research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural and luminescent properties of co-crystals of tetra­iodo­ethyl­ene with two aza­phenanthrenes

aDepartment of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China, and bKey Laboratory Chemical Biology and Molecular Engineering, Education Ministry, People's Republic of China
*Correspondence e-mail: 250951251@qq.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 November 2019; accepted 17 February 2020; online 25 February 2020)

Two new co-crystals, tetra­iodo­ethyl­ene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetra­iodo­ethyl­ene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetra­iodo­ethyl­ene and aza­phenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent mol­ecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar aza­phenanthrenes lend themselves to ππ stacking and C—H⋯π inter­actions, leading to a diversity of supra­molecular three-dimensional structural motifs being formed by these inter­actions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature.

1. Chemical context

A halogen bond is an attractive non-covalent inter­action between an electrophilic region in a covalently bonded halogen atom and a Lewis base. Halogen bonding (XB) is a powerful tool to assemble supra­molecular materials and to promote chemical or biological mol­ecular recognition (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]; Wang et al., 2016[Wang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072-5104.]). Over the past few years, XB has been used successfully to assemble luminescent co-crystals (Liu et al., 2017a[Liu, R., Gao, Y. J. & Jin, W. J. (2017a). Acta Cryst. B73, 247-254.]; d'Agostino et al., 2015[Agostino, S. d', Grepioni, F., Braga, D. & Ventura, B. (2015). Cryst. Growth Des. 15, 2039-2045.]; Ventura et al., 2014[Ventura, B., Bertocco, A., Braga, D., Catalano, L., d'Agostino, S., Grepioni, F. & Taddei, P. (2014). J. Phys. Chem. C, 118, 18646-18658.]; Bolton et al., 2011[Bolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. (2011). Nat. Chem. 3, 205-210.]). XB can play multiple roles in co-crystals, for example, as cement to assemble XB donors and acceptors together (Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]), and, importantly, as a heavy-atom source to enhance phospho­rescence or delayed fluorescence by efficient spin-orbital coupling (Gao et al., 2012[Gao, H. Y., Shen, Q. J., Zhao, X. R., Yan, X. Q., Pang, X. & Jin, W. J. (2012). J. Mater. Chem. 22, 5336-5343.]). Phospho­rescence or delayed fluorescence materials are very popular for preparing light devices because of the higher inter­nal quantum efficiency of triplet excitons (Brown et al., 1993[Brown, A. R., Pichler, K., Greenham, N. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. (1993). Chem. Phys. Lett. 210, 61-66.]; Baldo et al., 1999[Baldo, M. A., O'Brien, D. F., Thompson, M. E. & Forrest, S. R. (1999). Phys. Rev. B, 60, 14422-14428.]).

[Scheme 1]

Nitro­gen heteroaromatic rings are a common type of luminescence or luminescent precursor materials. However, in general, it is difficult to use them to generate phospho­rescence or delayed fluorescence. Haloperfluoro­benzenes, as XB donors, have been used in attempts to assemble luminescence co-crystals with aza­phenanthrenes (Gao et al., 2017[Gao, Y. J., Li, C., Liu, R. & Jin, W. J. (2017). Spectrochim. Acta A, 173, 792-799.]; Wang et al., 2014[Wang, H., Hu, R. X., Pang, X., Gao, H. Y. & Jin, W. J. (2014). CrystEngComm, 16, 7942-7948.], 2016[Wang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072-5104.]; Wang & Jin, 2017[Wang, H. & Jin, W. J. (2017). Acta Cryst. B73, 210-216.]; Liu et al., 2017b[Liu, R., Wang, H. & Jin, W. J. (2017b). Cryst. Growth Des. 17, 3331-3337.]). We report herein the use of tetra­iodo­ethyl­ene (TIE) as a new XB donor in the assembly of co-crystals with two different aza­phenanthrenes, namely phenanthridine (PHN) and benzo[f]quinoline (BfQ), which is expected to tune their luminescence behaviour via a change of the co-crystal structures. Single crystal X-ray diffraction (XRD) data reveal that the two co-crystals of TIE with PHN and BfQ reported here have inter­esting structural properties and exhibit different luminescence behaviour from previous reports. TIE as a quadridentate XB donor allows the formation of three-dimensional halogen-bonded networks with XB acceptors, PHN and BfQ. Using the conventional solution-based method, yellow co-crystals suitable for XRD measurement were obtained. The crystal structures of the co-crystals are mainly constructed by C—I⋯π and C—I⋯N halogen bonds. Other multiple inter­molecular inter­actions, such as ππ stacking, C—H⋯π, C—H⋯I as well as C—H⋯H—C inter­actions, are also observed in the co-crystals.

