3—H3 | 120.0 | C9—C10—H10 | 119.6 |
C4—C3—H3 | 120.0 | C10—C11—C12 | 121.0 (5) |
C3—C4—C5 | 116.5 (4) | C10—C11—H11 | 119.5 |
C3—C4—C9 | 124.0 (4) | C12—C11—H11 | 119.5 |
C5—C4—C9 | 119.5 (4) | C13—C12—C11 | 119.5 (5) |
N1—C5—C4 | 123.0 (4) | C13—C12—H12 | 120.3 |
N1—C5—C6 | 117.1 (4) | C11—C12—H12 | 120.3 |
C4—C5—C6 | 119.9 (4) | C12—C13—C8 | 121.3 (5) |
C7—C6—C5 | 120.4 (4) | C12—C13—H13 | 119.4 |
C7—C6—H6 | 119.8 | C8—C13—H13 | 119.4 |
C5—C6—H6 | 119.8 | C14i—C14—I2 | 121.4 (4) |
C6—C7—C8 | 122.3 (4) | C14i—C14—I1 | 126.2 (4) |
C6—C7—H7 | 118.9 | I2—C14—I1 | 112.33 (18) |
C8—C7—H7 | 118.9 | ||
C5—N1—C1—C2 | 0.5 (7) | C13—C8—C9—C10 | 1.1 (6) |
N1—C1—C2—C3 | −0.3 (8) | C7—C8—C9—C10 | −179.4 (4) |
C1—C2—C3—C4 | −0.9 (7) | C13—C8—C9—C4 | −177.9 (4) |
C2—C3—C4—C5 | 1.7 (6) | C7—C8—C9—C4 | 1.6 (6) |
C2—C3—C4—C9 | −179.4 (4) | C3—C4—C9—C10 | 1.3 (6) |
C1—N1—C5—C4 | 0.5 (6) | C5—C4—C9—C10 | −179.8 (4) |
C1—N1—C5—C6 | −179.7 (4) | C3—C4—C9—C8 | −179.7 (4) |
C3—C4—C5—N1 | −1.6 (6) | C5—C4—C9—C8 | −0.9 (6) |
C9—C4—C5—N1 | 179.5 (4) | C8—C9—C10—C11 | −0.9 (6) |
C3—C4—C5—C6 | 178.6 (4) | C4—C9—C10—C11 | 178.1 (4) |
C9—C4—C5—C6 | −0.3 (6) | C9—C10—C11—C12 | 0.1 (8) |
N1—C5—C6—C7 | −179.0 (4) | C10—C11—C12—C13 | 0.4 (8) |
C4—C5—C6—C7 | 0.8 (6) | C11—C12—C13—C8 | −0.2 (7) |
C5—C6—C7—C8 | −0.1 (7) | C9—C8—C13—C12 | −0.5 (6) |
C6—C7—C8—C13 | 178.4 (4) | C7—C8—C13—C12 | 180.0 (4) |
C6—C7—C8—C9 | −1.1 (6) |
Symmetry code: (i) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···I2ii | 0.93 | 3.16 | 4.019 (5) | 155 |
C6—H6···I1 | 0.93 | 3.31 | 3.945 (4) | 127 |
Symmetry code: (ii) x+1, y, z. |
TIE–PHN | TIE–BfQ | ||
Total luminescent spectra | λex/nm | 300 | 300 |
λem /nm | 375, 484, 578 | 368, 452, 480 | |
τaverage/ ns | 11.49 | 9.29 | |
DF and phosphorescent spectra | λex/nm | 330 | 330 |
λem /nm | 375, 489, 600 | 430, 489, 596 | |
τaverage/ µs | 4.36 | 6.45 |
Funding information
The authors are grateful for support by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (grant No. 2019L0895) and the Undergraduate Innovation and Entrepreneurship Project of Changzhi University (award No. zz201814).
References
Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). J. Appl. Phys. 90, 5048–5051. Web of Science CrossRef CAS Google Scholar
Agostino, S. d', Grepioni, F., Braga, D. & Ventura, B. (2015). Cryst. Growth Des. 15, 2039–2045. Google Scholar
Baldo, M. A., O'Brien, D. F., Thompson, M. E. & Forrest, S. R. (1999). Phys. Rev. B, 60, 14422–14428. Web of Science CrossRef CAS Google Scholar
Bolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. (2011). Nat. Chem. 3, 205–210. CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, A. R., Pichler, K., Greenham, N. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. (1993). Chem. Phys. Lett. 210, 61–66. CrossRef CAS Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713. Web of Science CrossRef CAS Google Scholar
Gao, H. Y., Shen, Q. J., Zhao, X. R., Yan, X. Q., Pang, X. & Jin, W. J. (2012). J. Mater. Chem. 22, 5336–5343. Web of Science CSD CrossRef CAS Google Scholar
Gao, Y. J., Li, C., Liu, R. & Jin, W. J. (2017). Spectrochim. Acta A, 173, 792–799. Web of Science CSD CrossRef CAS Google Scholar
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195. Web of Science CrossRef CAS PubMed Google Scholar
Liu, R., Gao, Y. J. & Jin, W. J. (2017a). Acta Cryst. B73, 247–254. CSD CrossRef IUCr Journals Google Scholar
Liu, R., Wang, H. & Jin, W. J. (2017b). Cryst. Growth Des. 17, 3331–3337. CSD CrossRef CAS Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
Parker, C. A. & Hatchard, C. G. (1962). Proc. Roy. Soc. A, 269, 574–584. Google Scholar
Parker, C. A., Hatchard, C. G. & Joyce, T. A. (1965). Nature, 205, 1282–1284. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Ventura, B., Bertocco, A., Braga, D., Catalano, L., d'Agostino, S., Grepioni, F. & Taddei, P. (2014). J. Phys. Chem. C, 118, 18646–18658. Web of Science CrossRef CAS Google Scholar
Wang, H., Hu, R. X., Pang, X., Gao, H. Y. & Jin, W. J. (2014). CrystEngComm, 16, 7942–7948. Web of Science CSD CrossRef CAS Google Scholar
Wang, H. & Jin, W. J. (2017). Acta Cryst. B73, 210–216. CSD CrossRef IUCr Journals Google Scholar
Wang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072–5104. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.