research communications
μ3-4-amino-1,2,5-oxadiazole-3-hydroxamato)thallium(I)]
of poly[(aDepartment of Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine, and cDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kyiv, Ukraine
*Correspondence e-mail: sssafyanova@gmail.com
The title compound represents the thallium(I) salt of a substituted 1,2,5-oxadiazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxadiazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an intermediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π–π stacking [centroid–centroid distance = 3.746 (3) Å] and intermolecular N—H⋯N hydrogen bonds.
Keywords: crystal structure; 1,2,5-oxadiazole; hydroxamic acid; thallium(I); tautomerism.
CCDC reference: 1981874
1. Chemical context
Substituted oxadiazoles attract attention because of their wide range of applications in organic synthesis as useful intermediates (Romeo & Chiacchio, 2011; Zlotin et al., 2017) and for drug design (Giorgis et al., 2011; Pal et al., 2017; Stepanov et al., 2015). In addition, molecules with the oxadiazole moiety can be considered for the creation of energetic systems (Zhang et al., 2015) with high thermal stability and mechanical sensitivity. The variety of coordination modes typical for oxadiazole-containing ligands result in the formation of multiple mono- and polynuclear complexes, as well as coordination polymers (Akhbari & Morsali, 2010). Complexes with oxadiazole-based ligands have demonstrated significant biological activity as anti-cancer (Glomb et al., 2018), anti-inflammatory (Singh et al., 2013), anti-tuberculosis (De et al., 2019) and anti-malarial (Zareef et al., 2007) agents.
However, the standard synthetic procedures for oxadiazole-containing scaffolds usually utilizes the dehydrative ; Romeo & Chiacchio, 2011) and often includes the introduction of different activating reagents (Shaposhnikov et al., 2003; Telvekar & Takale, 2013). A convenient procedure for the synthesis of substituted 4-amino-1,2,5-oxadiazoles based on the formation of bis-oximes in situ from the hydroxylamine and cyano-oximes was recently proposed (Neel & Zhao, 2018). The introduction of dehydrating agents allows a significant decrease in the temperature during reaction, gave the possibility to synthesize substituted 1,2,5-oxadiazoles with various side functional groups. In this regard, we have adapted the synthetic procedure for 1,2,5-oxadiazole with amino- and hydroxamate groups in the 4- and 3- position of the 1,2,5-oxadiazole ring, respectively, and report here the thallium(I) salt of this compound, 1, Tl(C3H3N4O3). The introduction of a hydroxamic group at the 1,2,5-oxadiazole ring allows the consideration of potentially interesting ligand systems for the synthesis of various polynuclear complexes (Pavlishchuk et al., 2018; Lutter et al., 2018; Ostrowska et al., 2019; Gumienna-Kontecka et al., 2007).
of bis-oximes, which is performed at high temperatures (Fershtat & Makhova, 20162. Structural commentary
The 1 comprises one 4-amino-1,2,5-oxadiazole-3 hydroxamate anion and a thallium(I) cation. The oxadiazole ring C2/C3/N2/O3/N3 is almost planar with the largest deviation from the least-squares plane being 0.007 Å for C2. The C2=N2 and C3=N3 bond lengths [1.304 (14) and 1.329 (11) Å, respectively] are typical for C=N double bonds in substituted oxadiazole cycles (Viterbo & Serafino, 1978), and the N2—O3 and N3—O3 bonds [1.365 (11) and 1.419 (11) Å, respectively] also fall in a range typical for 1,2,5-oxadiazoles (Fonari et al., 2003; Viterbo & Serafino, 1978). The substituent amino- and hydroxamate groups in the 4- and 3- positions, respectively, of the 1,2,5-oxadiazole ring are nearly coplanar with the oxadiazole ring, with a deviation of 0.071 Å for nitrogen atom N4 of the amino group and a dihedral angle between the mean plane of the heterocycle and the hydroxamate group C1/O2/N1/O1 of 8.4 (4)°. The C3—N4 [1.360 (13) Å] and N1—O1 [1.412 (9) Å] bond lengths are typical for a non-coordinating amino group (Fonari et al., 2003; Viterbo & Serafino, 1978) and for a deprotonated hydroxamate group (Golenya et al., 2012; Safyanova et al., 2017), respectively. On the other hand, the C1—N1 [1.314 (12) Å] and C1—O2 [1.275 (11) Å] bond lengths are intermediate between the tautomeric keto and enol forms (Larsen, 1988), accompanied by a delocalization of the π electrons over the N1—C1—O2 backbone and a disorder of the corresponding hydrogen atom that could not be localized from difference-Fourier maps.