2. Structural commentary

The asymmetric units of co-crystals 1 and 2 each comprise one half TIE mol­ecule lying about an inversion centre and one PHN or BfQ mol­ecule in a general position, hence the co-crystals have a 1:2 stoichiometry (Fig. 1[link]). Co-crystal 1 crystallizes in the monoclinic space group C2/c while 2 crystallizes in the triclinic space group P[\overline{1}].

[Figure 1]
Figure 1
The mol­ecular structures of co-crystals 1 and 2, showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level [Symmetry codes: (i) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1 for co-crystal 1; (i) −x, −y + 1, −z + 2 for co-crystal 2].

3. Supra­molecular features

In the crystal of 1, C—I⋯N, C—I⋯C and C—I⋯π halogen bonds lead to the formation of a two-dimensional network structure in which the rectangular motif has a D⋯2AD⋯2A arrangement, as shown in Fig. 2[link]a. The I1 atom of the TIE mol­ecule inter­acts with the N1 atom of a PHN mol­ecule, forming a C1—I1⋯N1 halogen bond (Fig. 2[link]b). The I1⋯N1i distance is 2.864 (7) Å and the corresponding C14–I1⋯N1i angle is 172.8 (2)° [symmetry code: (i) x, y + 1, z]. The strong C14—I1⋯N1 halogen bond results in a I1⋯C13i distance [3.553 (8) Å] shorter than the sum of the van der Waals radii, which indicates a C1—I1⋯C13 halogen inter­action. In addition, the C14—I2⋯C9ii/C10ii C—I⋯π separations [Fig. 2[link]b; symmetry code: (ii) [1\over2] − x, [1\over2] − y, z] are 3.432 (9) and 3.612 (8) Å, and the corresponding bond angles are 165.6 (2) and 156.7 (2)°, respectively. Furthermore, ππ stacking [Fig. 2[link]c; Cg1⋯Cg2iii = 3.692 (4) Å, Cg3⋯Cg2iii = 3.626 (4) Å; Cg1, Cg2 and Cg3 are the centroids of rings C1–C6, C7–C12 and N1/C1/C6/C7/C12/C13, respectively; symmetry code: (iii) x, −1 + y, z] and C—H⋯H—C inter­actions between two adjacent PHN mol­ecules contribute to the extension of the two-dimensional network into a three-dimensional supra­molecular structure (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal packing of 1. (a) The two-dimensional network structure formed by C—I⋯N, C—I⋯C and C—I⋯π halogen bonds. (b) The structural motif extracted from the two-dimensional network. (c) The ππ stacking inter­actions extracted from the three-dimensional structure.
[Figure 3]
Figure 3
Crystal packing of 1. (a) The two-dimensional network extends along the a- and c-axis directions, and two directions connect by C—H⋯H—C inter­actions. (b) The two-dimensional networks connected by ππ stacking and C—H⋯H—C inter­actions to form a three-dimensional structure.

The two-dimensional network of co-crystal 2 is similar to that of 1, as shown in Fig. 4[link]a. Both of them are constructed by the same halogen-bonded synthon, i.e., C—I⋯N, C—I⋯C and C—I⋯π halogen bonds, but the bonding characteristics are slightly different. In general, the distances of the C—I⋯N, C—I⋯C and C—I⋯π inter­actions [I1⋯N1 = 2.901 (4), I1⋯C1 = 3.641 (5), I2⋯C13(−x, 1 − y, 1 − z) = 3.436 (5) and I2⋯C8(−x, 1 − y, 1 − z) = 3.733 (4) Å, respectively] in co-crystal 2 are all a little longer (0.004–0.121 Å) than in 1 (Fig. 4[link]b). In addition, the two-dimensional network (Fig. 5[link]) is extended to a three-dimensional supra­molecular structure by ππ stacking (Fig. 4[link]c and 5; Cg1⋯Cg1i = 3.562 (3) Å, Cg1⋯Cg2ii = 3.963 (2) Å, Cg1⋯Cg3ii = 3.746 (3) Å, Cg2⋯Cg2ii = 3.768 (2) Å; Cg1, Cg2 and Cg3 are the centroids of rings N1/C1–C5, C4–C9 and C8–C13, respectively; symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z] and C—H⋯I hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I2i 0.93 3.16 4.019 (5) 155
C6—H6⋯I1 0.93 3.31 3.945 (4) 127
Symmetry code: (i) x+1, y, z.
[Figure 4]
Figure 4
Crystal packing of 2. (a) The two-dimensional network structure formed by C—I⋯N and C—I⋯π halogen bonds. (b) The structural motif of the two-dimensional network. (c) The ππ stacking inter­actions in the three-dimensional structure.
[Figure 5]
Figure 5
Crystal packing of 2. The two-dimensional network extends along two directions, by C—I2⋯H7 inter­actions and ππ stacking in one direction, and by C—I2⋯H1 inter­actions and ππ stacking in the other.