ofThe Tl1 cation in 1 is bonded to the bidentate hydroxamate anion through oxygen atoms O1 [2.814 (7) Å] and O2 [2.537 (7) Å] in the form of a five-membered chelate ring. The coordination sphere of the Tl1 cation in 1 is augmented to four by two monodentately binding O2 atoms of two adjacent oxadiazole moieties with distances of Tl1—O2ii = 2.880 (7) Å and Tl1—O2i = 2.761 (7) Å [symmetry codes: (i) −x, y + , −z + ; (ii) −x, y − , −z + ] (Fig. 1). The bond length Tl1—O2 is ca 0.2–0.3 Å shorter in the case of the chelating coordination mode of the hydroxamate group compared with the monodentate coordination mode. Thus, each O2 atom is involved in a chelate coordination with one Tl1 ion and in a monodentate coordination with two other Tl1 ions, forming zigzag chains extending along the b-axis direction (Fig. 2). The Tl—O bond lengths involving the hydroxamate oxygen atoms in 1 are typical for TlI compounds (Salassa & Terenzi, 2019), and the formation of similar polymeric chains is frequently observed for TlI complexes (Akhbari et al., 2009). The resulting coordination sphere of Tl1 can be best described as a distorted seesaw (SS-4) or disphenoid with a stereochemically active lone pair (Mudring & Rieger, 2005). If longer bonds are taken into account (Akhbari & Morsali, 2010; Schroffenegger et al., 2020), the Tl1 cation also has weak interactions at 3.453 (8), 3.289 (9), 3.385 (7) and 3.219 (8) Å with O3iv, N2ii, O1v and O3vi [symmetry codes: (iv) x, −y + , z + ; (v) x, y + 1, z; (vi) x, −y + , z + ] atoms from another three oxadiazole moieties. The closest contact between adjacent Tl1 cations within a zigzag chain is 3.7458 (5) Å.
3. Supramolecular features
In the crystal, the oxadiazole rings are stacked in a parallel manner with a centroid–centroid distance = 3.746 (3) Å (Fig. 1). Together with weak intermolecular hydrogen bonds between the amino group (N4) and two nitrogen atoms from the azolo (N3) and the hydroxamic (N1) group (Table 1, Fig. 3) they support the cohesion of the chains along the b-axis direction.
4. Database survey
A search in the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016) for substituted oxadiazoles revealed two structures, viz. 3-amino-4-methylfurazan (Pibiri et al., 2018) and 4-amino-1,2,5-oxadiazole-3-carboxamide oxime (Zhang & Jian, 2009). TlI complexes with comparable organic ligands have been reported for thallium (anthranoyl)anthranilate (Wiesbrock & Schmidbaur, 2004), thallium(I) 2-amino-benzoate (Wiesbrock & Schmidbaur, 2003), thallium(I) arylcyanoxime (Robertson et al., 2004) [Tl4(H2O)2(anthracene-9-carboxylate)4] (Kumar et al., 2015), bis[(μ-1,3-diphenylpropane-1,3-dionato-O,O′:O′)dimethylthallium] (Britton, 2001) and thallium(I) 4-hydroxybenzylidene-4-aminobenzoate (Akhbari et al., 2009).
5. Synthesis and crystallization
The title compound was obtained according to a modification of the procedure reported by Neel & Zhao (2018) (Fig. 4). Solutions containing 5 mmol of hydroxylamine hydrochloride in 10 ml of methanol, and 10 mmol of sodium methoxide in 15 ml of methanol were stirred for 30 min while cooling in an ice bath. The formed precipitate of sodium chloride was filtered off. The methanolic solutions of ethyl-2-cyano-2-(hydroxyimino)acetate (5 mmol) and hydroxylamine were combined and stirred for 5 h at room temperature. The resulting white precipitate was filtered off and dissolved in 5 ml of water, followed by HCl addition to pH = 5. The organic compound was extracted with ethyl acetate; the extract was subsequently dried over anhydrous Na2SO4, and the solvent was finally removed by rotary evaporation. Colorless crystals of 1 suitable for single crystal X-ray analysis were obtained by combining the organic compound with thallium(I) nitrate in isopropanol and subsequent slow evaporation of the solvent at ambient temperature within 48 h (yield 16.5%).
6. Refinement
Crystal data, data collection and structure . The H atoms of the amino group were located from a difference-Fourier map; their coordinates were refined freely with Uiso(H) = 1.2Ueq(N). The hydrogen atom of the hydroxamate function could not be observed in difference-Fourier maps, and a tentative calculated position was in too close vicinity to atom H4B of the amino group. Most probably, the hydroxamate H atom is disordered over the N1—C1—O2 backbone due to the presence of both tautomeric forms. Hence, this H atom is not included in the final model. The highest remaining electron density is located 0.88 Å from Tl1.
details are summarized in Table 2Supporting information
CCDC reference: 1981874
https://doi.org/10.1107/S2056989020001577/wm5530sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001577/wm5530Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Tl(C3H3N4O3)] | F(000) = 612 |
Mr = 347.46 | Dx = 3.610 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0731 (4) Å | Cell parameters from 216 reflections |
b = 3.74576 (18) Å | θ = 4.4–22.3° |
c = 16.9805 (6) Å | µ = 25.30 mm−1 |
β = 95.808 (4)° | T = 298 K |
V = 637.41 (5) Å3 | Block, clear colourless |
Z = 4 | 0.2 × 0.2 × 0.2 mm |
Agilent Xcalibur Sapphire3 CCD diffractometer | 1320 reflections with I > 2σ(I) |
ω scans | Rint = 0.056 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | θmax = 27.5°, θmin = 3.0° |
Tmin = 0.231, Tmax = 1.000 | h = −13→13 |
4634 measured reflections | k = −4→4 |
1452 independent reflections | l = −22→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0629P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1452 reflections | Δρmax = 6.17 e Å−3 |
100 parameters | Δρmin = −2.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Tl1 | 0.05880 (4) | 0.45183 (11) | 0.86058 (2) | 0.03141 (19) | |
O2 | 0.1164 (7) | 0.4279 (17) | 0.7187 (4) | 0.0298 (15) | |
O1 | 0.2851 (8) | 0.0779 (19) | 0.8210 (4) | 0.0339 (17) | |
O3 | 0.2375 (8) | 0.4924 (18) | 0.4946 (5) | 0.0339 (17) | |
N2 | 0.1809 (10) | 0.510 (2) | 0.5642 (6) | 0.0299 (19) | |
N1 | 0.3245 (8) | 0.148 (2) | 0.7450 (4) | 0.0301 (17) | |
C1 | 0.2298 (9) | 0.319 (2) | 0.7013 (5) | 0.0257 (18) | |
N4 | 0.4966 (9) | 0.110 (2) | 0.6207 (5) | 0.0339 (19) | |
H4A | 0.528766 | −0.041040 | 0.583376 | 0.041* | |
H4B | 0.482666 | 0.024160 | 0.675476 | 0.041* | |
N3 | 0.3648 (8) | 0.328 (2) | 0.5070 (4) | 0.0332 (18) | |
C2 | 0.2653 (9) | 0.367 (3) | 0.6185 (5) | 0.0267 (18) | |
C3 | 0.3828 (9) | 0.254 (2) | 0.5839 (5) | 0.0243 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tl1 | 0.0281 (3) | 0.0419 (3) | 0.0240 (3) | 0.00530 (14) | 0.00185 (18) | −0.00084 (13) |