4. Powder X-ray diffraction pattern

The powder X-ray diffraction (PXRD) experiments were carried out for the title co-crystals using a Bruker D8-ADVANCE X-ray diffractometer (Cu Kα, λ = 1.5418 Å) in the 2θ range of 5 to 50°. As shown in Fig. 6[link], the experimental patterns for 1 and 2 match well with the spectra simulated from the XRD data, which confirms the purity of 1 and 2.

[Figure 6]
Figure 6
Powder X-ray diffraction pattern of co-crystals (a) 1 and (b) 2.

5. Luminescence behavior of co-crystals 1 and 2

As shown in Fig. 7[link], the two co-crystals fluoresce with some vibrational fine structure (see also spectroscopic data in Table 2[link]). The two co-crystals also show delayed fluorescence (Fig. 8[link]). For both co-crystals, the emission bands in the region of 450–480 nm should be relative to the ππ stacking patterns. Luminescence from the excimer is possible because of the close ππ stacking distances as shown in Figs. 2[link]–5[link][link][link], besides luminescence from a monomer. Furthermore, TIE–PHN and TIE–BfQ produce weak phospho­rescence. The strong XB inter­action between the iodine atoms of TIE and the non-bonding orbitals of the aza­phenanthrene N atoms should cause the energy of the lowest 1(n, π*) state to drop below that of the 3(π, π*) state. It is supposed that for the singlet states the 0–0 transition of emitters in co-crystals is localized at 375 nm and 450 nm, respectively, and for triplet states the 0–0 transition is at about 600 nm. The energy gap between S1 and T1 is largely greater than 20 kJ mol−1, so the delayed fluorescence most likely originates from the triplet–triplet annihil­ation process, named P-type delayed fluorescence (P-DF). Both delayed fluorescence and phospho­rescence are relative to triplet states, so they should be significant for improving the exciton emission efficiency of luminescence materials (Adachi et al., 2001[Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). J. Appl. Phys. 90, 5048-5051.]).

Table 2
Phospho­rescent characteristics of co-crystals at room temperature

    TIE–PHN TIE–BfQ
Total luminescent spectra λex/nm 300 300
  λem /nm 375, 484, 578 368, 438, 452, 480
  τaverage/ ns 11.49 9.29
       
DF and phospho­rescent spectra λex/nm 330 330
  λem /nm 375, 489, 600 430, 489, 596, 654
  τaverage/ µs 4.36 6.45
[Figure 7]
Figure 7
Total luminescence spectra of co-crystals (a) 1 and (b) 2 (excitation at 300 nm) measured under fluorescence mode.
[Figure 8]
Figure 8
Luminescence spectra of co-crystals (a) 1 and (b) 2 (excitation at 330 nm) measured under phospho­rescence mode.

For the luminescence decay, all singlet state decay lifetimes (11.49 ns for 1 and 9.29 ns for 2) are about 10 ns, while the delayed fluorescence lifetime (4.36 µs for 1 and 6.45 µs for 2) is less than the 10 µs level because of the strong heavy-atom effect leading to a faster decay of the triplet state. Additionally, the phospho­rescence is too weak to measure its decay lifetime. However, the phospho­rescence lifetime can be estimated to be about 20 µs based on the relationship between P-DF and the accompanying phospho­rescence (Parker et al., 1962[Parker, C. A. & Hatchard, C. G. (1962). Proc. Roy. Soc. A, 269, 574-584.], 1965[Parker, C. A., Hatchard, C. G. & Joyce, T. A. (1965). Nature, 205, 1282-1284.]).