O2 | 0.019 (3) | 0.047 (4) | 0.024 (3) | 0.002 (3) | 0.004 (3) | −0.002 (3) |
O1 | 0.026 (4) | 0.053 (4) | 0.023 (4) | 0.001 (3) | 0.004 (3) | 0.006 (3) |
O3 | 0.030 (4) | 0.049 (4) | 0.023 (4) | 0.001 (3) | 0.002 (3) | 0.003 (3) |
N2 | 0.028 (5) | 0.040 (4) | 0.022 (4) | 0.004 (3) | 0.003 (4) | 0.003 (3) |
N1 | 0.027 (4) | 0.041 (4) | 0.023 (4) | 0.005 (4) | 0.005 (3) | 0.002 (3) |
C1 | 0.032 (5) | 0.024 (4) | 0.022 (4) | −0.002 (4) | 0.003 (4) | −0.004 (3) |
N4 | 0.031 (5) | 0.044 (5) | 0.029 (4) | 0.008 (4) | 0.011 (4) | −0.001 (4) |
N3 | 0.028 (4) | 0.042 (5) | 0.028 (4) | 0.009 (4) | 0.000 (3) | 0.002 (4) |
C2 | 0.020 (4) | 0.029 (4) | 0.030 (5) | −0.002 (4) | −0.001 (4) | −0.005 (4) |
C3 | 0.023 (4) | 0.030 (4) | 0.020 (4) | −0.004 (3) | 0.000 (3) | −0.006 (3) |
Tl1—O2 | 2.537 (7) | O1—N1 | 1.412 (9) |
Tl1—O2i | 2.761 (7) | O3—N2 | 1.365 (11) |
Tl1—O1 | 2.814 (7) | O3—N3 | 1.419 (11) |
Tl1—O2ii | 2.880 (7) | N2—C2 | 1.304 (14) |
Tl1—O3iii | 3.219 (8) | N1—C1 | 1.314 (12) |
Tl1—N2ii | 3.289 (9) | C1—C2 | 1.497 (11) |
Tl1—C1i | 3.291 (9) | N4—C3 | 1.360 (13) |
Tl1—O1iv | 3.385 (7) | N4—H4A | 0.9324 |
Tl1—C1 | 3.387 (8) | N4—H4B | 1.0077 |
Tl1—O3v | 3.453 (8) | N3—C3 | 1.329 (11) |
O2—C1 | 1.275 (11) | C2—C3 | 1.437 (11) |
O2—Tl1—O2i | 75.9 (2) | N1—O1—Tl1vi | 124.6 (6) |
O2—Tl1—O1 | 59.1 (2) | Tl1—O1—Tl1vi | 73.70 (15) |
O2i—Tl1—O1 | 134.3 (2) | N1—O1—Tl1ii | 69.9 (5) |
O2—Tl1—O2ii | 73.8 (2) | Tl1—O1—Tl1ii | 67.89 (16) |
O2i—Tl1—O2ii | 83.2 (2) | Tl1vi—O1—Tl1ii | 64.47 (13) |
O1—Tl1—O2ii | 91.3 (2) | N2—O3—N3 | 110.1 (8) |
O2—Tl1—O3iii | 119.2 (2) | N2—O3—Tl1vii | 112.7 (6) |
O2i—Tl1—O3iii | 164.3 (2) | N3—O3—Tl1vii | 108.2 (5) |
O1—Tl1—O3iii | 60.21 (19) | N2—O3—Tl1viii | 107.8 (5) |
O2ii—Tl1—O3iii | 104.50 (19) | N3—O3—Tl1viii | 139.7 (5) |
O2—Tl1—O1iv | 67.2 (2) | Tl1vii—O3—Tl1viii | 68.20 (17) |
O2i—Tl1—O1iv | 82.28 (19) | N2—O3—Tl1i | 29.7 (5) |
O1—Tl1—O1iv | 73.70 (16) | N3—O3—Tl1i | 137.7 (5) |
O2ii—Tl1—O1iv | 140.56 (18) | Tl1vii—O3—Tl1i | 103.6 (2) |
O3iii—Tl1—O1iv | 99.15 (19) | Tl1viii—O3—Tl1i | 78.16 (14) |
O2—Tl1—O3v | 119.6 (2) | N2—O3—Tl1ii | 36.6 (5) |
O2i—Tl1—O3v | 101.3 (2) | N3—O3—Tl1ii | 111.1 (5) |
O1—Tl1—O3v | 94.4 (2) | Tl1vii—O3—Tl1ii | 78.51 (15) |
O2ii—Tl1—O3v | 166.55 (18) | Tl1viii—O3—Tl1ii | 107.4 (2) |
O3iii—Tl1—O3v | 68.20 (17) | Tl1i—O3—Tl1ii | 49.53 (8) |
O1iv—Tl1—O3v | 52.89 (17) | C2—N2—O3 | 107.0 (8) |
Tl1—O2—Tl1ii | 106.8 (2) | C1—N1—O1 | 110.6 (7) |
C1—O2—Tl1i | 129.1 (6) | O2—C1—N1 | 129.9 (8) |
Tl1—O2—Tl1i | 103.4 (2) | O2—C1—C2 | 118.9 (9) |
Tl1ii—O2—Tl1i | 83.2 (2) | N1—C1—C2 | 111.1 (7) |
C1—O2—Tl1vi | 91.8 (5) | C3—N4—H4A | 105.2 |
Tl1—O2—Tl1vi | 57.29 (13) | C3—N4—H4B | 111.1 |
Tl1ii—O2—Tl1vi | 67.75 (13) | H4A—N4—H4B | 121.6 |
Tl1i—O2—Tl1vi | 134.9 (2) | C3—N3—O3 | 105.6 (6) |
C1—O2—Tl1iv | 123.5 (6) | N2—C2—C3 | 109.7 (8) |
Tl1—O2—Tl1iv | 54.51 (12) | N2—C2—C1 | 120.8 (8) |
Tl1ii—O2—Tl1iv | 133.3 (2) | C3—C2—C1 | 129.3 (9) |
Tl1i—O2—Tl1iv | 64.69 (12) | N3—C3—N4 | 124.0 (7) |
Tl1vi—O2—Tl1iv | 111.80 (14) | N3—C3—C2 | 107.6 (8) |
N1—O1—Tl1 | 115.8 (5) | N4—C3—C2 | 128.3 (8) |
N3—O3—N2—C2 | −0.1 (10) | Tl1vi—N1—C1—Tl1i | 74.4 (19) |
Tl1vii—O3—N2—C2 | 120.8 (7) | O1—N1—C1—Tl1vi | −38.2 (6) |
Tl1viii—O3—N2—C2 | −166.0 (6) | Tl1—N1—C1—Tl1vi | −48.4 (2) |
Tl1i—O3—N2—C2 | −161.9 (14) | Tl1ii—N1—C1—Tl1vi | 29.4 (5) |
Tl1ii—O3—N2—C2 | 98.6 (9) | N2—O3—N3—C3 | −0.6 (10) |
N3—O3—N2—Tl1i | 161.8 (7) | Tl1vii—O3—N3—C3 | −124.1 (6) |
Tl1vii—O3—N2—Tl1i | −77.3 (8) | Tl1viii—O3—N3—C3 | 158.3 (6) |
Tl1viii—O3—N2—Tl1i | −4.1 (10) | Tl1i—O3—N3—C3 | 12.7 (11) |
Tl1ii—O3—N2—Tl1i | −99.5 (12) | Tl1ii—O3—N3—C3 | −39.7 (8) |
N3—O3—N2—Tl1ii | −98.7 (9) | N2—O3—N3—Tl1vii | 123.5 (7) |
Tl1vii—O3—N2—Tl1ii | 22.2 (9) | Tl1viii—O3—N3—Tl1vii | −77.5 (7) |
Tl1viii—O3—N2—Tl1ii | 95.4 (6) | Tl1i—O3—N3—Tl1vii | 136.8 (8) |
Tl1i—O3—N2—Tl1ii | 99.5 (12) | Tl1ii—O3—N3—Tl1vii | 84.4 (3) |
N3—O3—N2—Tl1vii | −120.9 (7) | N2—O3—N3—Tl1viii | −158.9 (12) |
Tl1viii—O3—N2—Tl1vii | 73.2 (4) | Tl1vii—O3—N3—Tl1viii | 77.5 (7) |
Tl1i—O3—N2—Tl1vii | 77.3 (8) | Tl1i—O3—N3—Tl1viii | −145.6 (13) |
Tl1ii—O3—N2—Tl1vii | −22.2 (9) | Tl1ii—O3—N3—Tl1viii | 161.9 (10) |
N3—O3—N2—Tl1viii | 165.9 (8) | O3—N2—C2—C3 | 0.7 (11) |
Tl1vii—O3—N2—Tl1viii | −73.2 (4) | Tl1i—N2—C2—C3 | −166.4 (6) |
Tl1i—O3—N2—Tl1viii | 4.1 (10) | Tl1ii—N2—C2—C3 | 131.4 (7) |
Tl1ii—O3—N2—Tl1viii | −95.4 (6) | Tl1vii—N2—C2—C3 | 52.0 (10) |
Tl1—O1—N1—C1 | −13.7 (9) | Tl1viii—N2—C2—C3 | −29 (2) |
Tl1vi—O1—N1—C1 | 73.8 (9) | O3—N2—C2—C1 | −175.4 (8) |
Tl1ii—O1—N1—C1 | 37.9 (6) | Tl1i—N2—C2—C1 | 17.5 (11) |
Tl1vi—O1—N1—Tl1 | 87.4 (6) | Tl1ii—N2—C2—C1 | −44.7 (8) |
Tl1ii—O1—N1—Tl1 | 51.6 (4) | Tl1vii—N2—C2—C1 | −124.2 (7) |
Tl1—O1—N1—Tl1ii | −51.6 (4) | Tl1viii—N2—C2—C1 | 154.6 (11) |
Tl1vi—O1—N1—Tl1ii | 35.9 (5) | O3—N2—C2—Tl1ii | −130.7 (7) |
Tl1—O1—N1—Tl1vi | −87.4 (6) | Tl1i—N2—C2—Tl1ii | 62.2 (4) |
Tl1ii—O1—N1—Tl1vi | −35.9 (5) | Tl1vii—N2—C2—Tl1ii | −79.4 (5) |
Tl1—O2—C1—N1 | 13.2 (13) | Tl1viii—N2—C2—Tl1ii | −160.6 (16) |
Tl1ii—O2—C1—N1 | −106.2 (10) | O3—N2—C2—Tl1i | 167.1 (9) |
Tl1i—O2—C1—N1 | 162.0 (7) | Tl1ii—N2—C2—Tl1i | −62.2 (4) |