6. Synthesis and crystallization

0.1 mmol of PHN/BfQ and 0.05 mmol of TIE were dissolved in an acetone/chloro­form (2:1) mixture in a glass vial. Well–formed co-crystals 1 and 2 suitable for single-crystal X–ray diffraction (XRD) measurements were obtained by slow evaporation of the solvent at room temperature after about two weeks. Elemental analysis (%, EA) calculated for C14H9NI2 (445.02): C 37.78, H 2.04, N 3.15. Found: C 37.54, H 2.31, N 3.26. For co-crystal 1, and C 37.85, H 2.16, N 3.04 for co-crystal 2. IR (KBr, ν, cm−1) For 1: 3048(w), 1603(w), 1572(w), 1494(m), 1446(w), 1382(m), 1293(m), 1267(m), 1189(m), 1089(m), 948(m), 870(s), 832(s), 802(s), 749(s), 707(s), 615(m), 538(m), 487(m), 435(m). For 2: 3048(w), 1611(w), 1576(s), 1522(w), 1486(w), 1458(m), 1440(m), 1238(m), 1132(m), 1032(m), 953(m), 924(m), 889(s), 745(s), 714(s), 610(m), 552(m), 448(m), 423(m).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to C atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula 0.5C2I4·C13H9N 0.5C2I4·C13H9N
Mr 445.02 445.02
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 296 296
a, b, c (Å) 24.2920 (18), 4.8348 (4), 24.8761 (16) 7.3179 (4), 8.1089 (5), 11.3252 (7)
α, β, γ (°) 90, 116.272 (2), 90 97.050 (2), 92.059 (2), 95.579 (2)
V3) 2619.8 (3) 663.02 (7)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.78 4.72
Crystal size (mm) 0.30 × 0.25 × 0.25 0.35 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.489, 0.745 0.638, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 12094, 2635, 1782 8567, 2701, 2099
Rint 0.045 0.026
(sin θ/λ)max−1) 0.624 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.078, 1.03 0.028, 0.058, 1.08
No. of reflections 2635 2701
No. of parameters 154 154
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.62 0.80, −0.74
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015). Molecular graphics: SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2005) for (1); SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), for (2). For both structures, software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraiodoethylene–phenanthridine (1/2) (1) top
Crystal data top
0.5C2I4·C13H9NF(000) = 1648
Mr = 445.02Dx = 2.257 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.2920 (18) ÅCell parameters from 5311 reflections
b = 4.8348 (4) Åθ = 3.1–26.3°
c = 24.8761 (16) ŵ = 4.78 mm1
β = 116.272 (2)°T = 296 K
V = 2619.8 (3) Å3Block, yellow
Z = 80.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
1782 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.045
φ and ω scansθmax = 26.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 3029
Tmin = 0.489, Tmax = 0.745k = 66
12094 measured reflectionsl = 3130
2635 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0187P)2 + 28.9715P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2635 reflectionsΔρmax = 1.08 e Å3
154 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.70990 (2)0.95088 (10)0.57060 (2)0.04011 (16)
I20.85225 (2)0.96131 (11)0.56611 (2)0.04316 (16)
N10.6417 (3)0.1927 (12)0.6276 (2)0.0377 (14)
C10.6440 (3)0.1453 (14)0.6836 (3)0.0339 (16)
C20.6849 (3)0.0548 (15)0.7193 (3)0.0442 (18)
H20.7083230.1527750.7046710.053*
C30.6910 (4)0.1093 (16)0.7755 (3)0.053 (2)
H30.7193450.2399780.7994940.064*
C40.6547 (4)0.0319 (17)0.7965 (3)0.054 (2)
H40.6583180.0069330.8345370.065*
C50.6141 (3)0.2253 (16)0.7623 (3)0.0452 (19)
H50.5903820.3185820.7773440.054*
C60.6070 (3)0.2880 (14)0.7044 (3)0.0328 (16)
C70.5640 (3)0.4901 (13)0.6650 (3)0.0342 (16)
C80.5240 (3)0.6464 (16)0.6801 (3)0.0475 (19)
H80.5241610.6226300.7172640.057*
C90.4853 (3)0.8313 (17)0.6406 (4)0.054 (2)
H90.4591740.9330010.6513090.065*
C100.4834 (3)0.8741 (16)0.5846 (4)0.051 (2)
H100.4561281.0014510.5581480.061*
C110.5219 (3)0.7271 (15)0.5691 (3)0.0455 (19)
H110.5212080.7550530.5318340.055*
C120.5627 (3)0.5329 (14)0.6091 (3)0.0345 (16)
C130.6035 (3)0.3779 (15)0.5941 (3)0.0405 (18)
H130.6027070.4124090.5570150.049*
C140.7603 (3)0.8233 (15)0.5244 (3)0.0411 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0411 (3)0.0521 (3)0.0327 (3)0.0057 (2)0.0213 (2)0.0022 (2)
I20.0332 (3)0.0582 (3)0.0364 (3)0.0048 (2)0.0139 (2)0.0059 (2)
N10.034 (3)0.046 (4)0.037 (3)0.000 (3)0.019 (3)0.004 (3)
C10.034 (4)0.036 (4)0.033 (4)0.005 (3)0.016 (3)0.005 (3)
C20.042 (4)0.043 (4)0.046 (4)0.001 (4)0.018 (4)0.001 (4)
C30.060 (5)0.049 (5)0.041 (5)0.000 (4)0.013 (4)0.011 (4)
C40.067 (6)0.066 (6)0.027 (4)0.015 (5)0.019 (4)0.001 (4)
C50.048 (5)0.053 (5)0.041 (4)0.010 (4)0.026 (4)0.008 (4)
C60.031 (4)0.038 (4)0.030 (4)0.008 (3)0.014 (3)0.007 (3)
C70.032 (4)0.034 (4)0.041 (4)0.006 (3)0.020 (3)0.008 (3)
C80.045 (5)0.053 (5)0.049 (5)0.002 (4)0.026 (4)0.005 (4)
C90.031 (5)0.051 (5)0.081 (6)0.003 (4)0.025 (4)0.015 (5)
C100.038 (5)0.040 (5)0.070 (6)0.006 (4)0.019 (4)0.005 (4)
C110.042 (5)0.049 (5)0.039 (4)0.012 (4)0.012 (4)0.003 (4)
C120.030 (4)0.036 (4)0.033 (4)0.003 (3)0.010 (3)0.001 (3)
C130.046 (5)0.052 (5)0.030 (4)0.005 (4)0.023 (4)0.002 (4)
C140.045 (5)0.044 (5)0.043 (4)0.007 (4)0.028 (4)0.003 (3)
Geometric parameters (Å, º) top
I1—C142.108 (6)C6—C71.449 (9)
I2—C142.111 (7)C7—C121.394 (9)
N1—C131.293 (8)C7—C81.406 (9)
N1—C11.390 (8)C8—C91.353 (10)
C1—C21.389 (9)C8—H80.9300
C1—C61.400 (9)C9—C101.387 (11)
C2—C31.364 (10)C9—H90.9300
C2—H20.9300C10—C111.360 (10)
C3—C41.389 (11)C10—H100.9300
C3—H30.9300C11—C121.408 (9)
C4—C51.352 (10)C11—H110.9300
C4—H40.9300C12—C131.416 (9)
C5—C61.406 (9)C13—H130.9300
C5—H50.9300C14—C14i1.301 (13)
C13—N1—C1117.3 (6)C9—C8—C7120.1 (7)
N1—C1—C2117.1 (6)C9—C8—H8120.0
N1—C1—C6122.8 (6)C7—C8—H8120.0
C2—C1—C6120.1 (6)C8—C9—C10122.1 (7)
C3—C2—C1120.8 (7)C8—C9—H9119.0
C3—C2—H2119.6C10—C9—H9119.0
C1—C2—H2119.6C11—C10—C9119.0 (7)
C2—C3—C4119.4 (7)C11—C10—H10120.5
C2—C3—H3120.3C9—C10—H10120.5
C4—C3—H3120.3C10—C11—C12120.4 (7)
C5—C4—C3120.8 (7)C10—C11—H11119.8
C5—C4—H4119.6C12—C11—H11119.8
C3—C4—H4119.6C7—C12—C11120.1 (6)
C4—C5—C6121.2 (7)C7—C12—C13118.4 (6)
C4—C5—H5119.4C11—C12—C13121.6 (6)
C6—C5—H5119.4N1—C13—C12125.7 (6)
C1—C6—C5117.7 (6)N1—C13—H13117.1
C1—C6—C7118.1 (6)C12—C13—H13117.1