Tl1vi—O2—C1—N1 | −38.7 (10) | Tl1vii—N2—C2—Tl1i | −141.7 (8) |
Tl1iv—O2—C1—N1 | 79.1 (11) | Tl1viii—N2—C2—Tl1i | 137.1 (18) |
Tl1—O2—C1—C2 | −170.2 (6) | O2—C1—C2—N2 | −1.5 (14) |
Tl1ii—O2—C1—C2 | 70.4 (8) | N1—C1—C2—N2 | 175.7 (9) |
Tl1i—O2—C1—C2 | −21.4 (12) | Tl1ii—C1—C2—N2 | 48.9 (9) |
Tl1vi—O2—C1—C2 | 137.9 (7) | Tl1—C1—C2—N2 | −18 (2) |
Tl1iv—O2—C1—C2 | −104.3 (8) | Tl1i—C1—C2—N2 | −13.9 (9) |
Tl1—O2—C1—Tl1ii | 119.5 (6) | Tl1vi—C1—C2—N2 | 95.3 (11) |
Tl1i—O2—C1—Tl1ii | −91.7 (7) | O2—C1—C2—C3 | −176.8 (9) |
Tl1vi—O2—C1—Tl1ii | 67.6 (2) | N1—C1—C2—C3 | 0.4 (14) |
Tl1iv—O2—C1—Tl1ii | −174.7 (6) | Tl1ii—C1—C2—C3 | −126.4 (9) |
Tl1ii—O2—C1—Tl1 | −119.5 (6) | Tl1—C1—C2—C3 | 166.8 (11) |
Tl1i—O2—C1—Tl1 | 148.8 (10) | Tl1i—C1—C2—C3 | 170.8 (10) |
Tl1vi—O2—C1—Tl1 | −51.9 (4) | Tl1vi—C1—C2—C3 | −80.0 (13) |
Tl1iv—O2—C1—Tl1 | 65.8 (5) | O2—C1—C2—Tl1ii | −50.4 (7) |
Tl1—O2—C1—Tl1i | −148.8 (10) | N1—C1—C2—Tl1ii | 126.8 (8) |
Tl1ii—O2—C1—Tl1i | 91.7 (7) | Tl1—C1—C2—Tl1ii | −66.7 (14) |
Tl1vi—O2—C1—Tl1i | 159.3 (7) | Tl1i—C1—C2—Tl1ii | −62.78 (17) |
Tl1iv—O2—C1—Tl1i | −82.9 (6) | Tl1vi—C1—C2—Tl1ii | 46.4 (7) |
Tl1—O2—C1—Tl1vi | 51.9 (4) | O2—C1—C2—Tl1i | 12.4 (7) |
Tl1ii—O2—C1—Tl1vi | −67.6 (2) | N1—C1—C2—Tl1i | −170.4 (8) |
Tl1i—O2—C1—Tl1vi | −159.3 (7) | Tl1ii—C1—C2—Tl1i | 62.78 (17) |
Tl1iv—O2—C1—Tl1vi | 117.8 (5) | Tl1—C1—C2—Tl1i | −3.9 (14) |
O1—N1—C1—O2 | 1.8 (14) | Tl1vi—C1—C2—Tl1i | 109.2 (8) |
Tl1—N1—C1—O2 | −8.4 (9) | O3—N3—C3—N4 | −176.4 (8) |
Tl1ii—N1—C1—O2 | 69.4 (9) | Tl1vii—N3—C3—N4 | 130.2 (8) |
Tl1vi—N1—C1—O2 | 40.0 (11) | Tl1viii—N3—C3—N4 | −162.5 (7) |
O1—N1—C1—C2 | −175.0 (8) | O3—N3—C3—C2 | 1.0 (10) |
Tl1—N1—C1—C2 | 174.8 (8) | Tl1vii—N3—C3—C2 | −52.4 (10) |
Tl1ii—N1—C1—C2 | −107.4 (9) | Tl1viii—N3—C3—C2 | 14.8 (11) |
Tl1vi—N1—C1—C2 | −136.8 (6) | Tl1ix—N4—C3—N3 | 29.1 (18) |
O1—N1—C1—Tl1ii | −67.6 (9) | Tl1ix—N4—C3—C2 | −147.8 (9) |
Tl1—N1—C1—Tl1ii | −77.8 (4) | N2—C2—C3—N3 | −1.1 (11) |
Tl1vi—N1—C1—Tl1ii | −29.4 (5) | C1—C2—C3—N3 | 174.6 (9) |
O1—N1—C1—Tl1 | 10.2 (7) | Tl1ii—C2—C3—N3 | 85.0 (10) |
Tl1ii—N1—C1—Tl1 | 77.8 (4) | Tl1i—C2—C3—N3 | −27.9 (19) |
Tl1vi—N1—C1—Tl1 | 48.4 (2) | N2—C2—C3—N4 | 176.1 (9) |
O1—N1—C1—Tl1i | 36 (2) | C1—C2—C3—N4 | −8.2 (16) |
Tl1—N1—C1—Tl1i | 26.0 (17) | Tl1ii—C2—C3—N4 | −97.8 (11) |
Tl1ii—N1—C1—Tl1i | 103.8 (19) | Tl1i—C2—C3—N4 | 149.3 (12) |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x, y−1/2, −z+3/2; (iii) x, −y+1/2, z+1/2; (iv) x, y+1, z; (v) x, −y+3/2, z+1/2; (vi) x, y−1, z; (vii) x, −y+1/2, z−1/2; (viii) x, −y+3/2, z−1/2; (ix) −x+1, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N3x | 0.93 | 2.23 | 3.156 (10) | 169 |
N4—H4B···N1ix | 1.01 | 2.65 | 3.256 (13) | 118 |
Symmetry codes: (ix) −x+1, y−1/2, −z+3/2; (x) −x+1, −y, −z+1. |
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Akhbari, K., Alizadeh, K., Morsali, A. & Zeller, M. (2009). Inorg. Chim. Acta, 362, 2589–2594. Web of Science CSD CrossRef CAS Google Scholar
Akhbari, K. & Morsali, A. (2010). Coord. Chem. Rev. 254, 1977–2006. Web of Science CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Britton, D. (2001). Acta Cryst. E57, m176–m178. Web of Science CSD CrossRef IUCr Journals Google Scholar
De, S., Khambete, M. P. & Degani, M. S. (2019). Bioorg. Med. Chem. Lett. 29, 1999–2007. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fershtat, L. L. & Makhova, N. N. (2016). Russ. Chem. Rev. 85, 1097–1145. Web of Science CrossRef CAS Google Scholar
Fonari, M. S., Simonov, Yu. A., Kravtsov, V. Ch., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129–140. Web of Science CSD CrossRef CAS Google Scholar
Giorgis, M., Lolli, M. L., Rolando, B., Rao, A., Tosco, P., Chaurasia, S., Marabello, D., Fruttero, R. & Gasco, A. (2011). Eur. J. Med. Chem. 46, 383–392. Web of Science CSD CrossRef CAS PubMed Google Scholar
Glomb, T., Szymankiewicz, K. & Świątek, P. (2018). Molecules, 23, 3361–3377. Web of Science CrossRef Google Scholar
Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221–6227. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozlowska, J. (2007). New J. Chem. 31, 1798–1805. CAS Google Scholar
Kumar, S., Sharma, R. P., Saini, A., Venugopalan, P. & Starynowicz, P. (2015). J. Mol. Struct. 1079, 291–297. Web of Science CSD CrossRef CAS Google Scholar
Larsen, I. K. (1988). Acta Cryst. B44, 527–533. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Adv. Inorg. Chem. 177–246. Google Scholar
Mudring, A. V. & Rieger, F. (2005). Inorg. Chem. 44, 6240–6243. Web of Science CSD CrossRef PubMed CAS Google Scholar
Neel, A. J. & Zhao, R. (2018). Org. Lett. 20, 2024–2027. Web of Science CrossRef CAS PubMed Google Scholar
Ostrowska, M., Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2019). New J. Chem. 43, 10237–10249. Web of Science CSD CrossRef CAS Google Scholar
Pal, P., Gandhi, H. P., Kanhed, A. M., Patel, N. R., Mankadia, N. N., Baldha, S. N., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2017). Eur. J. Med. Chem. 130, 107–123. Web of Science CrossRef CAS PubMed Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504–3511. Web of Science CSD CrossRef Google Scholar
Pibiri, I., Lentini, L., Melfi, R., Tutone, M., Baldassano, S., Galluzzo, P. R., Di Leonardo, A. & Pace, A. (2018). Eur. J. Med. Chem. 159, 126–142. Web of Science CrossRef CAS PubMed Google Scholar