C5—C6—C7124.2 (6)C14i—C14—I2121.2 (7)
C12—C7—C8118.3 (7)C14i—C14—I1126.2 (7)
C12—C7—C6117.7 (6)I2—C14—I1112.5 (3)
C8—C7—C6124.0 (6)
C13—N1—C1—C2179.7 (6)C5—C6—C7—C80.3 (11)
C13—N1—C1—C60.2 (10)C12—C7—C8—C90.5 (11)
N1—C1—C2—C3178.4 (7)C6—C7—C8—C9179.9 (7)
C6—C1—C2—C32.1 (11)C7—C8—C9—C100.0 (12)
C1—C2—C3—C41.8 (12)C8—C9—C10—C110.5 (12)
C2—C3—C4—C51.0 (12)C9—C10—C11—C120.5 (11)
C3—C4—C5—C60.5 (12)C8—C7—C12—C110.5 (10)
N1—C1—C6—C5179.0 (6)C6—C7—C12—C11179.9 (6)
C2—C1—C6—C51.5 (10)C8—C7—C12—C13179.3 (6)
N1—C1—C6—C71.0 (10)C6—C7—C12—C130.2 (10)
C2—C1—C6—C7178.5 (6)C10—C11—C12—C70.0 (10)
C4—C5—C6—C10.7 (10)C10—C11—C12—C13179.7 (7)
C4—C5—C6—C7179.3 (7)C1—N1—C13—C121.4 (10)
C1—C6—C7—C120.9 (9)C7—C12—C13—N11.5 (11)
C5—C6—C7—C12179.1 (7)C11—C12—C13—N1178.8 (7)
C1—C6—C7—C8179.7 (6)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Tetraiodoethylene–benzo[f]quinoline (1/2) (2) top
Crystal data top
0.5C2I4·C13H9NZ = 2
Mr = 445.02F(000) = 412
Triclinic, P1Dx = 2.229 Mg m3
a = 7.3179 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1089 (5) ÅCell parameters from 4699 reflections
c = 11.3252 (7) Åθ = 2.8–26.4°
α = 97.050 (2)°µ = 4.72 mm1
β = 92.059 (2)°T = 296 K
γ = 95.579 (2)°Block, yellow
V = 663.02 (7) Å30.35 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2099 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.026
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.638, Tmax = 0.745k = 1010
8567 measured reflectionsl = 1414
2701 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0189P)2 + 0.7413P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2701 reflectionsΔρmax = 0.80 e Å3
154 parametersΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.20988 (4)0.45307 (3)0.82595 (2)0.04767 (10)
I20.08934 (4)0.75374 (3)0.91391 (3)0.05167 (11)
N10.4565 (5)0.3596 (5)0.6400 (3)0.0518 (9)
C10.6267 (7)0.4270 (6)0.6615 (4)0.0597 (13)
H10.6554450.4953770.7332120.072*
C20.7655 (7)0.4022 (6)0.5841 (5)0.0613 (13)
H20.8838740.4533580.6034950.074*
C30.7274 (6)0.3026 (6)0.4794 (5)0.0541 (12)
H30.8195070.2861900.4259580.065*
C40.5492 (5)0.2240 (5)0.4514 (4)0.0399 (10)
C50.4171 (5)0.2587 (5)0.5350 (4)0.0389 (9)
C60.2327 (6)0.1869 (5)0.5119 (4)0.0470 (11)
H60.1447880.2111540.5669820.056*
C70.1844 (6)0.0845 (5)0.4114 (4)0.0471 (11)
H70.0627320.0387870.3983400.057*
C80.3128 (6)0.0431 (5)0.3238 (4)0.0424 (10)
C90.4960 (6)0.1144 (5)0.3424 (4)0.0418 (10)
C100.6199 (7)0.0731 (6)0.2544 (4)0.0561 (12)
H100.7415100.1198470.2642070.067*
C110.5643 (9)0.0348 (7)0.1546 (5)0.0730 (16)
H110.6486150.0607340.0974570.088*
C120.3842 (9)0.1063 (7)0.1373 (4)0.0716 (16)
H120.3479070.1802180.0693040.086*
C130.2612 (7)0.0676 (6)0.2203 (4)0.0555 (12)
H130.1401450.1153800.2084200.067*
C140.0238 (6)0.5360 (5)0.9536 (4)0.0449 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0579 (2)0.04585 (18)0.04064 (16)0.01385 (14)0.01030 (14)0.00193 (12)
I20.0700 (2)0.04158 (18)0.04756 (18)0.02041 (15)0.00980 (15)0.00849 (13)
N10.058 (3)0.051 (2)0.049 (2)0.0117 (19)0.003 (2)0.0083 (18)
C10.068 (3)0.052 (3)0.058 (3)0.007 (3)0.016 (3)0.006 (2)
C20.042 (3)0.067 (3)0.076 (4)0.002 (2)0.010 (3)0.024 (3)
C30.039 (3)0.055 (3)0.073 (3)0.006 (2)0.013 (2)0.026 (3)
C40.036 (2)0.041 (2)0.049 (2)0.0109 (18)0.008 (2)0.0221 (19)
C50.041 (2)0.036 (2)0.043 (2)0.0108 (18)0.0065 (19)0.0135 (18)
C60.042 (2)0.054 (3)0.048 (3)0.008 (2)0.015 (2)0.009 (2)
C70.036 (2)0.051 (3)0.056 (3)0.003 (2)0.006 (2)0.016 (2)
C80.051 (3)0.036 (2)0.044 (2)0.0087 (19)0.006 (2)0.0144 (18)
C90.046 (2)0.042 (2)0.044 (2)0.0161 (19)0.014 (2)0.0199 (19)
C100.059 (3)0.066 (3)0.052 (3)0.023 (2)0.021 (2)0.022 (2)
C110.099 (5)0.080 (4)0.051 (3)0.043 (4)0.031 (3)0.018 (3)
C120.115 (5)0.059 (3)0.044 (3)0.025 (3)0.007 (3)0.004 (2)
C130.072 (3)0.047 (3)0.049 (3)0.009 (2)0.003 (3)0.010 (2)
C140.054 (3)0.039 (2)0.041 (2)0.011 (2)0.002 (2)0.0017 (18)
Geometric parameters (Å, º) top
I1—C142.116 (4)C6—H60.9300
I2—C142.111 (4)C7—C81.423 (6)
N1—C11.313 (6)C7—H70.9300
N1—C51.363 (5)C8—C131.402 (6)
C1—C21.379 (7)C8—C91.405 (6)
C1—H10.9300C9—C101.403 (6)
C2—C31.354 (7)C10—C111.365 (7)
C2—H20.9300C10—H100.9300
C3—C41.402 (6)C11—C121.384 (8)
C3—H30.9300C11—H110.9300
C4—C51.401 (5)C12—C131.355 (7)
C4—C91.448 (6)C12—H120.9300
C5—C61.418 (6)C13—H130.9300
C6—C71.339 (6)C14—C14i1.305 (8)
C1—N1—C5117.4 (4)C13—C8—C9119.4 (4)
N1—C1—C2123.8 (5)C13—C8—C7121.7 (4)
N1—C1—H1118.1C9—C8—C7118.9 (4)
C2—C1—H1118.1C10—C9—C8118.0 (4)
C3—C2—C1119.2 (4)C10—C9—C4123.0 (4)
C3—C2—H2120.4C8—C9—C4119.0 (4)
C1—C2—H2120.4C11—C10—C9120.9 (5)
C2—C3—C4120.1 (4)C11—C10—H10119.6
C2—C3—H3120.0C9—C10—H10119.6
C4—C3—H3120.0C10—C11—C12121.0 (5)
C3—C4—C5116.5 (4)C10—C11—H11119.5
C3—C4—C9124.0 (4)C12—C11—H11119.5
C5—C4—C9119.5 (4)C13—C12—C11119.5 (5)
N1—C5—C4123.0 (4)C13—C12—H12120.3
N1—C5—C6117.1 (4)C11—C12—H12120.3
C4—C5—C6119.9 (4)C12—C13—C8121.3 (5)
C7—C6—C5120.4 (4)C12—C13—H13119.4
C7—C6—H6119.8C8—C13—H13119.4
C5—C6—H6119.8C14i—C14—I2121.4 (4)
C6—C7—C8122.3 (4)C14i—C14—I1126.2 (4)
C6—C7—H7118.9I2—C14—I1112.33 (18)
C8—C7—H7118.9
C5—N1—C1—C20.5 (7)C13—C8—C9—C101.1 (6)
N1—C1—C2—C30.3 (8)C7—C8—C9—C10179.4 (4)
C1—C2—C3—C40.9 (7)C13—C8—C9—C4177.9 (4)
C2—C3—C4—C51.7 (6)C7—C8—C9—C41.6 (6)
C2—C3—C4—C9179.4 (4)C3—C4—C9—C101.3 (6)
C1—N1—C5—C40.5 (6)C5—C4—C9—C10179.8 (4)
C1—N1—C5—C6179.7 (4)C3—C4—C9—C8179.7 (4)
C3—C4—C5—N11.6 (6)C5—C4—C9—C80.9 (6)
C9—C4—C5—N1179.5 (4)C8—C9—C10—C110.9 (6)
C3—C4—C5—C6178.6 (4)C4—C9—C10—C11178.1 (4)
C9—C4—C5—C60.3 (6)C9—C10—C11—C120.1 (8)
N1—C5—C6—C7179.0 (4)C10—C11—C12—C130.4 (8)
C4—C5—C6—C70.8 (6)C11—C12—C13—C80.2 (7)
C5—C6—C7—C80.1 (7)C9—C8—C13—C120.5 (6)
C6—C7—C8—C13178.4 (4)C7—C8—C13—C12180.0 (4)
C6—C7—C8—C91.1 (6)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I2ii0.933.164.019 (5)155
C6—H6···I10.933.313.945 (4)127
Symmetry code: (ii) x+1, y, z.
Phosphorescent characteristics of co-crystals at room temperature top
TIE–PHNTIE–BfQ
Total luminescent spectraλex/nm300300
λem /nm375, 484, 578368, 452, 480
τaverage/ ns11.499.29
DF and phosphorescent spectraλex/nm330330
λem /nm375, 489, 600430, 489, 596
τaverage/ µs4.366.45
 