Robertson, D., Barnes, C. & Gerasimchuk, N. (2004). J. Coord. Chem. 57, 1205–1216. Web of Science CSD CrossRef CAS Google Scholar
Romeo, G. & Chiacchio, U. (2011). Modern Heterocyclic Chemistry, edited by J. Alvarez-Builla, J. J. Vaquero & J. Barluenga, pp. 1047–1252. Weinheim: Wiley-VCH. Google Scholar
Safyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2017). Acta Cryst. E73, 24–27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Salassa, G. & Terenzi, A. (2019). Int. J. Mol. Sci. 20, 3483–3500. Web of Science CrossRef CAS Google Scholar
Schroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2020). J. Alloys Compd. 820, 153369. Web of Science CrossRef ICSD Google Scholar
Shaposhnikov, S., Pirogov, S. V., Mel'nikova, S. F., Tselinsky, I. V., Näther, C., Graening, T., Traulsen, T. & Friedrichsen, W. (2003). Tetrahedron, 59, 1059–1066. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, A. K., Lohani, M. & Parthsarthy, R. (2013). Iran. J. Pharm. Res. 12, 319–323. Web of Science CAS PubMed Google Scholar
Stepanov, A. I., Astrat'ev, A. A., Sheremetev, A. B., Lagutina, N. K., Palysaeva, N. V., Tyurin, A. Yu., Aleksandrova, N. S., Sadchikova, N. P., Suponitsky, K. Yu., Atamanenko, O. P., Konyushkin, L. D., Semenov, R. V., Firgang, S. I., Kiselyov, A. S., Semenova, M. N. & Semenov, V. V. (2015). Eur. J. Med. Chem. 94, 237–251. Web of Science CSD CrossRef CAS PubMed Google Scholar
Telvekar, V. N. & Takale, B. S. (2013). Synth. Commun. 43, 221–227. Web of Science CrossRef CAS Google Scholar
Viterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444–3446. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Wiesbrock, F. & Schmidbaur, H. (2003). J. Am. Chem. Soc. 125, 3622–3630. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wiesbrock, F. & Schmidbaur, H. (2004). J. Inorg. Biochem. 98, 473–484. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zareef, M. I., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enzyme Inhib. Med. Chem. 22, 301–308. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, H. & Jian, F. (2009). Acta Cryst. E65, o2911. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, J., Mitchell, L. A., Parrish, D. A. & Shreeve, J. M. (2015). J. Am. Chem. Soc. 137, 10532–10535. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zlotin, S. G., Churakov, A. M., Dalinger, I. L., Luk'yanov, O. A., Makhova, N. N., Sukhorukov, A. Yu. & Tartakovsky, V. A. (2017). Mendeleev Commun. 27, 535–546. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.