Funding information

The authors are grateful for support by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (grant No. 2019L0895) and the Undergraduate Innovation and Entrepreneurship Project of Changzhi University (award No. zz201814).

References

First citationAdachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). J. Appl. Phys. 90, 5048–5051.  Web of Science CrossRef CAS Google Scholar
First citationAgostino, S. d', Grepioni, F., Braga, D. & Ventura, B. (2015). Cryst. Growth Des. 15, 2039–2045.  Google Scholar
First citationBaldo, M. A., O'Brien, D. F., Thompson, M. E. & Forrest, S. R. (1999). Phys. Rev. B, 60, 14422–14428.  Web of Science CrossRef CAS Google Scholar
First citationBolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. (2011). Nat. Chem. 3, 205–210.  CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, A. R., Pichler, K., Greenham, N. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. (1993). Chem. Phys. Lett. 210, 61–66.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationGao, H. Y., Shen, Q. J., Zhao, X. R., Yan, X. Q., Pang, X. & Jin, W. J. (2012). J. Mater. Chem. 22, 5336–5343.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, Y. J., Li, C., Liu, R. & Jin, W. J. (2017). Spectrochim. Acta A, 173, 792–799.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, R., Gao, Y. J. & Jin, W. J. (2017a). Acta Cryst. B73, 247–254.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, R., Wang, H. & Jin, W. J. (2017b). Cryst. Growth Des. 17, 3331–3337.  CSD CrossRef CAS Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParker, C. A. & Hatchard, C. G. (1962). Proc. Roy. Soc. A, 269, 574–584.  Google Scholar
First citationParker, C. A., Hatchard, C. G. & Joyce, T. A. (1965). Nature, 205, 1282–1284.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVentura, B., Bertocco, A., Braga, D., Catalano, L., d'Agostino, S., Grepioni, F. & Taddei, P. (2014). J. Phys. Chem. C, 118, 18646–18658.  Web of Science CrossRef CAS Google Scholar
First citationWang, H., Hu, R. X., Pang, X., Gao, H. Y. & Jin, W. J. (2014). CrystEngComm, 16, 7942–7948.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H. & Jin, W. J. (2017). Acta Cryst. B73, 210–216.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072–5104.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds